Commentationes Mathematicae Universitatis Caroline

Athanossios Tzouvaras
 Countable inductive definitions in AST

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 1, 17--33

Persistent URL: http://dml.cz/dmlcz/106427

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

27.1 (1986)

COUNTABLE INDUCTIVE DEFINITIONS IN AST A. TZOUVARAS

Abstract: We transfer the notions of inductive definition, fixed point and inductive class in Alternative Set Theory and st on that every Σ-semiset is a fixed point and every Σ-class is inductive.

Key words: Inductive definition, fixed point, inductive class, Alternative Set Theory, Σ-class.

Classification: 02K10, 02B99

The main source of reference is [MO]. In Section 1 we adapt key definitions and cite basic facts from [MO]. In Section 2 we prove the results which seem to be specific for the context of AST. In Section 3 we show that all Σ-classes are inductive.

We assume the reader's familiarity with all basic concepts of the Alternative Set Theory as exposed e.g. in [V].
\S 1. Adapted definitions and facts. Let $\varphi(Z)$ be a normal formula of $F L_{V}, Z$ being among the class variables of φ. We say that φ is positive in Z, or simply φ is positive (if Z is the only class variable of φ), if φ belongs to the collection $\phi_{p}(Z)$ of formulas defined as follows:
$\Phi_{p}(Z)$ is the smallest class of formulas such that:
(i) If Z does not occur in Q, then $\rho \in \Phi_{p}(Z)$.
(ii) If t is a constant or variable, then $t \in Z$ is in $\Phi_{p}(Z)$.
(iii) If φ, ψ are in $\Phi_{p}(Z)$ and x is any (set) variable, then $\varphi \wedge \psi, \varphi \vee \psi,(\exists x) \varphi,(\forall x) \varphi$ are in $\Phi_{p}(Z)$.

The main property of positive formulas is monotonicity.

Lemma 1. I . If $\varphi(Z)$ is positive in Z, then for any classes $X, Y, X \subseteq Y$ and $\varphi(X)$ imply $\varphi(Y)$.

Proof. By induction through the steps of the previous definit:on.

If the only class variable of $g(x, Z)$ is Z, the only set variable is x and φ is positive in Z, then we can adjoin to φ an operator Γ_{φ} sending the class X to the class

$$
\Gamma_{\varphi}(x)=\{x ; \varphi(x, x)\} .
$$

Γ_{y} is monotone, i.e.

$$
X \subseteq Y \rightarrow \Gamma_{\varphi}(X) \subseteq \Gamma_{\varphi}(Y)
$$

(Γ_{φ} is an informal object and we use it just to simplify the notation in some cases.) If φ contains only set-definable class parameters, then Γ_{φ} sends every set-definable class to a set-definable class.

Lemma 1.2. If $\varphi(x, Z)$ and $\psi(x, Z)$ are positive, then $\varphi\left(x, \Gamma_{\varphi}(Z)\right)$ is positive in Z.

Proof. By induction on the length of $\$ 8$.
Given a positive $\varphi(x, Z)$ we define an increasing sequence of classes $\left(T_{\varphi}^{n}\right)_{n \in F N}$ as follows:

$$
\begin{aligned}
& I_{\varphi}^{0}=\emptyset \\
& I_{\varphi}^{n+1}=\Gamma_{\varphi}\left(I_{\varphi}^{n}\right)=\left\{x ; \varphi\left(x, I_{\varphi}^{n}\right)\right\} .
\end{aligned}
$$

This is a typical inductive definition which could probably be continued beyond the finite ordinals.

Here, however, we are interested in countable inductions,
that is inductions which terminate in as steps. These are defined by positive formulas is such that $\Gamma_{\varphi}\left(U_{n} I_{\varphi}^{n}\right)=U_{n} I_{\varphi}^{n}$.

Let us put

$$
I_{\varphi}=U\left\{I_{\varphi}^{n} ; n \in F n\right\}
$$

for every positive φ.
We say that I_{φ} is a fixed point if φ contains no class parameters and $\Gamma_{\varphi \rho}\left(I_{\varphi}\right)=I_{\varphi}$.

If $\varphi(Z)$ is positive in Z and X is a class, we say that the parmater X is positive in $\varphi(X)$.

If all the parameters $X_{1}, X_{2}, \ldots, X_{k}$ of φ are positive and $\Gamma_{\varphi \varphi}\left(I_{\varphi}\right)=I_{\varphi \rho}$, then we say that I_{φ} is a pixedpoint in $x_{1}, x_{2}, \ldots, x_{k}$.

A class X is inductive (inductive in X_{1}, \ldots, X_{k}) if for some fixed point (fixed point in X_{1}, \ldots, X_{k}) I_{G} and seme set parameter a,

$$
x \in X \leftrightarrow\langle x, a\rangle \in I_{\varphi} \longleftrightarrow x \in I_{\varphi}^{\prime \prime}\{a\} .
$$

Lemma 1.3. (i) Every fixed point is inductive. (ii) Every inductive class is a Σ-class. (iii) Every set-definable class is a fixed point.

