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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE
26,2 (1985)

CONFIGURATION CONDITIONS OF SMALL POINT RANK
IN 3-NETS
V. HAVEL

Abstract: There are analyzed all possibilities for closure
conditions with at most 7 vertices in 3-nets and the correspon-
ding algebraic identities are found. The method used works also
in the general case (with arbitrary number of vertices) but yet
for 8 vertices increases rapidly.

Key words: 3-halfnet, 3-net, homomorphism, configuration,
closure condition.

Classification: 20N05,51A20

§ 1 Some properties of 3-nets

A 3-net (briefly: a net) is defined as a triplet (P,L,I,
(L,,L,,Ly)) where P,L are non-void sets, I is a subset of PxL and
{L,,Lz,LJ is a decomposition of L (inducing an equivalence rela-
tion // on L) such that
(i) for every agL there is a bgP with bIa,

(ii) for every ie@,2,3} and every aeP there is just one bel with
alb, and

(iii) for every 8,bél not satisfying a//b there is just one ceP
with cIa,b.

1r p,L,,L,,L;are one-element sets then the net is called trivial.

Elements of P will be called points, eléments of L lines, I inci-

dence and L,,L,,L; parallelity classes; the cardinality of P will

be called point rank, the cardinality of L line rank and the car-
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dinality of {_Plpll,}tor any feL the length of L.
Let N=(P,L,I,(L,,L,,Ls)), N=(P,L,I,(L,,L;,L,)) be neta.
A cogple (x,)\) of bijections x:P-P))\ :L->L is said to be an
isemorphisa of N ente N, if xIy =»x(x)I'A(y) snd Vi €{1,2,3
( lerL > )\wex,;_) . The net isomorphism is an equivalen-
ce relatien en the class of all nets. The induced equivalence
classes are maximal subclasses of mutually isomorphic nets.
Frem every net N=(P,L,I,(L,,L,,L,)) we can obtain nets
Ny =(P,L,I,(L;,L,,L)) (where (i,j,k) are permutationa of the
set {1,2,3}) called parastrophs of N.
A three-basic groupoid is defined as a quadruplet (A,B,C,-)
where- A,B,C are nen-empty sets and - :AxB—>C, (a,b)—>a:b is a

‘three-basic’ binary operation. This groupoid is said te be a
three-basic quasigroup, if for every (a,c) € AxC there exists

Jjust ene bg B such that a-b=c and if for every (b,c) ¢ BxC there
exists just one acA such that a.b=c. Let G=(A,B,C,*),G=(A,BC’, "
be three-basic quasigroups. A triplet (o«,B, ) of bijections
£:A-5K, B3:B-»B} :C—»C is called an isotopy of G onto G'if for
all x¢A, y€B the equation «¢(x)/ B(y)= »(x+y) is valid. The
isotopy is an equivalence relation on the class of all three-ba-
sic quasigroups. It divides this class onte maximal subclasses

of sutually isetepic quasigroups.

THEOREM (cf. [1], pp. 396-398):
a. Every net N=(P,L,I,(L4,_L2.L3)) canenically determines a three-
-basic quasigreup Q"=(L,,L,,L,,-,) such that for all 4 ¢L,,4seL,,
4 ey 4uh=LOBpTA, 4,414
b. Every three-basic quasigroup Q=(Q,,Q,;,Q3,°) with disjoint sets
Q,1Q,:Q, canonically determines n_mt Na=(Q'xQz,Q,uQ‘uQ3,IQ,
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(Q3Q25Q;)) where for all x,sq,,xzaqz,qu,quuq,:(x,,xl)lax@
P (x=x,v X=X, VX=X,'X; ) «

c. If N is a net then Ng is isomorphic to N. If Q is a three-ba~
sic quasigroup then QN. is isotopic to Q.

d. Two nets N,N'are isomorphic if and only if Qy:Qy' are isotopic.

If Q=(Q4yQ;,Q3,°) is a three-basic quasigroup then for all
permutations (i,j,k) of the set {1,2,3} denote by xxthe operation
% Qix Q;—>Qe such that x; «aX; =x&=px, X, =Xy for all X,eQ,,X,6Q,,
X;6Qye Evidently all (Q;,Q,',Q,‘,'.:,k) are quasigroups (the so called
parastrophs of Q). The operationse,orss; will be denoted later
also by / (X%, =X, &% =X / X, ) or by ™ (xox, =x,69%, =X, \ X, e

§ 2 Configurations and closure conditions in 3-nets

A 3-halfnet (briefly: a halfnet) is defined as a quadruplet
(PyL1,I,(L,,L,,L;)) where P,L are sets, I ¢PxL, L,,L,,Ls gL,

LinLl, =8, Lyaly=P, LaLs=pP, L,vl,vly=L such that

(i) for every iefl,2,3} and every peP there is at most one £eL:
with pI.4, and

(ii) for any two distinct a,belL there is at most one ce&P with
cla,b.

