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COMMENTATIONES MATHEMAT1CAE UNVERSITATIS CAROLINAE 

26,2 (1985) 

CONFIGURATION CONDITIONS OF SMALL POINT RANK 
IN 3-NETS 
V. HAVEL 

Abstract: There are analyzed all possibilities for closure 
conditions with at most 7 vertices in 3-nets and the correspon­
ding algebraic identities are found. The method used works also 
in the general case (with arbitrary number of vertices) but ywt 
for 8 vertices increases rapidly. 

Key words: 3-halfnet, 3-net, homomorphism, configuration, 
closure condition. 

Classification: 20N05,51A20 

§ 1 Some properties of 3-nets 

A 3-net (briefly: a net) is defined as a triplet {¥$Ltl$ 

(L 1 tL 2,L 3)) where P,L are non-void sets, I is a subset of ¥xL and 

{L1,LJ, ,L.J3 is a decomposition of L (inducing an equivalence rela­

tion // on L) such that 

(i) for every a«L there is a baP with bla, 

(ii) for every i€$-,2,3}and every a«P there is just one baL^with 

alb, and 

(iii) for every a,b«L not satisfying a//b there is juat one c*P 

with cla,b. 

If PjL^ tLz,L3are one-element sets then the net is called trivial* 

Elements of P will be called points, elements of L lines. I inci­

dence and L/ffL2,L3 paralltlity classes; the cardinality of P will 

be called point rank, the cardinality of L line rank and the car-
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dinality of {p|pI|}for any l*L the length of/. 

Lot N«(PtLtIt(L< fL,,L3))f HW(P
,
fL;i;(Is

,
fL;9L;)) be note. 

A couple (*r,A) of bijectione X:P-*PfA :L-»L' ia aaid to be an 

iaeao.rp.aiom of M onto I*f if xly -*-> .*(x)l'X(y) «nd Vi ^{lf2f3} 

( £€ L => M-ty*!^) . The not iaomorphiam ia an equivalen­

ce relation en the claaa of all note. The induced equivalence 

claaaee are maximal aubclaaaea of mutually ieomorphic nets. 

Prom every not N«(PfLfIf (L, fL^,L3)) wo can obtain not8 

KjLjk «(P»LfIf (LXfL^fL*)) (where (ifjfk) are permutationa of the 

eet {l9293} ) called paraatropha of N. 

A threo-baaic groupoid ia defined aa a quadruplet (AfBfCfO 

where AtBfC are non-empty oote and • :AxB-*Cf (afb)i-*a«b ia a 

"threo-baaic11 binary operation. Thia groupoid ia aaid to bo a 

threo-baaic quaaigroupf if for every (afc)6AxC there oxiata 

just ene b c B auch that a*b*c and if for every (bfc)*BxC there 

oxiata juat one a 6 A auch that a.b*c. Let G*(AfBfC9OfG«(A'fB9C'9«*) 

be throe-baaic quaaigroupa. A triplet (oCf/3,y) of bijectiona 

•£:A-»I?9 fi:B-¥df9 f :C->CI ia called an iaotopy of G onto G1 if for 

all ziA, y e B the equation <*(x).'/3(y)» ?Kx-y) i8 valid. The 

iaotopy ia an equivalence relation on the claaa of all threo-ba­

aic quaaigroupa* It dividea thia claaa onto maximal aubclaaaea 

ef mutually iaotopic quaaigroupa. 

THEOREM (cf. £lj 9 pp. 396-398): 

a* Every net N=(PfL,If(L4,L2,L3)) canonically determines a three-

-baaic quaeigroup QW
S(L4fLafLf 9%) 8uch that for all ^eL^ t^sL29 

b. Every threo-baaic quaeigroup Q*(Q4-Q2>Q-,i•) with disjoint seta 

Q,tQ2tQ3 canonically datorminoa a net ^ ( Q ^ Q ^ U Q ^ Q ^ I ^ , 
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(Q,»Q2iQ3)) where for a l l x^Q., fx24Q2fx«Q<i/QawQs : (x4 f x 2 ) I A x 4 p > 

c . I f N i s a net then N* i s isomorphic to N. I f Q i s a t h r e e - b a ­

s i c quasigroup then Q# i s i so top ic to Q. 

d . Two n e t s N,N'are isomorphic i f and only i f QWtQw' a re i s o t o p i c . 