Proof. (i) Let I_{φ} be a fixed point in X_{1}, \ldots, X_{k} and let a be a parameter. Put

$$
\psi(x, y, z) \equiv \varphi(x, Z "\{a\}) \wedge y=a .
$$

If $\sigma(x, Z)\langle x, a\rangle \hat{\in} Z$, then clearly σ is positive and $Z "\{a\}=$ $=\Gamma_{\sigma}(Z)$. By 1.2Ψ is positive and we can see inductively that $I_{\psi}^{n}=I_{\varphi}^{n} \times\{a\}$, whence $I_{\psi}=I_{\varphi \varphi} \times\{a\}, I_{\psi}$ is a fixed point and $I_{\varphi}=$ $=I_{\psi}^{H}\{a\}$.
(ii) Let I_{φ} be a fixed point. If I_{φ}^{n} is set-definable then
obviously $I_{\varphi}^{n+1}=\left\{x ; \varphi\left(x, I^{n}\right)\right\}$ is set-definable. Similarly, for any a $I_{\varphi}^{\prime \prime}\{a\}=U_{n} I_{\varphi}^{n "}\{a\}$ and $I_{\varphi}^{n "}\{a\}$ are set-definable. (This is no longer true, however, for classes inductive in other classes.)
(iii) If X is set-definable, put

$$
\varphi(x, Z) \equiv x \in X .
$$

Then $I_{\varphi}^{n}=I_{\varphi}=x$ for $n \geq 1$.
Since we are interested in countable inductions, we have to deal exclusively with positive formulas leading to such inductions

Let $\varphi(Z)$ be positive and let $\left(Y_{n}\right)_{n \in F N}$ be an increasing sequence of set-definable classes. We say that φ is stationary in Z
w.r.t. $\left(Y_{n}\right)_{n \in F N}$, if

$$
\varphi\left(\cup_{m}^{\cup} Y_{n}\right) \longleftrightarrow(\exists n \in F N) \varphi\left(Y_{n}\right) .
$$

We say that φ is stationary in Z if it is stationary.w.r.t. any such sequence.

Lemma 1.4. Let $\varphi(Z)$ be positive and stationary. Then for every increasing sequence of inductive (or, more generally, Σ-) classes $\left(D_{n}\right)_{n}$,

$$
\varphi\left(\cup_{n} D_{n}\right) \longleftrightarrow(\exists n \in F N) q_{f}\left(D_{n}\right) .
$$

Proof. Suppose $D_{n}, n \in F N$, are Σ-classes and $D_{n}=U_{m} D_{n}^{m}$. Let $\left(E_{k}\right)_{k \in F N}$ be an enumeration of all $D_{n}^{m}, m, n \in F N$. Define two functions H_{1}, H_{2} from $F N$ to $F N$ by recursion as follows:
$H_{1}(0)=H_{2}(0)=0$, and $H_{1}(k+1)=$ least m such that there is an n such that

$$
E_{k+1} \cup D_{H_{1}}^{H_{2}(k)}=D_{m}^{n},
$$

$H_{2}(k+1)=$ least n such that

$$
E_{k+1} \cup D_{H_{1}}^{H_{2}(k)}(k)=D_{H_{1}}^{n}(k+1)
$$

The definition makes sense for all $k \in F N$ because $\left(D_{n}\right)_{n}$ is increasing. Clearly $D_{H_{1}}^{H_{2}(n)} \subseteq D_{H_{1}}^{H_{2}(n+1)}$ and $\bigcup_{n} D_{n}=\cup_{n} 0_{H_{1}}^{H_{2}(n)}(n)$. Since φ is positive and stationary, we get

$$
\left.\begin{array}{rl}
\varphi\left(\cup_{m} D_{n}\right) \leftrightarrow \varphi\left(\cup_{m}^{D_{H}} H_{2}^{(n)}(n)\right.
\end{array}\right) \leftrightarrow(\exists n) \varphi\left(D_{H_{1}(n)}^{H_{2}(n)}\right) \rightarrow(\exists n) \varphi\left(D_{H_{1}(n)}\right) \rightarrow \quad \text { (ヨk) } \varphi\left(D_{k}\right) .
$$

The other direction follows from positivity.

It is evident that if $\varphi(x, Z)$ is positive and stationary in Z and does not contain class parameters, then I_{φ} is a fixed point. A fixed point $I_{\varphi \rho}$ (or an inductive class $I_{\varphi}^{\prime \prime}\{a\}$) is called stationary if the defining formula is stationary.

We shall see later that stationary formulas form a sufficiently large part of all positive formulas.

The following is a version of the Transitivity Theorem (cf. [m0],1C.3).

Theorem 1.5. Let $\varphi\left(x, y, z_{1}, \ldots, Z_{k}, z\right)$ be a formula positive and stationary in all its class variables. If X_{1}, \ldots, X_{k} are stationary inductive classes, $\varphi_{0}(x, y, z) \equiv \varphi\left(x, y, X_{1}, \ldots, X_{k}, Z\right), I_{\varphi_{0}}$ is a fixed point in X_{1}, \ldots, X_{k} and $X=I_{\varphi_{0}^{\prime}}^{\prime \prime}\{a\}$ for some a, then X is stationary inductive.

Proof. To simplify the argument suppose $k=1$. The treatment for $k>1$ is quite the same. Since X_{1} is stationary inductive. there is a positive stationary formula $\rho_{1}\left(x_{1}, y_{1}, Z\right)$ and a constant b_{1} such that $X_{1}=I_{\mathscr{Y}}^{\prime \prime}\left\{b_{1}\right\}$. We shall combine the two inductions defined by ψ_{1} and into a single induction defined by a positive and stationary formula $\rho\left(x, y, x_{1}, y_{1}, t, Z\right)$. Consider arbitrary constants $x^{*}, y^{*}, x_{1}^{*}, y_{1}^{*}$, and put:
$S^{\left(x, y_{1}, y_{1}, t, z\right) \equiv} \equiv$
$\left[t=1 \wedge \rho_{1}\left(x_{1}, y_{1},\left\{\left\langle x_{1}^{\prime}, y_{1}^{\prime}\right\rangle ;\left\langle x^{*}, y^{*}, x_{1}^{\prime}, y_{1}^{\prime}, 1\right\rangle \in Z\right\}\right)\right] v$
$\left[t=2 \wedge \Phi\left(x, y,\left\{x_{1}^{\prime} ;\left\langle x, y, x_{1}^{\prime}, b_{1}, 1\right\rangle \in Z,\left\{\left\langle x^{\prime}, y^{\prime}\right\rangle ;\left\langle x^{\prime}, y^{\prime}, x_{1}^{*}, y_{1}^{*} 2\right\rangle \in Z\right\}\right)\right]\right.$.
By 1.2ρ is positive and we claim that:
i) ρ is stationary,
ii) $\langle x, y\rangle \in I_{\varphi_{0}} \longleftrightarrow\left\langle x, y, x_{1}^{*}, y_{1}^{*}, 2\right\rangle \in I_{y}$

