## Commentationes Mathematicae Universitatis Caroline

## M. M. Marjanović; Ante R. Vučemilović

Two non-homeomorphic countable spaces having homeomorphic squares

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 3, 579--588

Persistent URL: http://dml.cz/dmlcz/106394

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

TWO NON-HOMEOMORPHIC COUNTABLE SPACES HAVING HOMEOMORPHIC SQUARES<br>M. M. MARJANOVIĆ and A. R. VUCEMILOVIĆ

```
Abstraot: A pair of non-homeomorphic countable metrizable space bavis homeomorphic muares is exhibited. This answert q question of V. Trnkova from [4].
Key worde: Countable metrizable apaces, homeomorphism, squares of spaces.
Classification: 54810
```

1. Introduction. $A$ olass $\mathcal{K}$ of topological apaces is said. to have the unique square root property if for any two objecte $A$ and $B$ in $\mathcal{X}, A \times A \approx B \times B$ implies $A \approx B$.

Several naturally orgenized classes of topological apaces do not have this property (aee [4]). In [4], V. Trakova amed the following question: Is the unique square root property valid in the class of all countable metrizable spaces?

In this paper, we exhibit a pair of non-homeomorphic countm sble metrizable spaces having homeomorphic squares.
2. A olasgification of points of a pape. ${ }^{2}$ How we conad dex a clasification of points of a countable metric apace, following the case of claseification of pointe of a compact metwo 0 -dimensional space (see [2]).

When we say "a space", it will mean invariably "a countab-
le metric space".
For a space $X_{\text {, }}$ let $X_{0}$ be the set of all isolated points of $X$ and $X_{1}$ the set of those points of $X$ which have a neighborhood without isolated points. Let $X_{(0)}=X \backslash\left(X_{0} \cup X_{1}\right)$. Since $X_{(0)} \subseteq$ $\subseteq \bar{X}_{o}(\bar{A}$ denotes the closure of the set $A)$, the set $X_{(0)}$ is split again into two parts $X_{2}=X_{(0)} \backslash \bar{X}_{1}$ and $X_{(0)}(1)^{\overline{X I}}(0)^{\cap \bar{X}_{1}}$. In words, the set $X_{(0)}$ is split into the set $X_{2}$ of those points which are not accumulation points of $X_{1}$ and the set $X_{(0)(1)}$ of those points which are accumulation points of $X_{1}$.

Now we have the following inductive definition: Suppose that the sets $X_{0}, X_{1}, \ldots, X_{n}$ and $X_{(0)}, X_{(0)(1), \ldots, X_{(0)}(1) \ldots(n-1)}$ have been already defined. Put

$$
X_{n+1}=X_{(0)}(1) \ldots(n-1) \backslash \bar{X}_{n}, X_{(0)}(1) \ldots(n)=X_{(0)}(1) \ldots(n-1)^{n} \bar{X}_{n}
$$

In this way, we have defined a sequence of sets $X_{0}, X_{1}, \ldots$ $\ldots, X_{n}, \ldots$ which are disjoint and for each $n$, the set $X_{0} \cup X_{1} \cup$ $\cup \ldots \cup X_{n}$ is open and $X_{(0)(1) \ldots(n-1)}$ closed.

Let

$$
X_{w}=\cap\left\{X_{(0)(1) \ldots(n)}: n \in N\right\}
$$

The following statement is immediately derived from the given definition.

Statement 1.
(a) $\bar{X}_{n}=X_{n} \cup\left(\cup\left\{X_{k}: k=n+2, \ldots, \omega\right\}\right)$
(b) If $X_{n}=\varnothing$, then $X_{k}=\varnothing$ for $k=n+2, \ldots, w$.

Call a point $x \in X \quad n$-point if $x \in X_{n}$ for some $n=0,1, \ldots$ $\ldots, \omega$. The number $n$ is called the accumulation order of $x$ and we write ord $(x)=n$.

To the space $X$, for which $X_{n-2} \neq \varnothing, X_{n-1}=\varnothing$ and $X_{n} \neq \varnothing$ (and according to $1(b), X_{k}=\emptyset$ for $k>n$ ) the sequence

$$
s(X)=(0,1, \ldots, n-2, \emptyset, n),
$$

and to the space $X$ for which $X_{n-1} \neq \varnothing, X_{n} \neq \emptyset$ and $X_{k}=\emptyset$ for $k>n$, the sequence

$$
s(X)=(0,1, \ldots, n-1, n)
$$

is attached respectively. The sequence $s(X)$ is called the accumulation siaquence of the space $X$ (we avoid here the case $\boldsymbol{X}_{\boldsymbol{w}} \neq \varnothing$ ) .
3. Q-full spaces. Denote by $Q$ the space of rational numbers. Every countable metric space without isolated points. is homeomorphic to.Q (Sierpinski's theorem, [1], p. 290).