I f Q~(Q1fQ2fQ3»•) i s a t h r e e - b a s i c quasigroup then f o r a l l 

permutat ions ( i f j , k ) of the s e t $. f2,3} denote bys^the opera t ion 

tyc:Q<-xQi~>Q* s u c h t n a t * * # ^ * V B * a V x i * : * 3 f0T a 1 1 x<«Q-i»xA«Qlf 

x3«Q3 . Evidently a l l (Q^fQa'fQ|t f tyk) a re quasigroups (the so c a l l e d 

paras t rophs of Q) . The opera t ions^or -ux w i l l be denoted later* 

a l so by //(x1'Xz=x3^-->xf = x 3 / x z ) or by v ix^xl^x$^xz^x1\xs ) . 

§ 2 Configurat ions and c losure condi t ions i n 3-nets 
A 3 -ha l fne t ( b r i e f l y : a ha l fne t ) i s defined as a quadruplet 

(P ,L , I , (L , , ,L 2 ,L 3 ) ) where PfL a re s e t s , I g P x L , L 4 ,L 2 I L 3 gL, 

L#fnL2=0f L1nL3sJ0f L2r\Ls*0t LfvL2uL3=L such t ha t 

( i ) fo r every icf l . ,2 ,3} and every p*P the re i s a t most one JL*L± 

with p l , £ , and 

( i i ) fo r any two d i s t i n c t a,b«L the re i s a t most one c«P with 

c l a f b . 

The terms p o i n t s , l i n e s , p a r a l l e l s , pa r a s t rophs , ranks e t c . fo r 

ha l fne t s have a s i m i l a r meaning as fo r n e t s . 

We say a ha l fne t N=(P ,L , I , (L 4 ,L 2 ,L 3 ) ) i s a sub-ha l fne t of a 

hal fne t N=(P',L',I', (Lj ,L2 ,L'3 ) ) i f PfiP^IsI^L^L; ,L fsL2 fL3fiLj (so t h a t 

a l s o LfiL'K A ha l fne t ( P , L , I , ( L 4 , L 2 , L 3 ) ) i s sa id to be a conf igura­

t i o n i f 

( i ) P i s f i n i t e and conta ins a t l e a s t four p o i n t s , 

( i i ) f o r every paP there are..4«L.j ,4«L2,.^«L3such t h a t p l ^ , ^ , ^ , 

( i i i ) fo r everyJL&L there are d i s t i n c t a,beP such t h a t a , b l / , and 
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(iv) for any a,b€P there is a sequence (p0 »>4»P1 ».-£,»• ••»P4-t) with 

P0>9 ,'..,Pm*¥;jt,§94l9...9/^*U p#*a;pm*b;p#,p4l4 ;p, ,paI^; 

•••>P- »P T-l (briefly:any two points are connected). 

It can be easily seen that every configuration is a sub-

half net in a convenient net* 

A homomorphiam of a halfnet N=(P,LfI, (L<JfLa>L:J)) into a 

halfnet N,-s(P>fL
,
f I", (L̂  ,L'a 9V% )) is defined as a couple ( J I 9 \ ) of 

maojL-t^-^F, X-L-*L* such that for all pcP,i«L from pl£ it follow** 

nip) I' A (J) and for all ic{lt2A5} from icl^it follows Mfe^ 

Let S s Ctt»t»(I!,»I^»I^)} be a configuration with 

a prominent "terminal** line Zj$& by deleting of which it IB obta­

ined a sub-half net NQ of N. We say that the closure condition 

aasociated to N with JL>n is valid in a net N=(P»L,If (L^-L^L^)) if 

Bifery homomorphiam of ff§ into N can be prolonged onto a homomor­

phiam of N into N. If (JT0, \ ) t (at > X ) is the starting homomor­

phiam and the prolonged one, respectively, then X^K and \j= \\ 

§ 3 Configurations of point rank <8 

Using the analysis of more general configurations of point 

rank <8 in neta of arbitrary finite degree (cf* £33, chap* III ) 

one can deduce all possible configurations of point rank <8 (up 

to isomorphisms and p a r a s t r o p h s ) • The result is as follows: 

