Commentationes Mathematicae Universitatis Caroline

Igor Kříž
 A constructive proof of the Tychonoff's theorem for locales

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 3, 619--630

Persistent URL: http://dml.cz/dmlcz/106398

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 26,3 (1885)

A CONSTRUCTIVE PROOF OF THE TYCHONOFF'S THEOREM FOR LOCALES Igor KRKZZ

Abstract: A choice- and replacement-free proof of the Tychoñil Eheorm is given for compact locales.
Key words: Locales, compact looales, Tychonoff ${ }^{\circ}$ theorem.
Clamsification: 54D30, 54H99

The Tychonoff's theorem ([12]) stating that a product of compact spaces is compact is well known to be equivalent to the axiom of choice (see [10]). A surpriaing result was obtained by P.T. Johnstone in [8]: if we consider compact locales (i.e., spaces represented as lattices of "open sets" - with points diaregarded and, indeed, often not present in any form), the analogon of the Tychonoff's theorem can be proved without the axiom of choice. This is particularly interesting in connection with the fact that compact locales are always apatial, 1.e. open-sets lattices of classical topological apaces ([2]; thus, the use of AC is localized in the formation of points, not in the preservation of the compactness property).

The proof in [8] contains a non-constructive element, namely the axiom of replacement. P.T. Johnstone formulated the problea whether one can get rid of this, too (for the mecial case of the localif compact`locales he presented a positive answer himself). In this article, this problem is solved in
the affirmative in full generality. The procedure is based on a new description of the product of locales, considerably more constructive as compared with the usually used ones ([5],[8]).

1. Iocales. The basic theory of locales has been developed by Bénabou [1], Dowker and Strauss [3, 4, 5], Iabell [6] and Simmons [11]. There are sonsiderable differences in the terminology; we follow that of Johnstone [8]. A frame is a complete lattice A in which the infinite diatribution law

$$
a \wedge(V S)=V\{a \wedge s \mid s \in S\}
$$

holde for all $a \in A, S \subseteq A$. We shall denote the maximal resp. minimal element of A by 1 resp. O. A frame homomorphism $A \rightarrow B$ is a map preserving finite meets and arbitrary joins (i.e., in particular, the elements 0,1). Thus, we have a category Frm of frames. If X is a topological space, the lattice $\Omega(X)$ of its open sets is a irame. If $f: X \rightarrow Y$ is a continuous map, then $f^{-1} \Omega(Y) \rightarrow \Omega(X)$ is a frame homomorphism. Thus Ω is a contravariant functor from the category Top of topological apaces to Frm.

Following Isbell [6] and Johnstone [8] we shall write Loc for the opposite category $\mathrm{Frm}_{\mathrm{m}} 0 \mathrm{p}$, and call its objecte locales. This dual terminology enables us to make $\Omega:$ Top \rightarrow Loc a covariant functor and, in consequence, to generalize familiar concepts from topology to Loc (see [7],[8]).
2. Producta of Iocales. Producta in the category Loc (aums in Frm) were defined by Dowker-Strauss [5] and Johnstone [8]. Their deacription is elegant, but rather non-constructive. It does not give any explioit formula for the join operation in the anm ${ }_{j} X_{j} X_{j}$ of frames X_{j}. Johnstone [7] auggests to
construct the sum of $X_{j}(j \in J)$ as a free frame over the cartesian product $\prod_{j \in J} X_{j}$ of the sets X_{j}, factorized through a congruence generated by certain relations. (In the case of an infinite J, it is of an advantage to exclude from $j \in \prod_{j} X_{j}$ those $\left(a_{j}\right)_{j \in J}$ in which we have $a_{j}<1$ for infinitely many j_{0}) This shows an analogy between irames and commutative rings (see [91). However, frames, being ∞-ary algebras, turn out to be in this reapect much more complex. In fact, the congruence generated by the obvious relations is rather obsoure.

In this section we give a quite explicit description of the congruence generated by the relations [7], which enables us to desoribe the atructure of $\dot{j \in J} X_{j}$, explicit formulas for finite meets and arbitrary joins included.

