Commentationes Mathematicae Universitatis Caroline

Václav Havel
 Configuration conditions of small point rank in 3-nets

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 2, 327--335

Persistent URL: http://dml.cz/dmlcz/106374

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE

CONFIGURATION CONDITIONS OF SMALL POINT RANK IN 3-NETS V. HAVEL

Abstract: There are analyzed all possibilities for closure conditions with at most 7 vertices in $3-n e t s$ and the correaponding algebraic identities are found. The method used worke also in the general case (with arbitrary number of vertices) but yet for 8 vertices increases rapidly.
Key words: 3-halfnet, 3-net, homomorphism, configuration, closure condition.
Classification: 20NO5,51A20

$\S 1$ Some properties of 3-nets
A 3-net (briefly: a net) is defined as a triplet (P, L, I, (L_{1}, L_{2}, L_{3})) where P, L are non-void sets, I is a subset of $P \times L$ and $\left\{L_{1}, L_{2}, L_{3}\right\}$ is a decomposition of L (inducing an equivalence relation // on L) such that
(i) for every $a \in L$ there is a b $\in P$ with bIa,
(ii) for every $i \in\{1,2,3\}$ and every $a \in P$ there is just one $b \in L_{i}$ with aIb, and
(iii) for every a,bal not satisfying $a / / b$ there is just one cep with $c I a, b$.

If P, L_{1}, L_{2}, L_{3} are one-element sets then the net is called trivial. Elements of P will be called points, eléments of L lines, I incidence and L_{1}, L_{2}, L_{3} parallelity classes; the cardinality of P will be called point rank, the cardinality of L line rank and the car-
dinality of $\{p \mid p I l\}$ for any $\ell \mathbb{L}$ the length of l.
Let $N=\left(P, L, I,\left(L_{1}, L_{2}, L_{3}\right)\right), N^{\prime}=\left(P^{\prime}, L^{\prime}, I^{\prime} ;\left(L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}\right)\right)$ be neta. A couple (π, λ) of bijectione $\pi: P \rightarrow P^{\prime}, \lambda: L \rightarrow L^{\prime}$ is said to be an isomorpligen of N onte X^{\prime}, if $x I y \Rightarrow x(x) I^{\prime} \lambda(y)$ and $\forall i \in\{1,2,3\}$ ($\left.\ell \in \mathrm{L} \Rightarrow \lambda(\ell) \in L_{K}^{\prime}\right)$. The net isomorphism is an equivalence relation on the class of all nete. The induced equivalence classes are maximal subclasses of mutually isomorphic nets.

Frem every not $N=\left(P, L, I,\left(L_{1}, L_{2}, L_{3}\right)\right)$ we can obtain nete $N_{i j k}=\left(P, L, I,\left(L_{i}, L_{j}, L_{k}\right)\right)$ (where (i,j,k) are permutations of the set $\{1,2,3\}$) called parastrophs of N .

A three-basic groupoid is defined as a quadruplet (A, B, C, \cdot) where $A ; B, C$ are non-ompty sete and $\cdot: A \times B \rightarrow C,(a, b) \mapsto a \cdot b$ is a "three-basic" binary operation. This groupoid is said to be a three-basic quasigroup, if for every (a,c) $\in A \times C$ there exists just one $b \in B$ auch that $a \cdot b=c$ and if for overy $(b, c) \in B x C$ there exiets just one $a \in A$ such that a $b=c$. Let $G=(A, B, C, \cdot), G^{\prime}=\left(A^{\prime}, B^{\prime}, C^{\prime}, \cdot{ }^{\prime}\right)$ be three-basic quasigroups. A triplet (α, β, γ) of bijections $\alpha: A \rightarrow A^{\prime}, \beta: B \rightarrow B^{\prime}, \gamma: C \rightarrow C^{\prime}$ is called an isotopy of G onto G^{\prime} if for all $x \in A, y \in B$ the equation $\alpha(x)!\beta(y)=\gamma(x \cdot y)$ is valid. The isetopy is an equivalence relation on the class of all three-baaic quasigroups. It divides this class onte maximal subclasses of nutually isotopic quasigroups.