There is only one configuration of point rank 4. It is de­

scribed on Fig* 1* 

Pig. 1 

There is no configuration of point rank *J« 
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There is exactly one configuration of point rank 6 posses­

sing lines of length 3. It is described on Fig. J. 

Fig. 2 

There are exactly two configurations of point rank 6 with 

no line of length 2. They are described on Fig. 3 and 4. 

Г 
• ^ ^ — -

2 
- "3" i 

Lc, 

„--' 

2 

Z 

Wt shall denote configurations of Fig. 1 and 2 as Fano 

configurations F± ,f^ of index 2 and 3, respectively. Configura­

tion on Fig. 3 is Thornsen configuration T and configuration on 

Fig. 4 is a shattered Desargues configuration P. 

There are only three configurations of point rank 7. They 

are described on Fig. 5-7. tfe shall denote them as hexagonal 

configuration \\ t first hybrid configuration C and second hybrid 

configuration Cx • r\~~"2 V . 3 

^ ^ r Fig. 5 

\ A 
\ /\ 1 
\ / X \ 

V 2 \ 

Ғig. 0 Fisr. 7 
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§ 4 Closure conditions of point rank <8 

Now we shall investigate closure conditions associated to 

configurations £ f /j f T, D f H f C^C^ with terminal lines denoted 

in Pig. 1-7 interruptedly. These closure conditions will be de­

noted by i^t/^tT, D f H, CVCX too. 

Let N*-(P,L,I, (Lt .L, tL3)) be a net. Then closure condition 

f^ is satisfied in N if and only if a»d«b-c *=^a-c=-b»d (#=:#^) 

for all a fb€L f and c fd«L a. This conditional identity can be 

rewritten as an identity a\(b«c)=b\(a»c) (for all a fbeL t 

and C 6 L Z ) . It is well-known ( C23 f pp. 66-69) that precisely 

in this case Q is isotopic with an abelian group of index 2. 
"~ *>(*\(b.<Q) 

Pig. 8 

*\ft\Mf 
In other wordsf closure condition fj is satisfied in N if and onJ 

if every loop (Qf
#,l) isotopic to Q^ is an abelian group satis­

fying the identity x»x=l. 

Closure condition rj is satisfied in N if and only if 

a.dsb.c-^a«c«b-(a\(b*d)) for all a,b6Lt; c,dcLa or, equiva-

lently, if and only if a .(b\(a.d))=b«(a^b-d)) for all a.bfiL, 

dfiL*. For every loop (Qf*fl) isotopic to Qw the identity 

a»(b\(a-d))sb*(a^(b«d)) is valid,too. Putting b-df d-d we ob­

tain a*a=-a'Nlf a»(a«a)--l. Conver8ely, if every loop (Qf*fl) 

isotopic to Q^ satisfies the identity x-(x«x)-& then the points 

(lfl)f(xfl)f (l,x)f (xfx)f (lfx-x)f (xfx-x) of Nfi are points of 

a configuration £ isomorphic to Ft (without terminal lines) and 
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the points (1,1), (l,x«(x-x)) must coincide because of x«(x-x)-=l 