Let J be a set. We call a J-connector a system ($M, \Omega_{j}^{\uparrow}, \Omega_{j}^{\downarrow}$) $(j \in J), M_{1}, M_{2}$), where $M_{1}, M_{2} \subseteq M, \mathcal{R}_{j}^{\uparrow} \subset 2^{M} \times M, R_{j}^{\downarrow} \subset M \times 2^{M}$ for $j \in J$ such that the following condition holds:

Let $K \subseteq M$. Whenever
(c) $\left\{\begin{array}{l}(1) \\ \text { or } \\ (2)\end{array}\right.$

$$
\begin{aligned}
\left(M_{1} \subseteq K\right) & \&\left[\left(N R_{j}^{\uparrow} x\right) \&(N \subseteq K) \Rightarrow\right. \\
& \Rightarrow x \in K] \&\left[\left(x B_{j}^{\uparrow} N\right) \&(x \in K) \Rightarrow N \subseteq K\right] \\
\left(M_{2} \subseteq K\right) & \&\left[\left(N R_{j}^{\uparrow} x\right) \&(x \in K) \Rightarrow\right. \\
& \Rightarrow N \subseteq K] \&\left[\left(x R_{j}^{\downarrow} N\right) \&(N \subseteq K) \Rightarrow x \in K\right]
\end{aligned}
$$

holds, it is $K=M_{0}$
Now let $X_{j}(j \in J)$ be a system of frames. Denote by B the cartesian product $\prod_{j \in J} X_{j}$. There is a natural ordering $" \xi n$ of B, making $\prod_{j \in J} X_{j}$ a Prm-product of X_{j} (see [5]). Let $B{ }^{\circ}{ }^{\circ} B$ be the subset of all $x=\prod_{j} \in J a_{x}^{j} \in B$ such that we have $a_{x}^{j}<1$ for at most finitely many $f \in J$. It is easy to see that B° is a mblattice of B, preserving finite meets and non-empty joins, but it is not a locale: There is no minimal element in B^{\prime}. Denote by Z
the lattice of all subsets of B^{\prime} ordered by inclusion. We call $m_{1}, m_{2} \in Z$ atrongly equivalent $\left(m_{1} \sim_{s} m_{2}\right)$, if there exists an $m \in Z$ and a J-connector ($m, R_{j}^{\uparrow}, R_{j}^{\downarrow}, m_{1}, m_{2}$) (in the sequel called simply the connector) such that it holds

$$
\begin{align*}
\left(x R_{j}^{\downarrow} m^{\bullet} \text { or } m^{\prime} R_{j}^{\uparrow} x\right) & \Rightarrow\left(a_{x}^{j}=\psi{ }_{y} m^{\prime} a_{y}^{j}\right) \& \\
\&\left(a_{x}^{k}\right. & \left.=a_{y}^{k} \text { for } k \neq j, y \in m^{\prime}\right) \&\left(m^{\circ} \neq \emptyset\right) . \tag{3}
\end{align*}
$$

We will call a kernel of $m \in Z$ the set

$$
s(m)=\left\{x \in m \mid(\forall j \in J) a_{x}^{j}>0\right\}
$$

We set $u \sim v \equiv{ }_{d f} s(u) \sim_{s} s(\nabla)$. The element u is called atandard, if $u=s(u)$.
2.1. Observation: ${ }^{n} \sim{ }^{n}$ is an equivalence relation, containing $" \sim_{S}$ ".

Proof: It suffices to show that $u \sim_{s} v \Rightarrow s(u) \sim_{s} g(v)$. Let ($m, R_{j}^{\uparrow}, R_{j}^{\downarrow}, u, \nabla$) be a connector. Denoting by $\bar{R}_{j}^{\uparrow}, \bar{R}_{j}^{\downarrow}$ the restrictions of $R_{j}^{\uparrow}\left(R_{j}^{\downarrow}\right)$ to $s(m) \times 2^{s(m)}, 2^{s(m)} \times s(m)$, respectively, we obtain a connector ($s(m), \bar{R}_{j}^{\uparrow}, \bar{R}_{j}^{\downarrow}, s(u), s(v)$).

