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Since recent years many authors have used the maximal prin-
ciple to prove fixed point theorems, for example [1],(2],(3].

In this paper, using that idea we prove a nex fixed point
theorem and show some applications.

Let X be a Banach space, D a subset of X, By conv D we de-
note the convex hull of D. Let P be & binary relation on D. We
say that P is reflexive if P(x,x) for all xeD, P is closed if
the set {(x,y)€ DxD:P(x,y)}t is closed on Dx D. The function h:
sconv D—> R is said to be uniformly convex if it is convex and

for each ©> O there exists & d° > 0 such that:
nEH < 3 (a(x) + w(y) - I

for all x,yeconv D, fx-yl > 2 . If S is a subset of D, (h/S)
denotes the restriction of h on S, R(h/S) denotes the renge of
(n/s).
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Theorem: Let D be a closed =ubset of a Banach space X, P
a reflexive closed relation on D,h:conv D —> R+ a uniformly con-
vex continuous bounded function attaining its minimum X, € D, Let
£:D —> D be a map such that:

1) if xeD and P(xo,x), then P(xo,f(x)),

2) 1if x,y€D, B(x,y) and h{F(x+y))Z h(x),
then P(£(x),2(y)) md h(Z(£(x)+£(y))Z h(2(x)).

Then f has & fixed point.

Proof: Let ¥l be the family of all nonempty subsets S of
D containing X, and satisfying the following conditions:

a) 1if x,yeS, h(x)< h(y), then P(x,y) and h(x) <h(f(x)) £
£ h(y) and h(£(x)) = h(y) if and only if £(x) = y3

b) 1if x,y€S, h(x)£h(y), then h(x) £ h(¥(x+y)),

c) if aeR,, h(xo)< a<sup{h(x) ! xeS} and
a&R(h|S), then there exists an x&S such thet h(x)< a<h(f(x)).

Obviously, {x,} e & , thus W + 4.

Lemma 1: If S e 70 , then h(xy)# h(x,) for all xy,x,€ S
and 11#12.

Proof: Suppose that there are Xq,%€ S, x14=x2 and h(x1)=
= h(x,), then by b) and by uniform convexity of h we have:
n(xy)< h((x; + 1,))<}(h(xy) + hix,)) => h(x,) > h(x,),

a contradiction., This finishes the proof of Lemma 1,

Lemma 2: If S e @ , (x))cs, h(xn)']’ a, then (x)) 1s a
Cauchy sequence and moreover, if x€S, h(x) = a, then x = lim X

Pyroof: Suppose that (xn) is not a Cauchy sequence, then
there exists an € > O and a subsequence (xni) such that:
|\ xni- xnj\l z €& for i%j. By the uniform convexity of h there

exists a 0 > O such that:
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n(x. )é h(x l(n h -dJ.
(xni g(xni'l- xni+1))£-§( (xni) + (xni+1))
Thus h(x, )Z h(x ) + 2d’ = h(x,) + 2id’ for all i.
141 1

This contradicts the boundedness of h. Now, let x€S and h(x) =

= a, If x4+1im Xpo then there is an © > 0 and n, such that:

lx, - x| z e for all n>n_. Then there is a J > 0 such that:
n(x,) £ h(3(x, + x))4 F(alxy) + h(x) -,

h(x)z h(xn) + 2d for all nzng.

This contradicts the assumption h(x) = 1lim h(xn) and the proof

of Lemma 2 is complete.

Lemma 3. Let S ¢ )L and x €S be such that h(x ) <nh(x) <
< sup { h(x)|xe S}, then £(x)e S.

Proof: Suppose that £(x)4& S. We claim that h(f(x)) &R(hlS).
In fact, if h(f(x)) = h(y) for some ye€ S, then h(x)< h(y) and
y4£(x); then by a) h(f£(x))< h(y), a contradiction. This shows
that h(£(x))¢R(hIS)) and h(£(x))< sup {h(x)|x€ Si. Now by ¢)
there exists & z€ S such that h(z)< h(f£(x))< h(£(z)) but by Lem-
wa 1) and by &) it is impossible. That proves that f(x)e S and

ends the proof of Lemma 3.

