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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,1 (1986)

COUNTABLE INDUCTIVE DEFINITIONS IN AST
A. TZOUVARAS

Abstract: We transfer the notions of inductive definition,
fixed point _and inductive class in Alternative Set Theory and stow
that every = -semiset is a fixed point and every = -class is in-
ductive.

Key words: Inductive definition, fixed point, inductive
class, XITernative Set Theory, X -class. ’

Classification: 02K10, 02B99

The main source of reference is [MO]. In Section 1 we adapt
key definitions and cite basic facts from [M0Ol. In Section 2 we
prove the results which seem to be specific for the context of
AST.. In Section 3 we show that all Z -classes are inductive.

We assume the reader s familiarity with all basic concepts

of the Alternative Set Theory as exposed e.g. in [V].

§ 1. Adapted definitions and facts. Let ¢(Z) be a normal

formula of FLV, Z being among the class variables of ¢ . We say
that ¢ is positive in Z, or simply ¢ is positive (if Z is the
only class variable of ¢ ), if ¢ belongs to the collection
%(Z) of formulas defined as follows:

@D(Z) is the smallest class of formulas such that:
(i) If Z does not occur in ¢ , then P & §p(2),

(ii) If t is a constant or variable, then t& Z is in d)p(Z).
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(iii) If ¢ , ¥ are in QP(Z) and x is any (set) variable, then

oAy, gvy , (e , (Yx)e are in ¢p(Z).

The main property of positive fermulas is monotonicity.

Lemma 1.T. If @ (Z) is positive in Z, then for any classes

X, Y, XeY and ¢ (X) imply @(Y).

Proof. By induction through the steps of the previous de-

finition.

If the only class variable of 9(.x,2) is Z, the enly set va-
riable is x and ¢ is positive in Z, then we can adjoin te ¢ an
operator F'? sending the class X to the class

_ Pq,(x) = dx; 9 (,X)}.
l’“’ is monotone, i.e.
XgY — Ty (xX) g P?(Y).
( Q’ is an informal object and we use it just to simplify the
notation in some cases.) If & contains only set-definable class
parameters, then Qy sends every set-definable class to a set-de-

finable class.

Lempa 1.2. If <(x,Z) and w (x,Z) are positive, then
@ (x, r'q(Z)) is positive in Z.

Proof. By induction.en the length of ¢ .

Given a pesitive ¢(x,Z) we define an increasing sequence of

classes G;)neFN as follows:

o _
I?—B

n+l _ ny _ . n
Ig = r'q(I(’) -{X,?(X,I?)'!-
This is a typical inductive definition which could probably

be coentinued beyend the finite ordinals.
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Here, howevVer, we are interested in countable inductions,
that is inductions which terminate in « steps. These are defined

s . ny n
by positive fur!f\ulas o such that F;’ (%JI?) = %")1‘9 .
Let us put

I(f = U{Iq':; ne Fnj

for every positive g -

We say that I? is a fixed point if P contains no class pa-

rameters and P?(Iq) = Ig"

If 9 (Z) is positive in Z and X is a class, we say that the

parsmetsr X is positive in @ (X).

If all the parameters ><1,><2,...,>(k of @ are positive and

_ ’ . . .
l"q(Iq) I,f then we say that I? is a fixmd peint in
X

X X

10X Xy

A class X is inductive (inductive in Xl,...,Xk) if for some

fixed point (fixed point in XiseeonX ) I9 and seme set parameter

a,

XeXe> < x,a> €1 e»xel&{a}.

¢

Lemma 1.3. (i) Every fixed point is inductive. (ii) Every
inductive class is a Z-class. (iii) Every set-definable class

is a fixed point.

Proaf. (i) Let I? be a fixed point in Xl,,..,Xk and let a

be a parameter. Put

v (x,y,2) = @ (x,2"{al)Ay = a.
If &(x,2) = {x,a>&Z, then clearly 6 1is positive and Z"{a} =

fe(Z). By 1.2 y is positive and we can see inductively that
= 17 = i i i 2
y Iqx{a’l, whence I‘l’ I‘f.x{a}, I‘F is a fixed point and IS"
_ N

= Iw{a}.

(ii) Let I, ®e a fixed point. If 1; is set-definable then
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obviously I‘;*l = {x; cs:(x,ln)} is set-definable. Similarly, for an,
" "
a I?',‘{a§ =(#I‘2 {a} and I;

true, however, for classes inductive in other classes.)

fa} are set-definable. (This is no longer

(iii) If X is set-definable, put
@(x,I) = xe X.