Denote by $[m]$ the class of $m \in Z$ in (Z / \sim).
2.2. Further observationg: 1. Assume $x, y, z \in Z, x \subseteq y, x \sim z$. Then there exists a $t \in Z$ such that $z s t, y \sim t$. Thus, we can define a canonical ordering on $(z / \sim$) by the formula $[x] \leq[y] \equiv d f$ ($\exists \mathrm{z} \in \mathrm{Z})(\mathrm{z} \sim \mathrm{y} \& \mathrm{x} \subseteq \mathrm{z})$ 。

Proof: Let ($m, R_{j}^{\uparrow}, R_{j}^{\downarrow}, g(x), s(z)$) be a connector. Putting $t=(\bar{j} \backslash x) \cup z$, we obtain an obvious connector (mus(t), $R_{j}^{\uparrow}, R_{j}^{\downarrow}$, $s(y), s(t))$ 。
2. If $u \subseteq \mathcal{V}^{\subseteq} \subseteq$ and $u \sim w$, then $u \sim \nabla$. Hence, $" \leq n$ is a partial ordering.

Proof: It suffices to show that $\nabla \sim w$. But if $\left(m, R_{j}{ }_{j}, \Omega_{j}^{\psi}\right.$,
$*(u), N(w))$ in a connecto r, then $\left(m_{,} \mathcal{R}_{j}^{\uparrow}, R_{j}^{\downarrow}, m(\nabla), N(w)\right)$ is a connectox, aswell.
3. Lot $u, v \in Z, u \subseteq v$. Then $(\forall y \in V)(\exists x \in u)(x \not y) \rightarrow u \sim \nabla$.

Proof: For uєz put $d(u)=\left\{x \in B^{\prime} \mid(\exists y \in u) x\right\} y$. Since ovidently $(\forall y \in \tau)(\exists x \in u /(x \neq y) \& u \leq v \Rightarrow d(u)=d(v)$, it mifices to show that $u \sim_{n} d(u)$ for $u \in Z$. Let $R_{j}^{\hat{j}}, \Omega_{j}^{\psi}$ be maximal relations on $2^{d(u)} \times d(u), d(u) \times 2^{d(u)}$, satisfying (3). (The $\alpha^{(n-}$ dition (3) 1. obriously preserved by the union of relationa,) From the fact that for $x \in B^{\prime}$ there are only initely many i with $a_{x}^{j}<1$, we eanily obtain that $\left(d(u), R_{j}^{\dagger}, R_{j}^{\dagger}, u, d(u)\right)$ is a connector.
4. For any $u_{1} \in Z$ we bave $\left[V_{\&} u_{i}\right]=i \leq I\left[u_{i}\right]$.

Proof: The union $t(\alpha)$ of all elements of given olams $\alpha \in(2 / \sim)$ belonge to α, wince union of connectors (in the obvious meaning) is a comector. Moregver, the mapping $t:(Z / \sim) \rightarrow z$ preserven ordering and for arbitrary $z \in Z$, $\alpha \in(Z / \sim)$ it boids $z E t(\alpha)$ [z] $\{\alpha$. Thus, " [] is a left adjoint to to that it pregerves joins.
5. Denote by $\wedge_{B \prime}$ the meet operation in B^{\prime}. For $u, v \in Z$ let $u \pi \bar{v}=\left\{x \hat{B}^{\prime} \boldsymbol{y} \mid x \in u ; y \in v\right\}$. Then $[u \pi T]$ depends only on [u]. [v].