Lemma 4. Let S e 73/ , xeD, h(x°)<h(i)£h(u) for some
ue€ S. Suppose that there exists a sequence (xn)E_S such that
lmx = x;h(xn)'l‘h(x), then x¢ S.

Proof: If h(x)&R(h|S), then h(x)< h(u). In fact if h(x)=
= h(u) then by Lemma 2, u = lim x, = x¢ S, a contradiction. By
the condition c¢) there is a ze S such that h(z)< h(x)< h(£(z)).
Then there is an integer n, such that h(z)<h(xn°)<h(t(z)).

This contradicts the condition a). This shows h(x)e R(h|S) and
h(x) = h(y) for some y, y& S. By Lemma 2) y = 1lim X, = X€S.
This ends the proof of Lemma 4.
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Lemma 5. Let 3 € W , ye S, y4x,; then either y = £(z)
for a 2€S, shyory -nlti:m £(z,)s h(£(5,))T™h(y) for e sequence
(z)es.

Proof. Put My = sup {h(x)lxe 83h(x)< h(y)} .

1) It ly = h(y), then there is a (sn)_gs such that
h(zn)'t‘ h(y). By the condition a) we have h(sn)< h(f(zn)) £
€h(z, . 4)<k(y). Thus h(£(2,)) h(y). By Lemma 3) £(z )€ S for all
n and by Lemma 2) y = lim f(zn).

2) 1t H’,<h(r), then by c) there is a £& S such that h(z)<
<5(M + 1(y))<h(2(2)) £ h(y). By Leama 3) £(z)€ S and by Lemna 1
£(z) = y. Of course y=#z. This completes the proof of Lemma 5,

Lemma 6. Let 8.8, & M end suppose that for each x€ S,
there 1s a ue S, such that h(x)<£h(u). Then 8,€38,.

Proof: Suppose that S,%8S,, then 5\ 8, S,%p. Let T€5,\
N\8,N8,. By assumption there is & u€S, such that h(u) = n(x).
Put A = {x€8,NS,: VyeSy3 h(y)<h(x) =» y& S,%. 0f course A+§
since x € A. It is clear that h(x)<h(X) for all x&A. Put M, =
= gup 1h(x) | xe A} < n(T).

1) It me R(h | A), then M, = h(y)< h(X) for some ye€ A. By
Lemma 3 f(y)e 810853 h(y)< h(2(y)) and if z€S,, h(z)=<h(2(y)),
then h(z) £h(y). Thus z € A. Therefore f(y)e A, a contradiction.

2) If M,¢R(h|A), then there is an (x )< 4, h(x)?M,. By
Lemma 4) lim x, = x€8,NS,. It is clear that xCA. It contra-
dicts the fact h(x) = M, $R(hlA). This shows that 5,\5,NS, = ¢
and 5,5 S,.

Lemma 7. S'= U4{sSiseMis N.

Proof: It is easy to verify that § satisfies all conditi-

ons a),b),c).

Now we return to the proof of the theorem. Put
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M = sup {h(x)|xeS}. If M¢R(h|S), then there is a sequence
(x,)€ ER h(xn)Tll. By Lemma 2 there is an X = lim x  and h(¥) =
= M. Put § = 5 Uizk It is obvious that S satisfies the condi-
tion o). .

Now we verify that § also satisfies the conditioms a),b),
too. Let x¢ 8§, h(x)< h(X), then xS and there exists an m_ such

o
that h(x)<h(x,) for ell n>n,. Since T & 9 , we have P(x,x;)

)

and h(x).éh(f(x))éh(xn);h(x)é h(-;-(x+xn)) for all n>n,. Since

P is closed and h is continuous, it follows that P(x,X),h(x) <
< h(£(x))< lim h(x ) = h(X) and h(x) & lim h(%(n-xn)) -

= n(}(x+%)). This shows that ¥ ¢ 1 =» FcF and T¢BE. This con-
tradicts the fact M = h(X) & R(hIS). Then there is & u€S such
that h(u) = M. Put ¥ = S Uif(u)}. 0f course ™ satisfies the oon-
dition ¢). Let xeF, h(x)< h(2(u)), then x¢T. If x = x,, then
of course P(x ,u) and h(xo)!:h(%(xoﬂ(u)))‘ %(h(x°)+h(f(u)))’->
= h(f(u))z= h(xo) and by assumption 1) we have P(xo,f(u)).