Then I;' = I? = X for nz1.

Since we are interested in countable inductions, we have to
deal exclusively with positive formulas leading to such inductiong

Let @(Z) be positive and let (Yn) y be an increasing seqy.

nef
ence of set-definable classes. We say that ¢ is stationary in Z

w.r.t. (Y ey if
@(Y Y )e> (IneFN) (Y ).

We say that ¢ 1is stationary in 7 if it is stationary.w.r.t,

any such sequence.

Lemma 1.4. Let <y(Z) be positive and stationary. Then for e-
very increasing sequence of inductive (or, more generally, = -)
classes (Dn)n’

@D )e (Ane FN) (D).

_ m
Proof. Suppose Dn’ n& FN, are = -classes and Dn = HDn . Let
(Ek)keFN be an enumeratiqn of all Dg, m,ne FN. Define two functi-
ons Hl' H2 from FN to FN by recursion as follows:
Hl(O) = H2(0) = 0, and Hl(k+1) = least m such that there is an n

such that
e ot
kel¥ O (k) = D
Hy(k+1) = least n such that
H, (k)
2 n
Ee1 Y0h (1) € OH, (ke1)
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The definition Makes sense for all ke FN because (D ) is in-

Hy(n) c Hy(n+1) Hy(n)
creasing. Clearly DHl(n) = DHl(n+1) and S{Dn = h{BHl(n)'

Since @ is positive and stationary, we get
Hy(n) ) Hy(n)
(U )< q)(},{DHl(n))f“* 3 “)CP(DHl(n))—’ (3 n)?(DHl(n)) —
= (AK) (D).

The other direction follows from positivity.

It is evident that if <(x,Z) is positive and stationary in

Z and does not contain class parameters, then L? is a fixed point

A fixed point I? (or an inductive class I;{a} ) is called statio-

nary if the defining formula is stationary.

We shall see later that stationary formulas form a sufficient-

ly large part of all positive formulas.

The following is a version of the Transitivity Theorem (cf.

fmol,1C.3).

Theorem 1.5. Let ?(x,y,Zl,...,Zk,Z) be a formula positive

and stationary in all its class variables. If Xl""’xk are stati-

is

1

onary inductive classes, qo(x,y,Z)__ q?(x,y,Xl,...,Xk,Z), I?
o

,X, and X = I7 {a} for some a, then X is
()

a fixed point in Xl,...
stationary inductive.

Proof. To simplify the argument suppose k = 1 . The treat-
ment for k>1 is quite the same. Since Xl is stationary inductive.
there is a positive stationary formula ?l(xl,yl,l) and a constant
b 1

such that X, = L; {bl}. We shall combine the two inductions
1
defined by ¥y and ¥ into a single induction defined by a posi-

tive and stationary formula (x,y,xl,yl,t,Z). Consider arbitrary

constants x¥, y¥, X7 y{, and put:
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@(x,yq,y),t,2) =
]

[t = 123 gy 3K,y CFyE Ly eIy
[t=2 A9 Oy, dx5dx,y,x) 0y, 1€ 2, £y ) 5y o 2o ez 1
By 1.2 @ is positive and we claim that:

i) @ is stationary,

i1) dx,yPe I > <x,y, x5 v, 206 .

y R YyX1,¥1 Ef

To see i) put

LY Oy Ly e 2h = 2
\ ' _ 52

{xl;(x,y,xl,bl,ne 2% = 1°,

LYy Ky Y VY 20e 2d = 2

Then,

1 2 .3
PG, D= [t=1A9,(Z YIv [t=2A9(2°,2)].
Let (Yn)neFN be an increasing sequence of set-definable clas-
ses. Then so are the sequences (Y;)n, i =1,2,3. Then,
= (t= 1 _ 2 3
E(t, YY) =Tt=1 A9 (Q)IvIt=249 (PY,QYD],
and since ¥, P are stationary in all variables, we get
_ . 1 _ 2 344
;n(t,gn)Yn)e»(Ak,m,neFN) [t=1 As}’l(Yk)]vft-ZAfp(Ym,Yn)J,
whence, by monotonicity,
gb(t,)r.t)Yn)H(B ne FN) @ (t,Y ).