The terms points, lines, parallels, parastrophs, ranks etc. for

halfnets have a similar meaning as for nets.

We say a halfnet N=(P,L,I,(L,,L,,Ly)) is a sub-halfnet of a
halfnet N=(P,L,I;(L;,L;,Ly))if PsP,IcI'L,cL,,L,sL,,L;sL; (so that
also LgL). A halfnet (P,L,I,(L,,L,,Ly))is said to be a configura-
tion if
(i) P ie finite and contains at least four points,

(ii) for every paP there arefl,,4eL,,4al,such that pI 4, 4,4,
(iii) for every £el there are distinct a,bgP such that a,bIZ, and
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(iv) for sny a,beP there is a sequence (P, s, 1Py s4se00,Dy) With
Po B seeesP,6P; Ly 2,s "n{_“i‘; P, =8;Pm=b;Py »P, 14 PP 14
...;pmq,pmlzm_‘(briefly:am/ two points are connected).

It can be easily seen that every configuration is a sub-

halfnet in a convenient net.

A homomorphism of a halfnet N=(P,L,I,(L,,L,,L,)) into a
halfnet N'=(PF,L,I}(L,,L,,L})) is defined as a couple (x, )\ ) of

maps 7:P-»P, \:L-L such that for all peP,feL from pIf it followe

7t(p) I' () and for a1l 1¢{1,2,3} from LI it follows Mfel,.
Let ¥ = (B,LY,(1,,%,L)) bea configuration with

a prominent "terminal” line Ief by deleting of which it i1s obta-

ined a sub~halfnet ﬁ: of N. We say that the closure condition

associated to N 'ith,&: is valid in a net N=(P,L,I,(L,,L,,L,)) if

every homomorphism of ﬁ', into N can be prolonged onto a homomor-

phiem of N into N. If (ms A)y (%, \) is the starting homomor-

’\lt\m'

phism and the prolonged one, respectively, then x=x and ,\.s

§ 3 Configurations of point rank <8

Using the analysis of more general configurations of point
rank <8 in nets of arbitrary finite degree (cf. [3], chap. III )
one can deduce all possible configurations of point rank <8 (up

to isomorphisme and parastrophs) . The result is as follows:

There is only one configuration of point rank 4. It is de-
scribed on Fig. 1.

1 = 4 Fig. 1

There is no configuration of point rank 5.
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There is exactly one configuration of point renk 6 posses-

sing lines of length 3. It is described on Fig. _.

2
) : ~ 3 4
—
> Z Fig. 2
- 2

There are exactly two configurations of point rank € with

no line of length 2. They are described on Fig. 3 and 4.
4‘?:2 3 )

We shall denote configuraticns of Fig. 1 and 2 as Fano

3

tion on Fig. 3 is Thomsen configuration T and configuratiocn on

configurations F, of index 2 and 3, respectively. Configura-

2 ?

Fig. 4 is a shattered Desargues configuration D.

There are only three configurations of point rank 7. They
are described on Fig. 5-7. We shall denote them as hexagonal
configuration }{, first hybrid configuration Q and second hybrig¢

configuration C;. S~
‘4 _\f‘l =

3 3 ‘1 ‘
3 2 Fig. &
2 3 2 z
\ -~ 3 7]
\ 1 -,
\
\ 2 3
N\
\ 1 1 1
1 3 3
3 \
\
2 N 2
Fig. © Fie. 7



§ 4 Closure conditions of point rank <8

Now we shall investigate closure conditions associated to
configurations £,£,T,),H,(,(, with terminal lines denoted
in Pig. 1-7 interruptedly. These closure conditions will be de-
noted by £,5,T,D,H, (,( too.

Let N=(P,L,I,(L,,L,,L,)) be a net. Then closure condition
£ is satisfied in N if and only if a.d=sb.c=pa-csbed (+=¢y)
for all a,bel, and ¢,déL,. This conditional identity can be
rewritten as an identity a~(b:c)=b\(a-c) (for all a,bel,
and cel,). It is well-known ( [2], pp. 66-69) that precisely

in this case Q. is isotopic with an abelian group of index 2.

T abd, b-(a\(b.d)

b.d y

d - 3
’ 1b

ey -d=b.c
/s
Fig « 8 2 1 Fig- 9
a\(b\f@.d)

In other words, closure conditioan' is satisfied in N if and onl
if every loop (Q,°,1) isotopic to Q, is an abelian group satis-

fying the identity x.x=1.