THEORGM (cf. [1], pp. 396-398):
a. Evory net $N=\left(P, L, I,\left(L_{1}, L_{2}, L_{3}\right)\right)$ canonically determines a three--basic quasigroup $Q_{N}=\left(L_{1}, L_{2}, L_{3}, \%\right)$ such that for all $l_{1} \in L_{1}, l_{2} \in L_{2}$, $l_{3} \in L_{3}: l_{1}: l_{2}=l_{3} \Leftrightarrow\left\{\mid p I l_{1}, l_{2}, l_{3}\right\} \notin \varnothing$.
b. Every three-basic quasigroup $Q=\left(Q_{1}, Q_{2}, Q_{3}, \cdot\right)$ with disjoint sets Q_{1}, Q_{2}, Q_{3} canonically deternines a net $N_{Q}=\left(Q_{1} \times Q_{2}, Q_{1} \cup Q_{2} \cup Q_{3}, I_{Q}\right.$,
$\left(Q_{1}, Q_{2}, Q_{3}\right)$) where for all $x_{1} \in Q_{1}, x_{2} \in Q_{2}, x \in Q_{1} \cup Q_{2} \cup Q_{3}:\left(x_{1}, x_{2}\right) I_{Q} x \Leftrightarrow$ $\Longleftrightarrow\left(x=x_{1} \vee x=x_{2} \vee x=x_{1} \cdot x_{2}\right)$.
c. If N is a net then $N_{Q_{N}}$ is isomorphic to N. If Q is a three-basic quasigroup then $Q_{N_{a}}$ is isotopic to Q.
d. Two nets N, N^{\prime} are isomorphic if and only if $Q_{N}, Q_{N^{\prime}}$ are isotopic.

If $Q=\left(Q_{1}, Q_{2}, Q_{3}, \cdot\right)$ is a three-basic quasigroup then for all permutations (i, j, k) of the set $\{1,2,3\}$ denote by ajpthe operation $S_{i j k}: Q_{i} \times Q_{j} \rightarrow Q_{k}$ such that $x_{i} \cdot{ }_{i j} ; x_{j}=x_{k} \Leftrightarrow x_{1} \cdot x_{2}=x_{3}$ for all $x_{1}<Q_{1}, x_{2} \in Q_{2}$, $x_{3} \in Q_{3}$. Evidently all ($Q_{i}, Q_{j}, Q_{k}, \dot{i j k}$) are quasigroups (the so called parastrophs of Q). The operations ${ }_{321}$ orass2 will be denoted later also by $/\left(x_{1} \cdot x_{2}=x_{3} \Leftrightarrow x_{1}=x_{3} / x_{2}\right)$ or by ($\left.x_{1} \cdot x_{2}=x_{3} \Leftrightarrow x_{2}=x_{1} \backslash x_{3}\right)$.

§ 2 Configurations and closure conditions in 3-nets

A 3-halfnet (briefly: a halfnet) is defined as a quadruplet $\left(P, L, I,\left(L_{1}, L_{2}, L_{3}\right)\right)$ where P, L are sets, $I \subseteq P \times L, L_{1}, L_{2}, L_{3} \subseteq L$, $L_{1} \cap L_{2}=\varnothing, L_{1} \cap L_{3}=\varnothing, L_{2} \cap L_{3}=\varnothing, L_{1} \cup L_{2} \cup L_{3}=L$ such that
(i) for every $i \in\{1,2,3\}$ and every $p \in P$ there is at most one $\ell \in L_{i}$ with pI ℓ, and
(ii) for any two distinct a,beL there is at most one ceP with cIa,b.

The terms points, lines, parallels, parastrophs, ranks etc. for halfnets have a similar meaning as for nets.