If x4x,, then either x = £(z) for & 2768 or x = 1im t(zn),
n(£(z,))* h(x) for a sequence (z,)s58.

1) Let x = £(z) for a "z€ S, x4z, then h(z)< h(x)£ h(u).
By the conditions a),b) we have P(z,u) and h(%(zﬂl))?_ h(z). By
assumption 2) it follows that P(x,f(u)) and %(h(f(u)) + h(x)) =z
Z h(F(x+£(2))) z h(x) = h(2(u)) z h(x).

2) If x = 1lim £(z,):h(£(z,))* h(x) for a sequence (z )= g,
then P(z,,u) and h((%(uﬂn)) Zh(z,). By assumption 2) we have
P(£(z),2(w)) and F(a(2(w)) + h(2(2.))) Zh(F(£() + £(z,)) =
Zn(f(z;)). Since P is closed and h is continuous, it follows
that: P(x,f(u)) end %(h(f(\x)) + h(x))Zh(%(f(u) + x))Zh(x) =>
=> h(f(u))Z h(x).

This proves that P(x,f(u)), h(F(£(u) + x)) zh(x), h(f(u)) z

Z h(x) for all xeS, especially for x = u.
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Now let xsg, h(x) < h(£(u)). Then x<S. If x+u, then h(x)<
< h(u), Since S & WL , we have h(£(x))>h(x), h(f(x))2h(u) £
£ n(f(u)). This proves that ’Su satisfies the conditions a),b),too,
and 5 € WL . Therefore §c5 = (u)€S and h(f(u)) = h(u). By
Lemma 1) f(u) = u. This completes the proof of the theorem. For
the sake of completeness we include the following

Lemma 8, Let X be a uniformly convex Banach space, D a con-
vex bounded subset of X, then the function h(x) = x 2 is uni-
formly convex, continuous and bounded on D.

Proof: The boundedness and the continuity of h are obvi-
ous.

Now without loss of generality we can suppose that D is con-
tained in the unit ball B.‘ (0) of X. Suppose that h is not uni-
formly oonvex, then there exist. an € > O and subsequences
(x,), (7)€ D such that: I3(x +y N2z 2z 02 + Ay 02) - & for
all n = 1,2,... . We can suppose that a = lim lx I lim llynl- b.
Put A, = lynll(nxnn)'1 , then lim A = A = va~1,

1) Let A< 1, then I3(x +y )0 < Fx, I + Ny ) =
= %(‘H A ) ix N, By assumption it follows that:

- 1+ 304202 N 024 nJaay N2 e JOe a2 lix 12,
Taking limit we have & contradiction: -}(1-.7(.)2£ 0.

2) Let A= 1, We can suppose that ﬂxn -Q

1
nolZ 3 & for

all n, Then lxnll - M.nynlr -} © .« 0f course

M, 'z, - My~ 'y = g~ Mxy = Ay, > 2z D)V >

7% € . By the uniform convexity of X there exists a o°> 0 such
-1

that I (2Rx )™ (2= Ay ) B< 1 2 I -

By assumption it follows that:

- 3+ 30+22) I ® 4 (R D™ xpr Ay O Ux b+
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(=203 My, M2 21O - xh + (1 -2 % 1y 112,
Then O« al< (1 -d')zaz. a contradiction. This proves that h is

uniformly convex.

Corollary 1. Let O€D be a bounded closed subset of a uni-
formly convex Banach space, P a reflexive closed relation on D.
Let £:D—> D be a map such that:

1) 1f xeD, P(0,x), then P(0,f(x))

2) 1if x,yeD;B(x,y) amd Ix(z+y) N z Uxl,
then P(£(x),2(y)) and W3(2(x)+(y) N = UL(OL.
Then £ has a fixed point.

Now if the relation P is defined by P(x,y) for all x,yeD,

then we have:

Corollary 2. Let D be a closed subset of a Banach space,
hiconv D —»R, @& uniformly convex continuous bounded function
attaining its minimum at x,€ D. Suppose that f:D—» D is a map
such that if x,yeD, h(%(x#y))z h(x), then h(%(f(x) + 2y =z
Zh(f£(x)). Then f has a fixed point.