To see i) put
$\left\{\left\langle x_{1}^{\prime}, y_{1}^{\prime}\right\rangle ;\left\langle x^{*}, y^{*}, x_{1}^{\prime}, y_{1}^{\prime}, 1\right\rangle \in z\right\}=z^{1}$,
$\left\{x_{1}^{\prime} ;\left\langle x, y, x_{1}^{\prime}, b_{1}, l\right\rangle \in z\right\}=z^{2}$,
$\left\{\left\langle x^{\prime}, y^{\prime}\right\rangle ;\left\langle x^{\prime}, y^{\prime}, y_{1}^{*}, y_{1}^{*}, 2\right\rangle \in Z\right\}=z^{3}$.
Then,
$\rho(t, z)=\left[t=1 \wedge \varphi_{1}\left(Z^{1}\right)\right] \vee\left[t=2 \wedge \rho\left(z^{2}, z^{3}\right)\right]$.
Let $\left(Y_{n}\right)_{n \in F N}$ be an increasing sequence of set-definable clas-
ses. Then so are the sequences $\left(Y_{n}^{i}\right)_{n}, i=1,2,3$. Then,
$\rho\left(t, \bigcup_{n}^{U} Y_{n}\right) \equiv\left[t=1 \wedge \rho_{1}\left(\sim_{n}^{r} \gamma_{n}^{1}\right)\right] \vee\left[t=2 \wedge \varphi\left(u_{n}^{u} Y_{n}^{2}, U_{n} Y_{n}^{3}\right)\right]$,
and since φ_{1}, φ are stationary in all variables, we get $\rho\left(t, \cup_{n} Y_{n}\right) \longleftrightarrow(\exists k, m, n \in F N)\left[t=1 \wedge \varphi_{1}\left(Y_{k}^{1}\right)\right] \vee\left[t=2 \wedge \varphi\left(Y_{m}^{2}, Y_{n}^{3}\right)\right]$, whence, by monotonicity,

$$
\rho\left(t, \omega_{n} Y_{n}\right) \longleftrightarrow(\exists n \in F N) \varsigma_{\rho}\left(t, Y_{n}\right) .
$$

The essential part of the theorem is, of course, claim ii)
and this is just the content of the Combination Lemma 1C. 2 of
[MO]. From ii) we have
$x \in X \leftrightarrow\langle x, a\rangle \in I_{\mathscr{f}_{0}} \leftrightarrow\left\langle x, a, x_{1}^{*}, y_{1}^{*}, 2\right\rangle \in I_{\rho}$,
hence X is stationary inductive.

Remarks. 1) If φ_{0} in the preceding theorem does not contain class variables, then the condition that $I_{f_{f}}$ be a fixed point is obviously satisfied, hence for any formula $q\left(x, x_{1}, \ldots, x_{k}\right)$ with x_{1}, \ldots, x_{k} as in the theorem, the class $\left\{x ; f\left(x, x_{1}, \ldots, x_{k}\right)\right\}$ is stationsry inductive.
2) It follows from the previous remark that, given $\varphi\left(x, X_{1}, \ldots, X_{k}, Z\right)$ with X_{1}, \ldots, X_{k} as in the theorem, I_{φ}^{l} is stationary inductive and we see inductively that all I_{φ}^{n} are inductive. Thus, by $1.4 \varphi\left(x, x_{1}, \ldots, X_{k}, I_{\varphi}\right) \leftrightarrow x \in I_{\varphi}$, that is, I_{φ} is a fixed point in X_{1}, \ldots, X_{k}. This shows that the requirement for $I_{\mathscr{C}_{0}}$ in the preceding theorem to be a fixed point in X_{1}, \ldots, X_{k} is superfluous.

The reason that we use positive formulas instead of merely monotone ("up hereditary" in the terminology of Mlček, [M.l) is that the former admit a canonical form. Namely the following holds:

Theorem 1.6. Let $\varphi(Z)$ be a positive formula. Then there is a quantifier-free set-formula $(\bar{z}, u) \equiv \theta\left(z_{1}, \ldots, z_{n}, u\right)$ and a string $\bar{Q} \equiv Q_{1} \ldots Q_{n}$ of quantifiers such that

$$
\varphi(z) \equiv\left(Q_{1} z_{1}\right) \ldots\left(Q_{n} z_{n}\right)(\forall u)\left[\Theta\left(z_{1}, \ldots, z_{n}, u\right) v u \in Z\right]
$$

for all $Z \neq V$, or briefly,

$$
(*) \quad \varphi(Z) \equiv(\bar{Q} \bar{z})(\forall u) \quad(\theta(\bar{z}, u) v u \in Z),
$$

for all $Z \neq V$.

Proof. [MO., 4B.1.