Call a space $X \quad Q-f u l l$ if for each $n>0, X_{n} \neq \varnothing$ implies $X_{n}$ has no isolated point (or $X_{n} \approx Q$ ).

Now we construct a sequence of $Q-f u l l$ spaces.
Let $Q_{-1}=\varnothing$ be the empty set, $Q_{0} a$ one point space and $Q_{1}=$ $=Q$, where $Q$ is the set of rationals realized geometrically as the set of all end points of removed intervals of the Cantor discontinuum $C$ (when $C$ is constructed in the usual way of removing the middle third intervals).

Suppose the sequence $Q_{0}, Q_{1}, \ldots, Q_{n}$ has already been defined (andall the apaces $Q_{1}, i=0, \ldots, n$ are the subspaces of $[0,1]$ ).

Define $Q_{n+1}$ to be the space $Q$ plus a copy of the disjoint topological sum $Q_{n-2}+Q_{n-1}$ being interpolated in each of the removed intervals. Now by induction, the sequence of spaces

$$
Q_{0}, Q_{1}, \ldots, Q_{n}, \ldots
$$

is defined and it is easy to see that all these spaces are $Q$-full as well as the sums $Q_{n-1}+Q_{n},(n \in N)$.

As for the accumulation sequences, we have

$$
s\left(Q_{0}\right)=(0), s\left(Q_{1}\right)=(\varnothing, 1), s\left(Q_{0}+Q_{1}\right)=(0,1)
$$

and for $n>1$,
$s\left(Q_{n}\right)=(0, \ldots, n-2, \phi, n), s\left(Q_{n-1}+Q_{n}\right)=(0, \ldots, n-1, n)$.
In particular, $s\left(Q_{2}+Q_{3}\right)=(0,1,2,2), s\left(Q_{5}\right)=$
$=(0,1,2,3, \varnothing, 5)$, what shows that $Q_{2}+Q_{3}$ 为 $Q_{5}$.
We quote [5] for the following two easily proved atatements.
Statement 2.
(a) A compact space cannot be Q-Pull.
(b) If every infinite seguence in $X_{0}$ has an accumulation point then $\bar{X}_{0}$ is opmpact.

Call two Q-full spaces $X$ and $Y$ equivalent if their accumulation sequences are inite and equal, and if card $\left(X_{0}\right)=$ = ourd ( $Y_{0}$ ).

According to the statement 2.6 in [5], which oan be considered as a variation on the already mentioned Sierpinaki s theorem, two equivalent spaces are homeomorphic (Sierpinskis theorem being the case $g(X)=s(Y)=(\varnothing, 1)$ ).

We give here a sketch of a (new) proop.
In order to aimplify the proofa which follow, notice that according to the statement 1 , a space $X$ guch that $B(X)=$ $=(0, \ldots, n-1, n)$ has both parts $X_{n-1}$ and $X_{n}$ closed in $X$. Then, it easily follows that $X$ can be decomposed into two olosed and open parts $X^{\prime}$ and $X^{\prime \prime}$ such that $s\left(X^{\prime}\right)=(0, \ldots, \phi, n), g\left(X^{\prime \prime}\right)=$


Notice also that alosed and open subset of a Q-full apace is Q-fyla smain.

A pointed $Q$-fuld apace is a pair ( $X, x_{0}$ ) where $X$ is $Q-f u l l$ space and $x_{0} \in X$ a point of higheat accumulation order.

Statement 3. Let ( $X, X_{0}$ ) and ( $Y, y_{0}$ ) be two pointed Q-pull spaces such that $X$ and $Y$ are equivalent and $s(X)=g(Y)=$ $=\left(0, \ldots, \phi^{\prime}, n\right)$. If $X=X^{*} \cup X^{\prime \prime}$ is a decomposition into two closed
and open subsets such that $X_{0} \in X^{\prime}$, then there exists a decomposition of $Y$ into two olosed and open subsets, $Y=Y^{\circ} U Y^{\prime \prime}$ guch that $Y_{0} \in Y^{\prime}$ and $X^{\prime}$ is equivalent to $Y^{\prime}$ and $X^{\prime \prime}$ to $Y^{\prime \prime}$.