We say a halfnet $N=\left(P, L, I,\left(L_{1}, L_{2}, L_{3}\right)\right)$ is a sub-halfnet of a halfnet $N^{\prime}=\left(P^{\prime}, L^{\prime}, I^{\prime},\left(L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}\right)\right)$ if $P \leqslant P^{\prime}, I \leq I^{\prime}, L_{1} \leqslant L_{1}^{\prime}, L_{2} \leqslant L_{2}^{\prime}, L_{3} \leqslant L_{3}^{\prime}$ (so that also LsI'). A halfnet ($P, L, I,\left(L_{1}, L_{2}, L_{3}\right)$ is said to be a configuration if
(i) P is finite and contains at least four points,
(ii) for every pap there are $h_{1} L_{1}, h_{2} \in L_{2}, \ell_{3} ब L_{3}$ such that pI l_{1}, l_{2}, l_{3}, (iii) for every $l \in L$ there are distinct $a, b \in P$ such that $a, b I l$, and
(iv) for any $a, b \in P$ there is a sequence ($p_{0}, l_{0}, p_{1}, l_{1}, \ldots, p_{m}$) with $p_{0}, p_{1}, \ldots, p_{m} \in P ; l_{0}, l_{1}, \ldots, l_{m-1} \in L ; p_{0}=a ; p_{m}=b ; p_{0}, P_{1} I l_{8} ; p_{1}, P_{2} I l_{1} ;$ $\ldots ; P_{m-1}, P_{m} I l_{m-1}$ (briefly:any two points are connected).

It can be easily seen that every configuration is a subhalfnet in a convenient net.

A homomorphism of a halfnet $N=\left(P, L, I,\left(L_{1}, L_{2}, L_{3}\right)\right.$) into a halfnet $N^{\prime}=\left(P^{\prime}, L^{\prime}, I^{\prime},\left(L_{1}^{\prime}, I_{2}^{\prime}, L_{3}^{\prime}\right)\right)$ is defined as a couple (π, λ) of made $\pi: P \rightarrow P, \lambda: L \rightarrow L^{\prime}$ such that for all $p \in P, h \in L$ from $p I \ell$ it followa $\pi(p) I^{\prime} \lambda(\ell)$ and for $a 11 \quad i \in\{1,2,3\}$ from $l \in L_{4}$ it follows $\lambda(\ell) \in L_{i}^{\prime}$, Let $\tilde{\mathbf{N}}=\left(\boldsymbol{P}, \tilde{L}_{,}, \tilde{I}_{2}\left(\tilde{I}_{1}, \tilde{I}_{2}, \tilde{I}_{3}\right)\right\}$ be a configuration with a prominent "terminal" line $\tilde{H_{\delta} \in \tilde{L}}$ by deleting of which it 18 obtained a sub-halfnet \tilde{N}_{0} of \tilde{N}. We say that the closure condition associated to \tilde{N} with \tilde{l}_{9} is valid in a net $N=\left(P, L, I,\left(L_{1}, L_{2}, L_{3}\right)\right.$) if every homomorphism of \tilde{N}_{0} into N can be prolonged onto a homomorphism of \tilde{N} into N. If $\left(r_{0}, \lambda_{0}\right)$, (r, λ) is the starting homomorphisen and the prolonged one, respectively, then $x_{0}=r$ and $\lambda_{0}=\left.\lambda\right|_{\tilde{L} \backslash\left\{\sum_{0}\right.}$

83 Configurations of point rank <8

Using the analysis of more general configurations of point rank <8 in nets of arbitrary finite degree (cf. [3], chap. III) one can deduce all possible configurations of point rank <8 (up to isomorphisms and parastrophs) . The result is as follows:

There is only one configuration of point rank 4. It is deecribed on Fig. 1.

Fig. 1

There is no configuration of point rank 5 .

There is exactly one configuration of point renix 6 possessing lines of length 3 . It is described on Fig. \therefore

Fig. 2

There are exactly two configurations of point rank ϵ with no line of lengti ?. They are described on Fig. 3 and 4.

Fig. 3

We shall denote configurations of Fig. 1 and 2 as Fano configurations F_{2}, F_{3} of index 2 and 3 , respectively. Configuration on Fig. 3 is Thomsen configuration T and configuration on Fig. 4 is a shattered Desargues configuration D.

There are only three configurations of point rank ?. They
are described on Fig. 5-7. Ne shall denote them as hexagonal configuration H, first hybrid configuration C_{1} and second hybric configuration C_{2}.