Remark. The restriction $Z \neq V$ is for the case that $\varphi(V)$ is false, since the right hand side of (*) is always true for $Z=V$. However, given φ, we can put $\psi(x, z) \equiv \varphi(x, z) \vee(\forall y)(y \in Z)$. If φ is positive and stationary then so is $\psi, I_{\varepsilon \rho}=I_{\psi}$ and, in addition, $(\forall x) \psi(x, V)$ is true. Thus studying fixed points we may always assume that (*) holds for all Z.
§ 2. Some results on fixed points. In the proof of the next lemma we just use the fact that for every set-definable class X and for every Σ-class $\bigcup_{n} Y_{n}$,

$$
X \subseteq \cup_{n} Y_{n} \leftrightarrow(\exists n)\left(X \subseteq Y_{n}\right)
$$

Lemma 2.1. Let $\varphi(x, Z)$ be positive. If φ has a canonical form

$$
(\bar{Q} \bar{z})(\forall u)(Q(x, \bar{z}, u) v u \in Z),
$$

where $\bar{Q}=\emptyset$, or \forall^{k}, or \exists^{k}, or $\exists^{k} \forall^{k}$, then φ is stationary.
Proof. Put $R=\{\langle x, \bar{z}, u\rangle ; \neg(\hat{Q}!x, z, u)\}$, and let $R^{\prime \prime}(x, \bar{z})=\{u ;\langle x, \bar{z}, u\rangle \in R\}$. Then
(1) $\quad \varphi(x, Z) \equiv(\bar{Q} \bar{z})\left(R^{\prime \prime}(x, \bar{z}) \subseteq Z\right)$.

Let us show for example the case $Q=\forall^{k}$. The rest is shown similarly. Let $\left(Y_{n}\right)_{n}$ be an increasing sequence of set definable classes. Then:
$\varphi\left(x, \bigcup_{n}^{\prime} Y_{n}\right) \leftrightarrow\left(\forall z_{1} \ldots z_{k}\right)\left(R^{\prime \prime}\left(x, z_{1}, \ldots, z_{k}\right) \subseteq U_{n} Y_{n}\right) \leftrightarrow$ $U\left\{R^{\prime \prime}\left(x, z_{1}, \ldots, z_{k}\right) ; z_{1}, \ldots, z_{k} \in V\right\} \subseteq U_{n} Y_{n} \leftrightarrow$
(ヨn) $\left[\cup\left\{R^{\prime \prime}\left(x, z_{1}, \ldots, z_{k}\right) ; z_{1}, \ldots, z_{k} \in V\right\} \in Y_{n}\right] \leftrightarrow$
$(\exists n)\left(\forall z_{1} \ldots z_{k}\right)\left(R^{\prime \prime}\left(x, z_{1}, \ldots, z_{k}\right) \subseteq Y_{n}\right) \longleftrightarrow(\exists n) \varphi\left(x, Y_{n}\right)$.
Let us call an existential quantifier in the prefix ($\bar{Q} \bar{z}$) of the canonical form ($*$) inessential if there is some set-definable Skolem-function for it. The following is obvious:

Lemma 2.2. If the prefix ($\bar{Q} \bar{z}$) of the canonical form of φ after the extraction of all inessential quantifiers is as in Lemma 2.1, then φ is stationary.

The last two lemmas imply that the simplest positive non-stationary formula cannot be less complicated than the formula $\left(\forall z_{1}\right)\left(\exists z_{2}\right)\left(R "\left(x, z_{1}, z_{2}\right) \subseteq Z\right)$, where $\left(S z_{2}\right)$ is not inessential.

However we do not know whether there exist non-stationary
positive formulas.
The next result restricts further the possible φ for which there is not a fixed point.

Lemma 2.3. If ($\left.u_{n}\right)_{n \in F N}$ is an increasing sequence of sets, then every positive formula is stationary w.r.t. $\left(u_{n}\right)_{n \in F N}$.

Proof. Let $\varphi(x, Z)$ be positive. Taking a canonical form of φ and defining R as in 2.1 , we have

$$
\varphi(x, Z) \equiv(\bar{Q} \bar{z})\left(R^{\prime \prime}(x, \bar{z}) \subseteq Z\right) .
$$

Then, $\varphi\left(x, \cup_{m} u_{n} \equiv(\bar{Q} \bar{z})\left(R "(x, \bar{z}) \subseteq \cup_{u_{n}}\right) \leftrightarrow(\bar{Q} \bar{z})(\exists n)\left(R "(x, \bar{z}) \subseteq u_{n}\right)\right.$. Put $R^{\prime \prime}(x, \bar{z}) \subseteq u_{n} \equiv \psi\left(x, z, u_{n}\right)$.
ψ is positive in u_{n} and it suffices to show that for every setformula $\psi(x, \bar{z}, w)$, positive in w and every increasing sequence $\left(u_{n}\right)_{n \in F N}$,

$$
\left.(\bar{Q} \bar{z})(\exists n) \psi\left(x, \bar{z}, u_{n}\right) \leftrightarrow(\exists n) \bar{Q} z\right) \psi\left(x, \bar{z}, u_{n}\right) .
$$