Proof. The statement is easily seen to be true in the cases $s(X)=0, s(X)=(\phi, 1)$. Suppose $n \geq 2$. We have two cases
a) $s\left(x^{\prime}\right)=(0, \ldots, \phi, n), s\left(x^{\prime \prime}\right)=(0, \ldots, \phi, m)$
b) $s\left(X^{\prime}\right)=(0, \ldots, \phi, n), s\left(X^{\prime}\right)=(0, \ldots, m-1, m)$.
a) If $m=0$ and card $X^{\prime \prime}<x_{0}$, we take $Y^{\circ} \subset Y_{0}$ such that $\operatorname{card} Y^{\prime \prime}=\operatorname{card} X^{\prime \prime}$ and $Y^{\circ}=Y \backslash Y^{\prime \prime}$.

If $m=0$ and card $X^{\prime \prime}=y_{0}$, then by 2 , there exists a clo.sed and open subset $Y^{\circ "} \subset Y_{0}$ such that card $Y^{\prime \prime}=\gamma_{0}$ and $Y^{\prime}=$ $=Y \backslash Y{ }^{\prime \prime}$ has the required properties.

If $16 m<n$, then since $Y_{0} \cup Y_{1} \cup \ldots \cup Y_{m-2} \cup Y_{m}$ is open, take a small enough closed and open neighborhood $Y^{\prime \prime}$ of a point $y \in Y_{m}$ such that $Y$ " $\subset Y_{1}$ if $m=1$ and $Y^{\prime \prime} \subset Y_{0} \cup Y_{1} \cup \ldots \cup Y_{m-2} \cup Y_{m}$ if $m>1$. Let $Y^{\prime}=Y \backslash Y^{\prime \prime}$.

If $m=n$, let $Y^{\prime}$ be a small enough closed and open neighborhood of $Y_{0}$ such that $Y_{n} \backslash Y^{\circ} \neq \varnothing$. Take $Y^{\prime \prime}=Y \backslash Y^{\prime}$.
b) If $m=0$, we do the same as under a) (and it is the same case). If $s\left(X^{\prime \prime}\right)=(0,1)$, take a closed and open neighborhood $U$ of a point in $Y_{1}$ such that $U \subseteq Y_{1}$ and let $V \subset Y_{0}$, olosed in $Y$, be equivalent to $X^{\prime \prime} \cap X_{0}$. Take $Y^{\prime \prime}=U \cup V, Y^{\prime}=Y \backslash Y^{\prime \prime}$.

Now we have left the case $l<m \in n-2$. Take $U$ and $V$ to be closed and open neighborhoods of a point $y_{1} \in Y_{m}$ and $y_{2} \in Y_{m-1}$ respectively such that $U \leq Y_{0} \cup Y_{1} \cup \ldots \cup Y_{m}$ and $V \subseteq Y_{0} \cup Y_{1} \cup \ldots \cup Y_{m-1}{ }^{\circ}$ Take $Y^{\prime \prime}=U \cup V$ and $Y^{\prime}=Y \backslash Y^{\prime \prime}$. This concludes the proof.

## Statement 4. If X and $Y$ are equivalent spaces, then they

 are homeomorphic.Proof. We can suppose that $X$ and $Y$ are subspaces of the interval $[0,1]$. Since $I$ and $Y$ are countable, we have the enumera-
tions of each of them $X=\left\{x_{1}, \ldots, x_{i}, \ldots\right\}, Y=\left\{y_{1}, \ldots, y_{i}, \ldots\right\}$. Let $x_{1_{1}}$ and $y_{j_{1}}$ be the first elements of highest order (i.e. of order $n$ ) in the enumerations of $X$ and $Y$ respectively. Consider the pointed spaces ( $X, X_{1_{1}}$ ), $\left(Y, Y_{j_{1}}\right)$.

Now let the term "to point a closed and open part A" of $X$ or $Y$ mean to form the pair $(A, a)$, where $a \in \mathbb{A}$ is the point of highest order in A which stands first in the given enumeration and has not been already used in the process of pointing.