If the relation P on D is defined by: P(x,y) if and only i
h(Ax + (1=-A)y)Zh(x) for all A e (0,11 then we have:

Corollary 3. Let D, h be as in Corollary 2 and £:D —> D
map such that: if x,ye D, h({(1 =A)x + Ay) 2 h(x), then
({1 =A)L(x) + Af2(y))Zh(£(x)) for all A€ [0,1)., Then £ haa
a fixed point.

All notions concerning Banach lattices used here are stan-

dard, we refer the reader for instance to [6].

Corollary 4., Let X be a uniformly convex Banach lattice,
Oe D &a closed, bounded subset of the positive cone ct of X, Lt
£:D—>» D be a map such that: if x,yé D, x<£y, then f(x) & f(y).
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Then f hag a fixed point.

Proof: It is sufficient to note that if x,y¢D and x<y,
then lIx 1l = N yl.

Let X be a Banach space. L§([0,1]) denotes the Lebesgue spa~
ce of all strongly measurable functions x:[0,11 —> X such that:

1
1 2,22
x = Ix(t)l€at)c < o0 »
Nl = [, tx®ifat)
Lemma 9., Let X be a uniformly convex Banach lattice, D =
= £x€15(10,11): I x()15£K for all t€[0,11%
for some positive number K, then the function h(x) = llxl\‘;2 is

uniformly convex on D.
Proof: Let € be a given positive number, x,y&D such that
lx-yly > © . Put I =L0,1034 = {461, Ix(t)-y(zz 3 & 3

men (lx(6)-y(N%at £ [ Ix(-y(NZae + [ (7" ¢ Zare

< 42 o (A) + % e? = (M'(A)Z1%- &2,

By Lemma 8, there exists a d > O such that:
I3x()+3(6N2 & x(0)12 + hy($)12) =& for a1l tcA.
It follows that:

R < J, Do+ Zas + [ PRx(oy(eN2ar £

£7 [ MxZ + 13002 - at + [, A= + Iy(D1Das &
e%(llx\\iz + uyugz) -5 - e
This ends the proof of Lemma 9.

Now we consider the Cauchy problem of differential equati-
on in Banach lattice X:

x = £(%,
(1) {x (4

x(0) = x,
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where £:(0,1]1 x X—» X satisfies the Carathéodory conditions,
i.e.:

1) £(t,+) is continuous for a,e. t€L[0,1],

2) f£(.,x) is strong measurasble for every x€X.

We say that (I) has a solution, if there exists a continu-
ous function x:{0,1] —= X such that: x(t) = x, + f: 2(s,x(8))ds
for all tel[0,1].

Corollary 5. Let X be a uniformly convex Banach lattice,
£:[0,1] x X—> X satisfies the Carathéodory conditions, and:

1) there is & function (3(t)€ L;(L0,1]1) such that .
t2(+,x) | £ 3(t) for all te€ [0,113x€X,

2) 0<£f(t,x)<f(t,y) if O&x4y; te[0,1].
Then for each ;oec+ the problem (I) hes & solution.

Proof. Put D =§xe€Lp(L0,11):x(t)Z 0 and fx(t)lyp<lix, I +
+ 5‘2 B (t)at for all t€[0,11} , Pp(x)(t) = x, +
+ j‘; t(s,x(s))ds for xeD, t€[0,1]. One can verify that P,:
:D —> D and Po(x) £ Pp(y) if x,yeD;x4y. Now we define a rela-
tion P on D such that P(x,y) if and only if x&y. Put h(x) =
= x“i2. By Lemma 9, h is & uniformly convex continous bounded
function on D20, If x,yeX, x££y, then %(x+y)z: and
ﬂ%(xﬂr)“zz 1xl2. Therefore if x,yeD, x<y, then Fo(x)< Fo(y),
LE(x) + F(y))ZFp(x) and DY(F(x) + Fp(y))I22Z RE(x)N2.
By the theorem F, has a fixed point XeD, It is easy to see that
% is a solution of (I).
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