Proo I: Assume that ($m^{(1)}, R_{j}^{p}$ (i) $, R_{j}^{i}(1), n^{(i)}, T^{(i)}$, are connectors, $i=1,2$. Put $X_{j}^{*}=\left\{\left(x \wedge J, n X\left\{y_{j}\right\}\right) \in B^{0} \times 2^{B}\right.$ i $\|\left(x R_{j}^{\downarrow(1)} m \& y \in m^{(2)}\right)$ or $\left.\left(x R_{j}^{\downarrow(2)} m \& y \in m^{(1)}\right)\right\} \cdot R_{j}=$
 \& $\left.\left.J \in m^{(1)}\right)\right\}$. It is easy to see that $\left(n^{(1)} \bar{\Lambda} m^{(2)}, R_{j}, \Omega_{j,}^{\downarrow}, u^{(1)} \pi\right.$ $\left.K u^{(2)}, \nabla^{(1)} X \nabla^{(2)}\right)$ is a comector \square
6. The operetion \wedge "in (Z/~) defined by $[u] \wedge[\nabla]=$
$=[u \pi v]$ is the ordinary meet (\equiv infimum in \leq) in ($2 / \sim$).
Proof: By 2, 4, (Z / \sim) is a complete lattice. Denote by " $\wedge(z / \sim)$ " the true meet in (Z / \sim). By 3, we have
$(+) \quad(\forall x \in u)(\exists y \in v)(x \not-y) \Rightarrow[u] \in[v]$,
and hence trivially $[u] \wedge(z / \sim)[\nabla] \geq[u] \wedge[v]$. Moreover, $[u] \wedge(z / \sim)[v] \leqslant[u],[v]$, by definition. Thus, by 1, there exist $s \sim u$, $t \sim v$ such that for some representative $u v$ of the class $[u] \wedge(z / \sim)[v]$ it holds $u v \subseteq s, u v \subseteq t$. By 5, (+), we ham ve now $[u] \wedge(z / \sim)^{[v]} \leqslant[s \bar{\lambda} t]=[u] \wedge[v]$.
7. Given a system $f_{j}: X_{j} \rightarrow C$ of join-preserving mappings, there exists a unique join-preserving mapping $f:(z / \sim) \rightarrow C$ such that it holds that

$$
\begin{equation*}
\left.f\left(\left[\left\{^{\prime} x\right\}\right]\right)=\hat{j}^{\mathcal{E}}\right] f_{j}\left(a_{x}^{j}\right) \text { for any } x \in B^{\prime} . \tag{4}
\end{equation*}
$$

Proof: By 4, the mapping P is uniquely determined by the formula $f([m])=\bigvee_{x \in m} f([\{x\}])$, and it obviously preserves joins. Our only task is to show that f is correctly defined. Let ($m, \Omega_{j}^{\uparrow}, \Omega_{j}^{\downarrow}, u, v$) be a connector. We will show that, by our definition, $f([u])=f([v])$. (This will be enough, since the definition obviously gives $f([u])=f([s(u)])$.) In fact, since the set $K=\{x \in M \mid f([\{x\}]) \leq f([u])\}$ trivially satisfies the condition (1), it is $K=m$. Thus, $f([v]) \leqslant f([m]) \leqslant f([u])$. Analogously, $f([u]) \leqslant f([\nabla])$.
2.3. Theorem: The set ($2 / \sim$) ordered by " \leq " is a fram me with joins and meets given by the formulas

$$
\begin{align*}
& i \ell_{I}\left[u_{i}\right]=\left[\bigcup_{i \in I} u_{i}\right] \tag{5}\\
& {[u] \wedge[v]=\left[\left\{x \hat{B}_{B^{\prime}} y \mid x \in u, y \in \nabla\right\}\right]}
\end{align*}
$$

If we define $\iota_{j}: X_{j} \rightarrow(z / \sim)$ by $\iota_{j}(a)=\left[\left\{\tau_{j}(a)\right\}\right]$, where
$\tau_{j}(a) \in B^{\prime}$ and $a_{\tau_{j}(a)}^{j}=a, a_{\tau_{j}}^{k}(a)=1$ for $k \neq j$, then τ_{j} are frame homomorphisms and (Z / \sim) is the sum of X_{j} with injections ι_{j}

Proof: By 2.2.2, 2.2.4, 2.2.6, (Z / \sim) is a complete lattice with joins and meets given by (5). However, (5) trivially implies the distributive law so that (Z / \sim) is a frame. The mappings
U_{j} are frame homomorphisms by (5). (Note that namely the behaviour of the zero element forces us to set $u \sim v \equiv g(u) \sim_{g} g(v)$.) Given homomorphisms $f_{j}: X_{j} \rightarrow C$, there exists (by 2.2.7) a unique join-preserving mapping $f:(Z / \sim) \rightarrow C$ satisfying (4). This mapping obviously preserves finite meets.
2.4. Observation: For arbitrary standard $x, y \in B^{\circ}$ we have