Suppose ψ and $\left(u_{n}\right)_{n \in F N}$ are given. Prolong the sequence $\left(u_{n}\right)_{n \in F N}$ to a set $\left\{u_{\beta} ; \beta \leq \alpha\right\}$ such that $u_{\beta} \leq u_{\gamma}$ for $\beta \leqslant \gamma$. If the string \bar{Q} has length m, the above equivalence is shown in m steps by pulling at the step \boldsymbol{x} the quantifier ($\exists \mathrm{n}$) to the front of the quantifier Q_{m-k+1}. If $Q_{m-k+1}=\exists$ this is trivially possible. Thus it suffices to show that
$(+) \quad(\forall z)(\exists n) \sigma\left(x, z, u_{n}\right) \leftrightarrow(\exists n)(\forall z) \sigma^{\prime}\left(x, z, u_{n}\right)$
for 6 positive in U_{n}.
Let $F: V \rightarrow N$ be a function such that
$F(z)=\beta \longleftrightarrow E\left(x, z, u_{\beta}\right) \wedge(\forall \gamma<\beta) \neg \varnothing\left(x, z, u_{\gamma}\right)$.
The direction " \leftarrow " of (+) is obvious.
Now, if the left hand-side of (+) is true, then F is (set-) defined on V and $F " V=F N$. Therefore $F " V$ is finite. It follows that $(\forall z)(\exists n) \sigma\left(x, z, u_{n}\right) \leftrightarrow(\exists n)(\forall z)\left[\sigma^{\prime}\left(x, z, u_{1}\right) \vee \ldots \vee \sigma\left(x, z, u_{n}\right)\right]$.

Since $\tilde{\sigma}$ is positive and $\left(u_{n}\right)_{n \in F N}$ is increasing, we get
$\sigma\left(x, z, u_{1}\right) \vee \ldots \vee \sigma\left(x, z, u_{n}\right) \longleftrightarrow \sigma\left(x, z, u_{n}\right)$
and the proof is complete.
A positive formula $\varphi(x, z)$ will be called reversible, if there is some positive $\psi(x, Z)$ such that $\Gamma_{\psi}\left(\Gamma_{\varphi}(Z)\right)=Z$ for every class $Z . \psi$ is called a reverse of φ.

For example the formula

$$
\psi(x, Z) \equiv(\exists y)(x \in y \wedge y \in Z)
$$

with operator $\Gamma_{\psi}=U$ is a reverse of the formula

$$
\varphi(x, Z) \cong x \subseteq Z
$$

with operator P (the power-set operator), since $U P(Z)=Z$.

Lemma 2.4. If I_{φ} is a fixed point and $\varphi(x, Z)$ is a stationnary in $\left(I_{\varphi}^{n}\right) n_{E F N}$ and reversible positive formula, then $\Gamma_{\psi}\left(I_{\varphi}\right)$ is a fixed point.

Proof. Let $\sigma(x, z)$ be a reverse of ψ anis put $\rho(x, z)=\psi\left(x, \Gamma_{\varphi} 1_{\sigma}(z)\right)$.
By 1.2ρ is positive. We show that $I_{\rho}^{n}=\Gamma_{\Psi}\left(I^{n}\right)$ for $n \geq 1$.
First notice that $\Gamma_{\sigma}(\emptyset)=\emptyset$ because $\Gamma_{\tilde{\alpha}} \Gamma_{\psi}(\emptyset)=\emptyset$ and σ
$\leq \Gamma_{\psi}(\theta)$ and $\Gamma_{\tilde{\theta}}(\theta) \leq \Gamma_{\sigma} \Gamma_{\psi}(\theta)$. Hence $I_{\theta}^{1}=\left\{x ; \psi\left(x, \Gamma_{\varphi} \Gamma_{\tilde{\theta}}(\theta)=\right.\right.$
$=\left\{x ; \psi\left(x, \Gamma_{\varphi}(D)=\left\{x ; \psi\left(x, I_{\varphi \rho}^{1}\right)=\Gamma_{\psi}\left(I_{\varphi \varphi}^{1}\right)\right.\right.\right.$.
Suppose $I_{\oint}^{n}=\Gamma_{\psi \psi}\left(I_{\varphi f}^{n}\right)$. Then
$I_{\rho}^{n+1}=\Gamma_{\rho}\left(I_{\rho}^{n}\right)=\Gamma_{\psi} \Gamma_{\varphi} \Gamma_{\gamma}\left(\Gamma_{\rho}^{n}\right)=\Gamma_{\psi} \Gamma_{\varphi} \Gamma_{\sigma} \Gamma_{\psi}\left(I_{\varphi}^{n}\right)=\Gamma_{\psi} \Gamma_{\varphi}\left(I_{\varphi}^{n}\right)=$ $=\Gamma_{\psi^{\prime}}\left(I_{\varphi}^{n+1}\right)$.
Since ψ is stationary, we have

It remains to show that $\Gamma_{c \rho}\left(I_{j \rho}\right)=I_{p o}$.
$\Gamma_{\rho}\left(I_{\rho}\right)=\Gamma_{\psi} \Gamma_{\varphi} r_{\varphi}^{\prime}\left(I_{\rho}\right)=\Gamma_{\psi} \Gamma_{\varphi} \Gamma_{\theta} \Gamma_{\psi}\left(I_{\varphi}\right)=r_{\psi} \Gamma_{\varphi}\left(I_{\varphi}\right)=\Gamma_{\psi}\left(I_{\varphi}\right)=I_{\rho}$
(If moreover \oint, σ are stationary, then ρ is stationary.)

Corollary 2.5. If I_{φ} is a fixed point and F is a 1-1 setdefinable function with $I_{\varphi} 5 \operatorname{dom}(F)$, then $F^{\prime \prime} I_{\varphi}$ is a fixed point. If I_{φ} is stationary, $F^{\prime} I_{\varphi}$ is stationary.

Proof. Consider the formula
$\psi(x, Z) \equiv(\exists y \in Z)(F(y)=x)$. Clearly $\Gamma_{\psi}^{1}(Z)=F " Z$ for
$Z \subseteq \operatorname{dom}(F), \psi$ is stationary and the formula
$\sigma(x, Z) \equiv(\exists y \in Z)(F(x)=y)$ which is stationary, is a reverse for ψ. The conclusion follows from 2.4.