Fig. 5

Fig. ©

fig. 7

84 Closure conditions of point rank <8

Now we shall investigate closure conditions associated to configurations $F_{2}, F_{3}, T, D, H, C_{1}, C_{2}$ with terminal lines denoted in Fig. 1-7 interruptediy. These closure conditions will be denoted by $F_{2}, F_{3}, T, D, H, C_{1}, C_{2}$ too.

Let $N=\left(P, L, I,\left(L_{1}, L_{2}, L_{3}\right)\right)$ be a net. Then closure condition F_{2} is satisfied in N if and only if $a \cdot d=b \cdot c \Rightarrow a \cdot c=b \cdot d \quad\left(\cdot=\cdot_{N}\right)$ for all $a, b \in L_{1}$ and $c, d \in L_{2}$. This conditional identity can be rewritten as an identity $a \backslash(b \cdot c)=b \backslash(a \cdot c)$ (for all $a, b \in L_{1}$ and $c \in L_{2}$). It is well-known ([2], pp. 66-69) that precisely in this case Q_{k} is isotopic with an abelian group of index 2.

Fig. 8

a

In other words, closure condition F_{2} is satisfied in N if and on] if every loop $(Q, \cdot, 1)$ isotopic to Q_{N} is an abelian group satisfying the identity $x \cdot x=1$.

Closure condition F_{3} is satisfied in N if and only if $a \cdot d=b \cdot c \Rightarrow a \cdot c=b \cdot(a)(b \cdot d))$ for $a l l a, b \in L_{1} ; c, d \in L_{2}$ or, equivalently, if and only if $a \cdot(b \backslash(a \cdot d))=b \cdot(a \vee(b \cdot d))$ for $a l l a, b \in L_{4}$ $d \in L_{2}$. For every loop ($Q, \cdot, 1$) isotopic to Q_{N} the identity $a \cdot(b \backslash(a \cdot d))=b \cdot(a \backslash(b \cdot d))$ is valid, too. Putting $b=1, d=1$ we $o b-$ tain $a \cdot a=a(1, a \cdot(a \cdot a)=1$. Conversely, if every loop ($Q, \cdot, 1$) isotopic to Q_{N} satisfies the identity $x \cdot(x \cdot x)=1$ then the points $(1,1),(x, 1),(1, x),(x, x),(1, x \cdot x),(x, x \cdot x)$ of N_{Q} are points of a configuration \tilde{F}_{3} isomorphic to F_{i} (without terminal lines) and
the points $(1,1),(1, x \cdot(x \cdot x))$ must coincide because of $x \cdot(x \cdot x)=1$ $s 0$ that the points $(1,1),(1, x \cdot(x \cdot x))$ must lie on the same line of the third parallelity class of N_{Q}. If we take all loops isotopic to Q_{N} then isomorphic images of \tilde{F}_{3} go over to all positiona of configurations isomorphic to F_{3} (without terminal lines). Thus the closure condition F_{3} is valid in N. It results that N satisfies closure condition F_{3} if and only if every loop isotopic to Q_{n} satisfies the identity $x \cdot(x \cdot x)=1$. Unfortunately we have not reached which is the inner structure of the isotopy class of loops with the identity $x \cdot(x \cdot x)=1$. Remark without proof that in a loop $(Q, \cdot, 1)$ the identity $a \cdot(b \backslash(a \cdot d))=b \cdot(a \backslash(b \cdot d))$ is equivalent with the identity $a \cdot(b \cdot(b \cdot(a \cdot(b \cdot(b \cdot(a \cdot c)))))=b \cdot c$ or with two identities $a \cdot(a \cdot(a \cdot c))=c, a \cdot(b \cdot(b \cdot(a \cdot c)))=b \cdot(a \cdot(a \cdot(b \cdot c)))$.