If $g(X)=s(Y)=(0, \ldots, n-1, n)$, then both of these spaces can be decomposed into two parts each, so that the accumulation sequences of the parts are ( $0, \ldots, \phi, n$ ) and ( $0, \ldots, \phi, n-1$ ), and the pointed parts having the sequence ( $0, \ldots, \varnothing, n$ ). Point the non-pointed parts, if any. Then, each of these parts of $X$, or $X$ itself, if $s(X)=(0, \ldots, \varnothing, n)$, can be decomposed into two closed and open parts which are of diameter less than $2 / 3$ of the diameter of $X$. Applying 3, we also have equivalent parts of the parts of Y. Now the decompositions of $X$ and $Y$ have at most 4 elements and let us point non-pointed parts. The parts of $Y$, having the sequence ( $0, \ldots, m-1, m$ ) decompose into two parts having each the sequences ( $0, \ldots, \phi, m$ ) or ( $0, \ldots, \phi, m-1$ ), point them and correspond to each the equivalent parts of the corresponding parts of $X$. Point also parts of X. Now, we have at most 8 parts in each of the spaces. Finally decompose the parts of $Y$ so that the diemeters of the parts are less than $2 / 3$ of diemeter of $Y$. Point non-pointed parts and do the same with the equivalent non-pointed parts of $X$.

In this way $X$ and $Y$ are decomposed into at most 1.6 pointed parts. If $x_{i_{k}}$ points a part of $X$, denote such a part by $X^{1}\left(x_{i_{k}}\right)$ and the corresponding part of $Y$ with $Y^{1}\left(y_{j_{k}}\right)$. The parts $X^{1}\left(x_{i_{k}}\right)$ and $Y^{1}\left(y_{j_{k}}\right)$ are all of diameter less than $2 / 3$ and they are equi-
valent pointed Q-full spaces.
Now starting with the pairs $X^{1}\left(x_{i_{k}}\right), Y^{1}\left(y_{j_{k}}\right)$. We decompose them into at most 16 parts $X^{2}\left(x_{i_{k}}\right), Y^{2}\left(y_{j_{k}}\right)$ having the diameters less than $(2 / 3)^{2}$.

Proceeding inductively, in the m-th step, we have the parts $X^{m}\left(x_{i_{k}}\right), Y^{m}\left(y_{j_{k}}\right)$ of diameter less than (2/3) ${ }^{m}$.

Define the mapping $f: X \longrightarrow Y$ by $f\left(x_{i_{k}}\right)=y_{j_{k}}$ : If $x_{i_{s}} \in X_{t}$, then by 1 , the set $X_{0} \cup \ldots \cup X_{t}$ is open, and for a large enough $m$, there will exist a part $X^{m}$ of $X$ contained in $X_{o} \cup \ldots \cup X_{t}$ and disjoint from the set of those points of order $t$ which precede $x_{i_{s}}$. So $x_{i_{s}}$, if not already used in pointing, will be used in the $m$-th step. The same is valid for the points of $Y$, so that $f$ is a mapping defined from the whole $X$ onto $Y$. It is easily seen that $f$ is $1-1$ and on both sides continuous. Hence, $X$ and $Y$ are homeomorphic.

Thus the term "equivalent Q-full spaces" means to pologicaliy equivalent and it was only a working term.

The statement 4 shows that the only Q-full spaces are the spaces

$$
Q_{n}, Q_{n-1}+Q_{n}
$$

adding to them at most countable discrete spaces and the topological sums of such a space and the space $Q_{1}$.
4. The space $Q_{2}+Q_{3}$ and $Q_{5}$ have homeomorihic squares. Consider two spaces $X$ and $Y$ having no point of the accumulation order 4. (Such two spaces are $Q_{2}+Q_{3}$ and $Q_{5}$.) If ord $(x)=$ $=m,(x \in X)$ and ord $(y)=n,(y \in Y)$, we will denote the order of $(x, y) \in \mathbb{X} \times Y$ by $m \times n$. The number $m \times n$ does not depend of the choi-
ce of spaces $X$ and $Y$ as it will become evident from the proofs which follow. The evident homeomorphian of the spaces $X \times Y$ and $Y \times X$ sends the point $(x, y)$ onto $(y, x)$ and so $m \times n=n \times m$.