$$
[\{x\}] \leqslant[\{y\}] \equiv x\} y
$$

Proof: Congider the mapping $\tau_{j}: X_{j} \rightarrow B^{\prime}$ defined by Theorem 2.3. Obviously τ_{j} preserve joins, and thus, by 2.2 .7 , there exists a unique join-preserving $\tau: j \notin j X_{j} \rightarrow B$ satisfying (4). Since B is the product of X_{j} and B^{\prime} is a sublattice of B, we have a canonical join- and finite meet-preserving map $L: B^{\bullet} \longrightarrow$ $\rightarrow{ }_{j \in J} X_{j}$ induced by $L_{j}: X_{j} \rightarrow{ }_{j \in J} X_{j}$. By (4), the diagram

commutes. Thus, $ᄂ$ is injective and hence $\{x\} \sim_{s}\{y\}=x=y$ (for atandard x, y). Now $[\{x\}] \leq[\{y\}] \equiv[\{x\}] \wedge[\{y\}]=$ $=[\{x\}] \equiv[\{x \wedge y\}]=[\{x\}] \equiv x \wedge y=x \equiv x 孔 y$ 。
2.5. Remark: This result is proved in [5] and it can be reformulated to say that L_{j} preserve arbitrary (even infinite) meets. This property could be called the openneas of l_{j}. This
is motirated by the following
Feat: Let X, Y be topological I_{1} mpaces. Then a continuoun $f: X \rightarrow Y$ in open iff $f^{-1}: \Omega(Y) \rightarrow \Omega(X)$ preserres arbitrany (even infinite) meeta.

Proof: If $\mathrm{I}: \mathrm{X} \rightarrow \mathrm{I}$ is open, then the image mapping $\mathrm{I}_{1}:$ $: \Omega(X) \rightarrow \Omega(X)$ is evidentiy left adjoint to f^{-1}. Thus, f^{-1} preserves meets. On the other hand, if f^{-1} preserves meets, it ham left edjoint s_{*}. For $U \in \Omega(X), \nabla \in \Omega(Y)$ we have

 hand, $f^{-1} f_{*}(U)=f^{-1}\left(\hat{f}_{f-1}(V) \geq u\right)=f_{f}(V) \geq u^{-1}(V) \geq U$, and hence $f_{*}(U) \geq f_{1}(U)$. Thum $f_{*}=f_{1}$.
3. The trehonoff A theoren A frame (locale) is aaid to be compeot, if for any SGA with VS=1 there eximts a finite F cs with $V \mathcal{F}=1$. In this section we give a choice and roplacoment-free proof of the theorem that the product of oompaot locales in oompact.

Let A be a frame. A atet $S S A$ is called a govering of A, if it holdm $V S=1$. For coveringe m, t of a frame A we set $s t$, if it holds ($\forall x \in a)(\exists y \in t$) $x \leqslant J$. (This is the ordinary conoept of refinement.) Let now be a covering of and let $t \leq A$ mah that $V t \geq a$. We will use the notation $\wedge_{a} t=\{x \in m\}$
 Δ and $\wedge_{2} t \leqslant$. Analogously, $\left(\forall x \in A_{a} t\right)((x \in a) \Rightarrow(\exists y \in t)$ ($x \leqslant y$))

How let $X_{j}(j \subset J)$ be a ayatem of framea. Consider a nytem e_{j} of ooveringe such that $s_{j}=1$ excopt for, at mont, 11 nitely many 1 . Thea the myotem

$$
\prod_{j \in J} a_{j}=\left\{[\{x\}] \epsilon_{j \in J} x_{j} \mid(\forall j \in J) a_{x}^{j} \in \varepsilon_{j}\right\}
$$

is a covering of ${ }_{j}<\int{ }_{j} X_{j}$.
In the last section we remarked that $\zeta_{j}: X_{j} \rightarrow{ }_{j} Y_{J} X_{j}$ preserve arbitrary meets. Thus, they have left adjointe p_{j} : $:{ }_{f} K_{j} X_{j} \rightarrow X_{j}$ (whioh, of oourse, are not frame homomorphisms). We can easily oheok that

$$
\begin{equation*}
p_{j}([u])=V\left\{a_{x}^{j} \mid x \in u\right\} \tag{6}
\end{equation*}
$$

3.1. Lemma: Let $\{u, v\}$ be a covering of $\underset{j \in\{0,1\}}{V_{j}} \Lambda_{j}$. Then $p_{0}(u)=1$ or $p_{1}(v)=1$.