It is well-known (cf. [2], pp. 42-43) that N satisfies closure condition T if and only if every loop isotopic to Q_{M} is an abelian group. This result can be obtained in our description as follows: N satisfies closure condition T if and only if Q_{N} satisfies the identity $a \cdot(d \backslash(b \cdot c))=b \cdot(d \backslash(a \cdot c))$ for all $a, b, d e I_{4}$ and $c \in L_{2}$. Every loop ($Q, \cdot, 1$) isotopic to Q_{N} satisfies the identity $a \cdot(d \backslash(b \cdot c))=b \cdot(d \backslash(a \cdot c))$ too. Putting $d=1$ we get $a \cdot(b \cdot c)=$

Fig. 10

Fig. 11

For $c=1$ we obtain $a \cdot b=b \cdot a$, the commutativity. Using the commutarivity, $a \cdot(b \cdot c)=b \cdot(a \cdot c)$ can be rewritten as (b.c).a=b.(c.a), the associativity. Using the same argumentation as for F_{3} we can deduce that N satisfies closure condition T whenever every loop isotopic to Q_{N} is an abelian group.
N satisfies closure condition D if and only if Q_{*} satisfies the identity $a \backslash(d \backslash(a \cdot c))=b \backslash(d \backslash(b \cdot c))$ for all $a, b, d \in I_{y}$ and $c \in L_{2}$. In every loop $(L, \cdot, 1)$ isotopic to Q_{N} the preceding identity holds, too. Putting $b=1, c=1$ we get $a \backslash(d \backslash a)=d \backslash 1$, $a \cdot(d \backslash 1)=d \backslash a$. By the same reasoning as by closure condition F_{3} we get the following result: N satisfies closure condition D if and only if every loop ($Q, \cdot, 1$) isotopic to Q_{W} satisfies the identity $a \cdot(d \backslash 1)=d \backslash a$. In loops $(Q, \cdot, 1)$ with left inverse property this identity goes over the commutativity.

N satisfies closure condition H if and only if every loop $(Q, \cdot, 1)$ isotopic to Q_{N} satisfies the identity $x \cdot(x \cdot x)=(x \cdot x) \cdot x$ ([2], pp. 46-47) or if and only if in every loop isotopic to Q_{N} all by one element generated subloops are subgroups ([2],pp.47--50). In our description N satisfies closure condition H if and only if $((c \cdot(a \backslash(c \cdot b)) / b)(a \backslash(c \cdot b))=c \cdot(a \backslash(c \cdot(a \backslash(c \cdot b))))$ for all $a, c \in L_{1}$ and $b \in L_{2}$. If $(L, \cdot, 1)$ is a loop isotopic to Q_{N} then it satisfies the preceding identity, too. If we put $a=1, b=1$ we get ($c \cdot c$).c=c. (c.c). Similarly as for closure condition F_{3} we can obtain the result: N satisfies closure condition H if and only if all loops ($Q, \cdot, 1$) isotopic to Q_{N} satisfy the identity $(x \cdot x) \cdot x=x \cdot(x \cdot x)$.

Both hybrid configurations have only restricted importance: If N satisfies closure condition F_{2} then it satisfies consequently closure condition $C_{\text {, }}$, too. If N does not satisfy closure condition F_{2} then closure condition C_{1} depends on the exiatence of a nonvoid set of all "parallelograms with parallel diagonals" in N and describes some property of this set. We shall not investigate the details here.

As it is easily seen a net N satisfying both closure conditions F_{2}, C_{2} must be necessarily trivial. If N does not eatisfy closure condition F_{2} then closure condition C_{2} describes some property of "triangles inscribed into triangles formed from two sides and one diagonal of parallelograme with parallel diagonals". The detailes are omitted, too.

References

[1] F. RADÓ: Binbettung eines Helbgewebes in ein reguläres Gewo. be und cines Halbgrupoids in eine Gruppe, Math. Zeitschr. 89(1965), 395-410.
[2] V.D. BELOUSOV: AIgebraiceakie seti i kvazigruppy, Kiǧinev 1971.
[3] V.D. BELOUSOV: Konfiguracii v algebraičeakich setjach, Ki肖inev 1979
[4] I.V. LJACH: Klassifikacija konfiguracij ranga vosea, Mat. issl. (Kiëinev) 51, 1979, 93-104.

Katedra matematiky elektroteemnické fakulty Vysokého učení technického, Hilleho 6, 602 Brno, Czechomlovakia
(Oblatum 11.6. 1984)