The essential part of the theorem is, of course, claim ii)
and this is just the content of the Combination Lemma 1C.2 of
{MO). From ii) we have

xe X¢e>»<x,a>e I ¢*~<X,LXTJTJ)GI

%o IS

hence X is stationary inductive.

Remarks. 1) If Po in the preceding theorem does not cont-

ain class variables, then the condition that I be a fixed point

g)
s}
is obviously satisfied, hence for any formula P (x,Xl,...,Xk)
i i i
with Xl,...,Xk as in the theorem, the class {x,.y(x,xl,...,xk), is

stationrry inductive.

N
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2) It follows from the previous remark that, given
q(x,xl,...,xk,z) with Xl""’xk as in the theorem, IS‘l’ is statio-

nary inductive and we see inductively that all I; are inductive.

¢ that is, 19, is a fixed
. This shows that the requirement for I in
k ?o

the preceding theorem to be a fixed point in Xl""’xk is super-

Thus, by 1.4 @(x,X,... Ye> xel

,Xk,I?
point in Xl,...,X

flueus.

The reason that we use positive formulas instead of merely
monotone ("up hereditary" in the terminology of Ml&ek,fM]) is that

the former admit a canonical form. Namely the following holds:

Theorem 1.6. Let ¢(Z) be a positive formula. Then there is
a quantifier-free set-formula ® (Z,u) = e(zl,...,zn,u) and a

string ﬁ'—.:-l]l...ﬂ of quantifiers such that

n
9(2)'5-(ﬂlzl)...(Dnzn)(\’u)I@(zl,...,zn,u)v ue 21,
for all Z=V, or briefly,

(x) @)= @AD(Yu (8(Z,V)vucl),

for all Z&V.

’

Proof. {MQY, 4B.1.

Remark. The restriction Z=¥=V.is for the case that @ (V) is false,
since the right hand side of (% ) is always true for Z = V. How-
ever, given @ , we can put ¥y (x,Z) = @ (x,2)v (Vy)(ye 7).

If ¢ 1is positive and stationary then so is y |, I(f = I,y and, in
addition, (¥ x)y (x,V) is true. Thus studying fixed points we may

always assume that (X ) holds for all Z.
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§ 2. Some results on fixed points. In the proof of the next

lemma we just use the fact that for every set-definable class X
and for every =-class [P

XeUY <« (An)(Xey ).
m N n

Lemma 2.1. Let @(x,Z) be positive. If ¢ has a canonical
form
(WD) (Yu) (B (x,Z,u)vuel),

k

where Q = @, or Vk, or 3, or .le\/k, then ¢ is stationary.

Proof. Put R ={<x,Z, u); 18(x,z,u)}, and let
R"(x,Z) =4u; <{x,Z,u> € R}. Then

(1) @(x,2) = (@2)(R"(x,2) £17).

Let us show for example the case Q =Vk. The rest is shown
similarly. Let (Yn)nbe an increasing sequence of set definable
classes. Then:
cp(x,\”{Yn) «—»(Vzl...zk)(R"(x,zl, N E%Yn) <>

VAR (x,2q,...,2,); 2y, eV}s‘;{YnH

oz
'k
(@ n) LUAR(x,2y,...,2, )5 2p,...,2,e Vi€ Y &>

(2 n)(V'zl...zk)(R"(x,zl,...,zk)gYn)(——» (3n)g?(x,Yn).

Let us call an existential gquantifier in the prefix (QZ) of
the canonical form (% ) inessential if there is some set-definable

Skolem-function for it. The following is obvious:

Lemma 2.2. If the prefix (QZ) of the canonical form of ¢ af-
ter the extraction of all inessential quantifiers is as in Lemma
2.1, then @ is stationary.

The last two lemmas imply that the simplest positive non-sta-
tionary formula tannot be less complicated than the formula
(Vzl)(B 20 (R"(x,2y,2,) € ), where (4z,) is not inessential.

However we do not know whether there exist non-stationary
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positive formulas.
The next result restricts further the possible ¢ for which

there is not a fixed point.