Now we show that $n \times m$ dependently of $n$ and $m$ is given by the following table

| $\times$ | 0 | 1 | 2 | 3 | 5 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 | 5 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 1 | 2 | 5 | 5 |
| 3 | 3 | 1 | 5 | 3 | 5 |
| 5 | 5 | 1 | 5 | 5 | 5 |

(a) $0 \times n=n$ : Suppose ord $(x)=0$, ord $(y)=n$. The set $\left\{x^{\}}\right\} \times Y$ is mapped onto $Y$ by a homeomorphism sending $(x, y)$ onto $y$. Thus, ord ( $x, y$ ) ord (y).
(b) $1 \times n=1$ : The point $x$ has a neighborhood without isolated points and so the point $(x, y)$ has also such a neighborhood.
(c) $2 \times 3$ 工5: In an arbitrary neighborhood of the point $(x, y)$, there exist two points $\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)$ such that $\operatorname{ord}\left(x^{\prime}\right)=0$, ord $\left(y^{\prime}\right)=3$, ord $\left(x^{\prime \prime}\right)=2$, ord $\left(y^{\prime \prime}\right)=0$. Thus, ord $\left(x^{\prime}, y^{\prime}\right)=3$, ord $\left(x^{\prime \prime}, y^{\prime \prime}\right)=2$ and the point $(x, y)$ is an accumulation point of $(X \times Y)_{2}$ and $(X \times Y)_{3}$. By the statement 1 (a), it follows that ord $(x, y) \geq 5$.
(d) $2 \times 5 \geq 5$ : The proof is the same as under (c).
(e) $3 \times 3=3$ : By 1 (a), $\bar{X}_{2}=X_{2} \cup X_{4} \cup X_{5}$ and the set $X_{0} \cup$ $\cup X_{1} \cup X_{3}$ is open. Take closed and open neighborhoods $U$ and $V$ of $x$ and $\bar{y}$ respectively so that $U \subseteq X_{0} \cup X_{1} \cup X_{3}, V \subseteq Y_{0} \cup Y_{1} \cup Y_{3}$. Let $\left(x^{\circ}, y^{\prime}\right)$ be in $U \times V$. If one of the numbers ord $\left(x^{\prime}\right)$, ord ( $y^{\prime}$ ) is less than 3, then ord $\left(x^{\prime}, y^{\prime}\right)=0,1$ or 3. If ord $\left(x^{\prime}\right)=$ or $\left(y^{\prime}\right)=$ $=3$, then ord $\left(x^{\prime}, y^{\prime}\right) \geq 3$, since $\left(x^{\prime}, y^{\prime}\right) \in(\overline{X \times Y})_{0}$ and $\left(x^{\prime}, y^{\prime}\right) E$ $e \overline{(\bar{X} \times Y)}$, Thus, no point in $U \times V$ has the order 2. Thus, $\operatorname{ord}\left(x^{\circ}, y^{\prime}\right)=3$.
(f) $3 \times 5 \geq 5$ : The proof is the same as under (c).
(g) $5 \times 5 \geq 5$ : The proof as under (c).
(h) $2 \times 2=2$ : The proof easier than (e).

Hence, the space $X \times Y$ has no point of order 4. By 1 (b), $X \times Y$ has no point of order greater than 5 and we have $2 \times 3=5$, $2 \times 5=5,3 \times 5=5,5 \times 5=5$.

It is immediately seen that the product of two $Q$-full spaces $X$ and $Y$ is a $Q$-full space.

Take $X=Q_{2}+Q_{3}, Y=Q_{5}$. Then, $s(X)=(0,1,2,3)$ and $s(Y)=$ $=(0,1,2,3, \varnothing, 5)$ and $X$ and $Y$ are not homeomorphic. The spaces $X \times X$ and $Y \times Y$ are $Q$-full and $s(X \times X)=s(Y \times Y)=(0,1,2,3, \varnothing, 5)$. By the statement 4 , the spaces $X \times X$ and $Y \times Y$ are homeomorphic.

In a full amalogy with the case of compact spaces (see [3]), it can be shown that there exists an infinite sequence of pairs 1 of non-homeomorphic separable metric spaces having homeomorphic squares.

## References

$[11$ KURATOWSKI K.: Topology (Russian), vol. 1, Moscow (1966).
[2] MARJANOVIĆ $M_{0} M_{0}:$ Exponentially complete spaces III, Publ. Inst.Math. ,Beograd, t. 14(28)(1972), 97-109.
[3] $n$ : Numerical invariants of 0-dimensional spaces and their Cartesian multiplication, Publ. Inst. Math., Beograd, t. 17(31)(1974), 113-120.
[4] TRNKOVÁ V.: Representations of commutative semigroups by products of topological spaces, Proc. Fifth Prague Topol. Symp. 1981, Berlin (1982), 631-641.
[5] VUČEMILOVIĆ A.: On countable spaces, Mathematica Balcanica, 4.127(1974), 669-674.

Math. Institute PMF, Studentski trg 16, 11000 Beograd, Yugoslavia
(Oblatum 23.1. 1985)