Corollary 2.6 Every countable class is a stationary fixed point.

Proof. Since for any countable class X there is a 1-1 setfunction f such that $f " F N=X$, it suffices by 2.5 to prove that FN is a stationary fixed point.

Let $<$ be the ordering of natural numbers and put

$$
\varphi(x, Z)=(\forall u)(u<x \rightarrow u \in Z) .
$$

Clearly φ.is positive, stationary and $I_{\varphi}^{n}=n$.
We shall now prove that every countable union of sets (E-semisets) or cosets is a fixed point. First a lemma.

Lemma 2.7. Let $\left(u_{n}\right)_{n \in F N}$ be a sequence of sets. Then there is an increasing sequence $\left(v_{n}\right)_{n \in F N}$ such that ${ }_{n}^{\prime} u_{n}=v_{n} v_{n}$ and the sequence of natural numbers $\left|v_{n+1}-v_{n}\right|$ is either increasing or decreasing (iul is the unique $\alpha \in N$ such that $u \hat{\approx} \alpha$).

Proof. Suppose, without loss of generality, that $\left(u_{n}\right)_{n \in F N}$ is increasing. Then either
(1) $(\exists n)(\forall m>n)(\exists k>m)\left(\left|u_{m}-u_{n}\right| \leq\left|u_{k}-u_{m}\right|\right)$,
or the negation of (1) is true:
(2) $(\forall n)(\exists m>n)(\forall k>m)\left(\left|u_{k}-u_{m}\right|<\left|u_{m}-u_{n}\right|\right)$.

In the first case we can find a subsequence $\left(u_{n_{k}}\right)_{k}=\left(v_{k}\right)_{k}$, such that $\left|v_{k+1}-v_{k}\right|$ is increasing and in the second case we find a subsequence $\left(v_{k}\right)_{k}$. such that $\left|v_{k+1}-v_{k}\right|$ is decreasing.

Theorem 2.8. For every sequence $\left(u_{n}\right)_{n \in F N}, \cup_{n} u_{n}$ is a stationary fixed point.

Proof. Case 1. Suppose there is an increasing sequence $\left(v_{n}\right)_{n}$ with $\left|v_{n+1}-v_{n}\right|$ increasing such that $\bigcup_{n} u_{n}=\bigcup_{n} v_{n}$. Extend $\left(v_{n}\right)_{n}$ to a set $\left\{v_{\beta} ; \beta \leqslant \alpha\right\}$ with $\left|v_{\beta+1}-v_{\beta}\right|$ increasing.

For every $\beta, 2 \leq \beta \leq \alpha$, let g_{β} be the surjection from v_{β} -- $v_{\beta-1}$ onto $v_{\beta-1}-v_{\beta-2}$ which is least in the usual set-definable ordering of V. Let also g_{1} be the least surjection from v_{1} onto v_{0}. The correspondence $\beta \mapsto g_{\beta}$ is set-definable and put $f_{\beta}=$ $=U\left\{g_{\gamma} ; \gamma \leqslant \beta\right\}$.
Then f_{β} is a function from v_{β} onto $v_{\beta-1}$. Let $f=f_{\alpha}$. It is easily seen that $f P v_{\beta}=f_{\beta}$ and $f^{-1} v_{\beta}=v_{\beta+1}$. (Some Venn-diagrams illustrate best the situation.)

If we put

$$
\varphi(x, Z)=x \in v_{0} y(\exists y \in Z)(f(x)=y)
$$

then φ is stationary and $I_{\varphi}^{n+1}=v_{n}$, hence $\bigcup_{n} u_{n}=U_{n} v_{n}=I_{\varphi}$.
Case 2. Let again ${\underset{n}{\prime}}_{\sim}^{u} u_{n}=w_{n} v_{n}$ where $\left|v_{n+1}-v_{n}\right|$ is, decreasing. Extend as before $\left(v_{n}\right)_{n}$ to a set $\left\{v_{\beta} ; \beta \leqslant \alpha\right\}$. Let g_{β} : $: v_{\beta-1}-v_{\beta-2} \rightarrow v_{\beta}-v_{\beta-1}$ be least surjections for $2 \leq \beta \leq \infty$, while g_{1} is the identity on v_{0}. Put $f_{\beta}=U\left\{g_{\gamma} ; \gamma \leq \beta\right\}$; then f_{β} maps $v_{\beta-1}$ onto $v_{\beta}-\left(v_{1}-v_{0}\right)$. Put $f=f_{\alpha}$. Then $f r v_{\beta}=f_{\beta+1}$ for $\beta<\alpha$. Consider the formula

$$
\varsigma(x, Z) \equiv x \in v_{1} \vee(\exists y \in Z)(f(y)=x)
$$

Again ρ is stationary and $I_{\varphi}^{n}=v_{n}$ for $n \geq 1$.
A completely analogous result holds for sequences of cosets
$\left(V-u_{n}\right)_{n \in F N}$ or, more generally, $\left(X-u_{n}\right)_{n \in F N}$, where X is set-definable. It is evident that Lemma 2.7 is equally true if we substitute "decreasing" for "increasing" and \cap for U. Then, given a set-definable X ard a sequence $\left(u_{n}\right)_{n}$, such that

$$
\ldots \subseteq u_{1} \subseteq u_{0} \subseteq x
$$

with $\left|u_{n}-u_{n+1}\right|$ either increasing or decreasing, it is easy to construct a set-definable function f with $\operatorname{dom}(F) \subseteq X$ and such that either $F^{\prime \prime}$ or $F^{-1}{ }^{\prime \prime}$ defines $X-u_{n+1}$ by means of $X-u_{n}$. Therefore:

Lemma 2.9. If X is set-definable and $\left(u_{n}\right)_{n}$ is any sequence of sets, then $\bigcup_{n}\left(X-u_{n}\right)$ is a stationary fixed point.
§ 3. All Σ-classes are inductive. Let $F i x$, Ind, Σ denote respectively the (codable) classes of fixed points, inductive classes and Σ-classes. By 1.3

Fix \subseteq Ind $\subseteq \Sigma$.
We shall prove in this section that

Theorem 3.1. $\quad \Sigma=$ Ind.
This will be done through a number of lemmas.