Proof: There mhould exist a connector ($m, R_{j}^{\uparrow}, R_{j}^{\downarrow}(j \in\{0,1\}$), $\bar{u} \cup \bar{v},\{1\}$) for some standard representatives \bar{u}, \bar{v} of the olamses u, v. Consider a system $x_{i} \in B^{\prime}, i \in I$ mach that x_{i} diffor at most at one coordinate. Then the statement $(\forall 1 \in I)\left\lceil\left(Q_{x_{i}}^{0} \leqslant p_{0}(u)\right)\right.$ or ($\left.\left.a_{x_{i}}^{1} \leq p_{1}(v)\right)\right]$ implies the atatement $\left(a_{V X_{i}}^{0} \leq p_{0}(u)\right)$ or ($\left.a_{V x_{i}}^{1} \leqslant p_{1}(v)\right)$. Thuss, by (3), the set $K=f x \in \mathbb{m} \mid\left(a_{x}^{0}<p_{0}(u)\right)$ or $\left.\left(a_{\alpha}^{1} \leq p_{1}(v)\right)\right\}$ eatisfies (1), and hence $K=m$. In partioular, $1 \leqslant p_{0}(u)$ or $1 \leqslant p_{1}(v)$.
3.2. Observation: Any element of a finite lattice is a join of join-irreducible elements.

Pmoof: An obvious induction.
3.3. Lemma: Consider a finite covering $t=\left\{\left[\left\{x_{i}\right\}\right] \mid 1 \leqslant n\right.$, $\left.x_{1} \in B^{\prime}\right\}$ of the frame $j \in J x_{j}$. Then there exist finite coverings a_{j} of the frames x_{j} such that $\prod_{j \in j} s_{j} \leq t$.

Proof: will be done for $J=\{0,1\}$. This, by induotion, obviously implies the case of J finite; the case of J infinite
is executed by the initeness of t. Let, hence, $J=\{0,1\}$. Let $A_{j}(j=0,1)$ be sets of all posaible el ements of X_{j} obtained from $a_{j}^{j}(i \leq n)$ by join and meetroperations in X_{j}. Obvious$I_{y} A_{j}$ are finite lattioes. Write θ_{j} for the set of all joinirreducible elements in A_{j}. By $3.2, s_{j}$ is a covering of X_{j}. We will show that $s_{0} \times s_{1} \leq t$. Suppose the contraxy. Then there exiats a $y \in B$ euch that $a_{j}^{j} \in s_{j}$ for $j=0,1$ and $x_{i} \neq j$ for any $1 \leq n$. From the join-irreducibility of a_{j}^{j} it follows that

$$
p_{j}\left(\left[\left\{x_{i} \mid a_{x_{i}}^{j} \neq a_{j}^{j}\right\}\right]\right) \geq a_{y}^{j} \text { for } j=0,1 \text {. }
$$

By 2.4 and by the properties of y, however,

$$
\underset{j \in\{0,1\}}{ }\left[\left\{x_{i} \mid a_{x}^{j} \neq a_{y}^{j}\right\}\right]=1,
$$

contradicting 3.1. \square
3.4. Lemma: Consider compact frames $X_{j}(j \in J)$. Let ($m, \Omega_{j}^{\uparrow}, R_{j}^{\downarrow}(j \in J, k,\{1\})$ be a connector. Then for any finite $m^{\circ} \subseteq m$ such that $m{ }^{\prime} \sim 1$ and for any $x \in m$ 'there exists a finite $m^{\prime} \subseteq\left(m^{\bullet} \backslash\{x\}\right) \cup k$ such that $m \sim_{n}$.

Proof: Let \bar{k} be the set of all $x \in m$, satisfying the stam tement of Lemma 3.4. We will show that k satisfies the condition (1), and hence $\bar{k}=m$.