Closure condition 5 is satisfied in N if and only if
a.dsb.c =>a-c=b:(a~(b-d)) for all a,bel,; c,d&L, or, equiva-
lently, if and only if a.(b~(a-d))=b-:(a~(b-d)) for all a,bel,
deL,. For every loop (Q,*,1) isotopic to Q, the identity
a+(b~(a+d))=b:(a~(b+d)) is valiqg, too. Putting b=1, d=1 we ob-
tain a-a:a\i, a.(a-a)=1. Conversely, if every loop (Q,+,1)
isotopic to Q, satisfies the identity x+(x+x)=1 then the points
1,1, x,1), ¢,x), (x,x), 1,x-x), (x,x-x) of Ng are points of
a configuration g isomorphic to K (without terminal lines) and
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the points (1,1), (1,x:(x-x)) must coincide because of x-(x.x)=1
so that the points (1,1), (1,x.(x.x)) must lie on the same line
of the third parallelity class of Nq, If we take all loops iso-
topic to Q, then isomorphic images of é g0 over to all poaitiona
of configurations isomorphic to K (without terminal lines). Thus
the closure condition f is valid in N. It results that N satis-
fies closure condition G if and only if every loop isotopic to
@, satisfies the identity x+(x.x)=1. Unfortunately we have not
reached which is the inner structure of the isotopy class of lo-
ops with the identity x.(x¢x)=1. Remark without proof that in a
loop (Q,*,1) the identity a-(b~(a<d))=b:(a~(b.d)) is equivalent
with the identity a.(b.(b.(a.(b.(b:(a-c))))))=b.c or with two
identities a:.(a:.(a-c))=c, a«(b«(b-(a.c)))=b-(a-(a:(b.c))).

It is well-known ( cf. [2], pp. 42-43) that N satisfies
closure condition T if and only if every loop isotopic to Q, is
an abelian group. This result can be obtained in our description
as follows: N satisfies closure condition T if and only if Qy
satisfies the identity a-(d~(b-c))=b:(d\(a:c)) for all a,b,del,
and ceL,. Every loop (Q,’,1) isotopic to Qy satisfies the iden-
tity a-(@~{b.c))=b:(d~(a-c)) too. Putting a=1 we get a-(b:c)=

=b-(a-c). ~a.(d \ b\ (d\(b.c))
_d\ib.o - N \b-) N d\(b-c)
b. N3 \
& N \\\
d\(g.
3 1 4 b@\G.) 1
b.e 2
b .
2 . ’ \ ¢

2 e 13 \a\(d\(@c)

Fig. 10 Fig. 11
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For c=1 we obtain a-b=b-a, the commutativity. Using the commuta-
tivity, a+(b.c)=b-(a.c) can be rewritten as (b:.c).a=b.(c-a), the
associativity. Using the same argumentation as for f§ we can de-~
duce that N satisfies closure condition T whenever every loop

isotopic to Q is en abelian group.

N satisfies closure condition D if and only if Q, satis-
fies the identity a™\(d\(a-c))=b\(d~(b-c)) for all a,b,del,
and céL,. In every loop (L,:,1) isotopic to Qy the preceding
identity holds,too. Putting b=1, c=1 we get a~ (d~a)=d~1,
a.(d\\1)=aa. By the same reasoning as by closure condition F§
we get the following result: N satisfies closure condition ) if
and only if every loop (Q,*,1) isotopic to Q, satisfies the iden-
tity a-(a~1)=d~a. In loops (Q,¢,1) with left inverse property
this identity goes over the commutativity.

N satisfies closure condition H if and only if every loop
(Q,*,1) isotopic to Q satisfies the identity x.(x-x)=(x-x)-x
( [2], pp. 46=47) or if and only if in every loop isotopic to Qy
all by one element generated subloops are subgroups ([2] ,pp.47-
-50). In our description N satisfies closure condition H if and
only if ((c-(a~{(c-b))~b) (aX(c+b))=c-(a~(c-(a~(c'b))))
for all a,c¢lL, and bel,. If (L,-,1) is a loop isotopic to Q,
then it satisfies the preceding identity, too. If we put a=1,b=1
we get (c-c)-c=c-(c-c). Similarly as for closure condition R
we can obtain the result: N satisfies closure condition H if and
only if all loops (Q,*,1) isotopic to Qy satisfy the identity

(xex) x=x+(x-X).
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N &N (an(ea))

C.(a\(eh
"G [, |eeneos
~
2 ~
a\(ch) 2 \(I\(c-b)'(hﬂ\(c-m Fig. 12
3 3 ” 1 ~
2 b

Both hybrid configurétions have only restricted importance:
If N satisfies closure condition F then it satisfies consequently
closure condition (, ,to0. If N does not satiefy closure condition
[-;_ then closure condition C, depends on the existence of a non-
void set of all "parallelograms with parallel diagonals” 11} N and
describes some property of this set. We shall not investigate the
details here.

As it is easily seen a net N satisfying both closure condi-
tions f ,(, must be necessarily trivial. If N does not satisfy
closure condition F then closure condition (, describes some pro-
perty of "triangles inscribed into triangles formed from two si-
des and one diagonal of parallelograms with parallel diagonals”.

The detailes are omitted, too.
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