so that the points (lfl), (lfx«(x*x)) must lie on the same line 

of the third parallelity class of N^. If we take all loops iao-

topic to Q then isomorphic images of f̂  go over to all position* 

of configurations isomorphic to Jf (without terminal lines). Thus 

the closure condition F3 is valid in N. It results that N satis­

fies closure condition f̂  if and only if every loop isotopic to 

Q^ satisfies the identity x«(x-x)«l. Unfortunately we have not 

reached which is the inner structure of the isotopy class of lo­

ops with the identity x-(x-x)=d. Remark without proof that in a 

loop (Q»*91) the identity a*(b\(a-d))-b' (a\(b«d)) is equivalent 

with the identity a.(b-(b-(a«(b«(b*(a-c))))))«-b-c or with two 

identities a» (a '(a^c))--^, a«(b «(b-(a*c)))-sb-(a*(a *(b-c)))« 

It is well-known ( cf. £2Jf pp. 42-43) that N satisfies 

closure condition T if and only if every loop isotopic to QH is 

an abelian group. This result can be obtained in our description 

as follows: N satisfies closure condition T if and only if Q„ 

satisfies the identity a« (d\(b»c))--b«(d\(a.c)) for all afb»d«I^ 

and ceL x. Every loop (Q»«,l) isotopic to QH satisfies the iden­

tity a-(dxs£b-c))=b«(d\(a.c)) too. Putting d=l we get a*(b'c)-= 

=-Ъ'(а-с). 
<МЬ«) 

\.aY</\í>.<J) 

Ь-ŕ-K&.c)) 

\b\f</\fW» 
4\(b.c) 

%c 

í \*\(4\(t.i)) 

Fig. 10 Fig. И 
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For c*l we obtain a*b*b»a, the commutativity. Using the commuta­

tivity, a*(b'c)=-b-(a»c) can be rewritten aa (b»c)» a=b*(c-a), the 

associativity. Using the same argumentation as for Jj we can de­

duce that N satisfies closure condition Twhenever every loop 

isotopic to Qj. is an abelian group. 

N satisfies closure condition D if and only if fy satis­

fies the identity a\(dNMa-c))-b\(d\(b*c)) for all a ^ d a L , 

and c*L a. In every loop (L, * ,1) isotopic to Qw the preceding 

identity holdsftoo. Putting b-1, c=l we get a\(d\a)--d\l, 

a«(d\l)=d\a. By the same reasoning as by closure condition J| 

we get the following result: N satisfies closure condition P if 

and only if every loop (Q,*,l) isotopic to Qj. satiafies the iden­

tity a«(d\l)sd\a. In loops (Q,*fl) with left inverse property 

this identity goes over the commutativity. 

N satisfies closure condition H if and only if every loop 

(Qf*fl) isotopic to QN satiafies the identity x«(x«x)=(x»x)- x 

( £2J , pp. 46-47) or if and only if in every loop isotopic to Q^ 

all by one element generated subloops are subgroups (£2J,pp.47-

-50), In our description N satisfies closure condition H if and 

only if ((c-(a\(cb)X/b) (a\(c-b))-.c-(a\(c *(a\(c-b)))) 

for all a,ceL1 and b a Lz • If (Lf-,1) is a loop isotopic to Q^ 

then it satisfies the preceding identity, too. If we put a=l,b=-l 

we get (c-c)' c=-c- (c*c). Similarly a8 for closure condition i| 

we can obtain the result: N satisfies closure condition H if and 

only if all loops (Q,%1) isotopic to Q^ satisfy the identity 

(x»x)' X=X' (x*x). 
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C(a\(t^> 
\M*\(t»»))A 

V\(*b) lt\fc.<VY<4sMí/-» Fig. 12 

Both hybrid configurations have only restricted importance: 

If N satisfies closure condition fj then it satisfies consequently 

closure condition C1 ̂ too. If N does not satisfy closure condition 

ft then closure condition C, depends on tjtie existence of a non-

void set of all "parallelograms with parallel diagonals*1 in N and 

describes some property of this set. We shall not investigate the 

details here. 

As it is easily seen a net N satisfying both closure condi­

tions F2 9CX must be necessarily trivial. If N does not satisfy 

closure condition 1 then closure condition C± describes some pro­

perty of "triangles inscribed into triangles formed from two si­

des and one diagonal of parallelograms with parallel diagonals". 

The detailes are omitted, too. 
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