Lemma 3.2. If $S d_{V}$ has a code $\langle K, S\rangle$ such that the class S is stationary inductive, then $\Sigma=$ Ind.

Proof. Let $\langle K, S\rangle$ be a code of $S d_{V}$ such that S is stationary inductive and let $x=\bigcup_{m} X_{n}$ be a Σ-class. Then evidently there s a countable $Y \cong K$ such that

$$
\left\{x_{n} ; n \in F N\right\}=\left\{S^{\prime \prime}\{y\} ; y \in Y\right\},
$$

hence we get

$$
x \in X \longleftrightarrow(\exists y \in Y)(x \in S "\{y\})
$$

The formula ($\exists y \in Y)\left(x \in S^{\prime \prime}\{y\}\right)$ contains the class-parameters Y, S in positive stationary positions and Y (by 2.6) as well as S (by assumption) are stationary inductive. It follows from the Transitivity Theorem 1.5 that X is stationary. Thus $\Sigma \subseteq$ ind.

Take a Gödelization of the language $F S L_{V}$, i.e. of all the finite set-formulas, as a mapping $G: F S L_{V} \rightarrow V$ defined as follows:

1) $G\left(x_{n}\right)=\langle 0, n\rangle$, for the set variables $x_{n}, n \in F N$.
2) $G(x)=\langle 1, x\rangle$, for the set-constants $x \in V$.
3) $G(t=s)=\langle 2, G(t), G(s)\rangle$, for constants or variables t, s.
4) $G(t \in s)=\langle 3, G(t), G(s)\rangle$ " " " "
5) $G(\neg \varphi)=\langle 4, G(\varphi)\rangle$.
6) $G(\varphi \wedge \psi)=\langle 5, G(\varphi), G(\psi)\rangle$.
7) $G\left(\left(\exists x_{n}\right) \varphi\right)=\langle 6, n, G(\varphi)\rangle$.

We say that $G(\varphi)$ is the Gödel-set of φ.

Lemma 3.3. The class $\mathrm{Fml}=\{x ; x$ is the Gödel-set of a set formula\} is stationary inductive.

Proof. Let us denote by AFml the class of (Gödel-sets of) atomic formulas. Then, from the definition of G we have $x \in \operatorname{AFml} \longleftrightarrow(\exists m, n \in F N)(\exists y, z)[x=\langle 2,\langle 0, m\rangle,\langle 0, n\rangle\rangle \vee$ $x=\langle 3,\langle 0, m\rangle,\langle 0, n\rangle\rangle \vee x=\langle 2,\langle 0, m\rangle,\langle 1, y\rangle\rangle \vee x=\langle 3,\langle 0, m\rangle,\langle 1, y\rangle\rangle \vee$ $x=\langle 2,\langle 1, y\rangle,\langle 1, x\rangle\rangle \vee x=\langle 3,\langle 1, y\rangle,\langle 1, x\rangle\rangle]$.

It is clear that the defining formula is positive and stationary in FN and FN is stationary inductive, thus AFml is stationary inductive by 1.5 .

Next,
$x \in \operatorname{Fml} \leftrightarrow(\Xi f)(\exists n \in F N)(\operatorname{dom}(f)=n+1 \wedge f(n)=x \wedge$
$(\forall k<n) I f(k) \in \operatorname{AFml} \vee(\exists 1, m<k)(f(k)=\langle 4, f(1)\rangle \vee f(k)=$
$=\langle 5, f(1), f(m)\rangle) \vee(\exists i \in F N)(\exists j<k)(f(k)=\langle 6, i, f(j)\rangle) j$.
Again the defining formula is positive and stationary in

FN, AFml while the latter are stationary inductive, hence Fml is stationary inductive.

Consider now the predicate of satisfaction Sat (x, g) expressing the fact: "x is the Gödel-set of a set-formula φ, g is a sequence of valuations for the variables $x_{n}, n \in F N$, and φ is true substituting $g(i)$ for its free variable $x_{i} "$.

We fix a number $\alpha_{0} \in N-F N$ and let
$A=\left\{g ; \operatorname{dom}(g)=\propto_{0} \wedge(\exists n \in F N)(\forall k>n)(g(k)=0)\right\}$.
Clearly A is stationary inductive. For $g \in A$ write $g=\varphi$ for the fact that φ is true w.r.t. the valuation g.

The following is a version of 5.3.2 of [MO].

Lemma 3.4. The class Sat $=\{\langle x, g\rangle ; \operatorname{Sat}(x, g)\}$ is stationary inductive.

Proof. Define the predicate Val $(x, g ; t)$ by: $\operatorname{Val}(x, g, t) \equiv(x$ is the Gödel-set of a formula $\varphi) \wedge g \in A \wedge$ $A[(t=0 \wedge g \vDash \varphi) \vee(t=1 \wedge g \Leftarrow \neg \varphi)]$.