The inclusion $k \subseteq \bar{k}$ is obvious.
a) Let $y R_{x}^{\downarrow} u \& x \in u, y \in \bar{k}$. Then, of course, $\left.x\right\} y$ so that if $1 \sim m m^{0} \neq x$, it is $1 \sim_{s}\left(m^{0} \backslash\{x\}\right) \cup\{y\}$. Thus, $x \in \bar{k}_{0}$
 $\left.6 \mathrm{~m}^{\prime}\right\}_{\text {. Then }} M^{\circ}$ is a covering of ${ }_{j} K_{j} X_{j}$. By 3.3 , there exists a covering $\prod_{j \in J} \varepsilon_{j} \leq M^{\circ}$. We take the covering $a_{s e} \wedge_{a_{z}}\left\{a_{j}^{\theta} \mid J \in u\right\}$ of the frame X_{μ}. By compactness, it possesses a finite subcovering \bar{E}_{x}. Putting $\bar{m}_{j}=m_{j}$ for $j \neq x$, we obviousiy obtain $\prod_{j \in J} \bar{B}_{j} \leq\left(M^{\prime} \backslash[\{x\}]\right) \cup\{[\{J\}] \mid J \in u\}$. The left hand set is - 628-
finite. Thus, there axiats a einite mbset $t \underline{c} u$ with (m ${ }^{\circ} \backslash$) u Ut~. 1. From $t \subseteq \bar{k}$ we easily obtain $x \in \bar{k}$ (by induction on card t). \square
3.5. Theorem: In the Zermelo set theory (without the axioms of choice and replacement) Tychonoff 's theorem holds for localess i.e., the product of compact locales is compact.

Proof: Let $X_{j}(j \in J)$ be a myaten of compact irames and let S be a covering of $f \in J X_{j}$. Put $k=\left(\bigcup_{x \in S} t(x)\right)$, where if the kernel and t is defined in 2.2.4. It will be knis. By Lemme 3.4 (with $m^{\prime}=\{1\}, x=1$), there exists a finite submet $k^{\circ} \subseteq k$ with $k^{\circ} \sim_{s}$ 1. Since k is finite, however, there exists a finite $F \subseteq S$ mach that $\left(\forall x \in k^{\prime}\right)(\exists \alpha \in F)(x \in \approx(t(\alpha)))$. Thus, of course, $V F=1$.

Acknowledgement: I wimh to thank A. Pultr for valuable discusaions to the manuscript.

References

[1] J. BENNABOU: Treilli: locaux et paratopologies, Séminaire Ehreamann 1 (1957-58), exposé 2.
[2] B. BAKASCHEWSKI and C.J. MULVEY: Stone-Čech compactificetion of locales, I, Houston J. Math. 6(1980), 301-312.
[3] C.H. DOWKER and D. PAPERT: Quotient frames and subspaces, Proc. Lond. Math. Soc. 16(1966), 275-296.
[4] C.H. DOWKER and D. PAPERT: On Urysohn' lemma, General Topology and its relations to Modern Analyed s and Algebra II, Prague 1966, 111-114.
[5] C.H. DOWKER and D. STRAUSS: Sums in the category of frem men, Houston J. Math. 3(1976), 17-32.
[6] J.R. ISBELL: Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.
[7] P.T. JOHNTONE: The point of pointiess topology, Bull. Am. Math. soo. 8(1983), 41-43.
[8] P.T. JOHNSTONE: Tychonoff' theorem without the exiom of ohoioe, Flund. Math. 113(1981), 21-35.
[9] A. JOYAL, M. TIENNEY: An extension of the Galois Theory of arothendieok, preprint.
[10] J.L. KELLEY: The Tyohonoff product theorem implies the axiom of ohoice, Fund. Math. $37(1950), 75-76$.
[11] H. SLMMONS: A Eramowort for topology, Proc. Wroolaw Logio Conference 1977, North-Holiand, 1978, 239-251.
[12] A.N. TYCHONOFF: fiber aic topologisohe Erweiterung von Räumon, Math. Anrn. $102(1930), 544-561$.

Matematiokomfyzikálni fakulta, Univaraita Kariova, Sokolovika 83, 18600 Prahe 8, Czechoslovakia
(Ob1atum 27.2. 1985)