Then obviously

$$
\text { Sat }(x, g) \longleftrightarrow \operatorname{Val}(x, g, 0),
$$

and it suffices to prove that there is a formula ρ positive and stationary in all its class parameters, the latter being stationary inductive, such that I_{ρ} is a fixed point and

$$
\operatorname{Val}(x, g, t) \leftrightarrow\langle x, g, t\rangle \in I_{j} .
$$

Let $\operatorname{AVal}(x, g, t) \equiv x \in A F m l \wedge \operatorname{Val}(x, g, t)$.
Then:
$A \operatorname{Val}(x, g, t) \longleftrightarrow g \in A \wedge(\exists m, n \in F N)(\exists y, z)$
$\{x=\langle 2,\langle 0, m\rangle,\langle 0, n\rangle\rangle \wedge[(t=0 \wedge g(m)=g(n)) \vee(t=1 \wedge g(m) \neq g(n))]\} \downarrow$ $f x=\langle 3,\langle 0, m\rangle,\langle 0, n\rangle\rangle$ ^ $[(t=0 \wedge g(m) \in g(n)) \vee(t=1 \wedge g(m) \neq g(n))]\} \vee$ $\{x=\langle 2,\langle 0, m\rangle,\langle 1, y\rangle\rangle \wedge[(t=0 \wedge g(m)=y) \vee(t=1 \wedge g(m) \neq y)]\} \vee$

```
{x=\langle3,\langle0,m\rangle,\langle1,y\rangle\rangle^[(t=0^g(m) E y)\vee (t=1^g(m)&y)]}\checkmark
{x=\langle2,\langle1,y\rangle,\langle1,z\rangle\rangle^[(t=0^y=z)\vee(t=1^y\not=z)]}\vee
{x=\langle3,\langlel,y\rangle,\langle1,z\rangle\rangle^[(t=0^y\inz)\vee (t=1^y&z)]}
    Then the class AVal = {\langle x,g,t\rangle; AVal( }x,g,t)} is stationary in-
ductive since Aval(x,g,t) is positive stationary in A, FN.
    Define the function F on V V }\mp@subsup{}{}{\mp@subsup{\alpha}{0}{\prime}}\times\mp@subsup{\alpha}{0}{}\timesV\mathrm{ as follows:
    F(g,\beta,u)=(g-{\langle\beta,g(\beta)\rangle}) \cup{< \beta,u\rangle}
i.e., F(g, \beta,u) is the function resulting from g if we replace its
value at }\beta\mathrm{ by u. Now define the required formula }\rho\mathrm{ as follows:
\rho(x,g,t,z)=x\inFml^g\inA^{\langlex,g,t>\in AValv
(\existsy)[(x=\langle4,y\rangle^t=0^\langley,g,l\rangle\inZZ)\vee
    (x = \langle4,y\rangle^t=1^\langley,g,0\rangle\in Z)]\vee
(\exists y,z) [(x=\langle5,y,z\rangle^t=0^\langley,g,0\rangle\inZ^\langlez,g,0\rangle\inZ)\vee
    (x=\langle S,y,z\rangle\wedget =1^(\langley,g,1\rangle\inZ\vee\langlez,g,1\rangle\inZ)
```

$(\exists k \in F N)(\exists y)[(x=\langle 6, k, y\rangle \wedge t=0 \wedge(\exists z)(\langle y, F(g, k, z), 0\rangle \in Z)) \vee$
$(x=\langle 6, k, y\rangle \wedge t=1 \wedge(\forall z)(\langle y, F(\Omega, k, z), 1\rangle z))]\}$.
We can summarize ρ as follows:
$\rho(x, g, t, Z) \equiv x \in F m l \wedge g \in A \wedge[\langle x, g, t\rangle \in A V a l \vee$
$(\exists k \in F N)(\exists \bar{y})(\forall \bar{z}) \sigma(t, x, g, \bar{y}, \bar{z}, z)]$,
where 6 is positive in Z and contains only inessential existential quantifiers. It follows from 2.1 and 2.2 that ρ is stationary in Z. That ρ is positive stationary in Fml, A, AVal, FN is evident. Also all these class-parameters are stationary inductive as we proved earlier. We must also prove that induction by ρ closes in ω steps but this is clear from the remarks following Th. 1.5.

It remains to see that

$$
\operatorname{Val}(x, g, t) \leftrightarrow\langle x, g, t\rangle \in I_{\rho^{\circ}}
$$

Direction $" \rightarrow$ " is shown by induction on the length of the formula x, while by induction on n we show that

$$
\begin{aligned}
\langle x, g, t\rangle \in I_{\rho}^{n} & \rightarrow \operatorname{Val}(x, g, t) . \\
& -32-1
\end{aligned}
$$

Proof of Theorem 3.1. The pair 〈fml,Sat〉 is a code for Sd since for every $X \in S d_{V}$ such that $X=\{x ; \varphi(x)\}$, we have $x=\{g ; \operatorname{Sat}(x, g)\}=\operatorname{Sat}\{x\}$, where x is the Gödel-set of φ. From 3.4 it follows that the code is inductive, and by $3.2 \Sigma=$ Ind. References
[M] J. MLČEK: Approximations of Σ-classes and Π-classes, Comment. Math. Univ. Carolinae 20(1979), 669-679.
[MO] Y. MOSCHOVAKIS: Elementary induction on abstract structures, North-Holland, 1974.
[V] P. VOPĚNKA: Mathematics in the Alternative Set Theory, Teubner Texte, Leipzig, 1979.

Department of Mathematics, University of Thessaloniki, Thessaloniki, GREECE