Lemma 2.3. If (“n)neFN'is an increasing sequence of sets,

then every positive formula is stationary w.r.t. (”n)ne FN:

Proof. Let @ {x,Z) be positive. Taking a canonical form of ¢
and defining R as in 2.1, we have
@(x,2) = (QZ)(R"(x,Z)e€ 2).
Then, @ (x,Yu, = (@2)(R"(x,I) ¢ Vu ) «> (@) (An)R"(x,2) e u).
Put R"(x,Z)¢& u, =V(x,z,un).
¥ 1is positive in u, and it suffices to show that for every set-
formula ¥ (x,Z,w), positive in w and every increasing sequence

(u )

Yn’neFN>

@A) y(x,Z,u) <> (3MAD) ¥y (x,Z,u,y
Suppose ¥ and (un)neFN are given. Prolong the sequence
(un)neFN to a set {uﬁ; f £t such that UR € U for B £ y. If
the string Q has length m, the above equivalence is shown in m
steps by pulling at the step a¢ the gquantifier (3 n) to the front

of the quantifier Q _, ;. If Q =3 this is trivially possi-

m-k+1
ble. Thus it suffices to show that
(+) (Y2)(3n)s (x,z,u )« (_’in)(Vz)é'(x,z,un)
for 6 positive in U,

Let F:V—> N be a function such that

F(z) = B« 8 (x,z,ug)A(Yyp <)@ (x,z,qr).
The direction " <— " of (+) is obvious,

Now, if the left hand-side of (+) is true, then F is (set-)
defined on V and F"V=FN. Therefore F"V is finite. It follows that

(v 2)(An)&(x,z,u ) e> (A n)(V z)[d(x.z,u])v s v (x,z,u 0T
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Since ¢ is positive and (un)neFN is increasing, we get

6'(x,z,u1)v coov B (x,zu ) €e> 6(x,z,u)
and the proof is complete. X

A positive formula @(x,Z) will be called reversible, if the-
re is some positive w(x,Z) such that F‘,{,.( I’; (Z)) = Z for every
class Z. ¥ 1is called a reverse of ¢

For example the formula

v(x,2) = (3y)(xeyayel),

with operator T, = U is a reverse of the formula
g(x,2) = xgl,

with operator P (the power-set operator), since UP(Z) = Z.

Lemma 2.4. If 19, is a fixed point and @(x,Z) is a statio-

nary in (I;)nr;FN and reversible positive formula, then ﬂy(lq )
is a fixed point.

Proof. Let €&(x,Z) be a reverse of y aru put

P(x,2) = w(x, e & (Z)).
By 1.2 [ is positive. We show that I(:;' = Ty (1") for n>1.

First notice that [4(@) = @ because I3 1\, (#) = @ and #
€ Ty (M) and (5 ¢ i G, (). Hence Ig = {x; y(x, [ fx ()
= DG (x, T (B) = 4x; ¥ (x, 1) = \".<IS}>.

1,‘
Suppose 1; = FW(I‘?')i Then

4]

"

n+l _ ny _ ny _ n -~ n
e S AR L R S SRR S I AC Ol
= Geagth.

Since % 1is stationary, we have

= n ] n - . n -
I«)n = \"{ISO = ¥ FV(IV) = Iy (‘Fn”l?) = Ny (I'-F)'
It remains to sho\w that I’Qf (ISD) = I,)D
@) =Ll (Tg) = Ty lp fa Ty (L) = T g (1) = Ty (1) =%

(1f moreover T, 6 are stationary, then @ is stationary.)

- 26 -



Corollary 2.5. If LP is a fixed point and F is a 1-1 set-

definable function with ;@ < dom(F), then F"I

is a fixed point.
P pol

If Iq is stationary, F“I¢ is stationary.

Proof. Consider the formula
¥ (x,Z2) = (3yeZ)(F(y) = x). Clearly f’;‘,(Z) = F"Z for
Zc dom(F), ¥ is stationary and the formula
6 (x,Z) = (3ye Z)(F(x) = y) which is stationary, is a rever-

se for ¥ . The conclusion follows from 2.4.

Corollary 2.6 Every countable class is a stationary fixed
point.

Proof. Since for any countable class X there is a 1-1 set-
function f such that f£"FN = X, it suffices by 2.5 to prove that
FN is a stationary fixed point.

Let < be the ordering of natural numbers and put

P (x, )= (vu)(u<x-—=>uel).

n =
E3
We shall now prove that every countable union of sets (> -se-

Clearly ¢ is positive, stationary and [ n.

misets) or cosets is a fixed point. First a lemma.

Lemma 2.7. Let (un)neFN be a sequence of sets. Then there is
an increasing sequence (vn)neFN such that \/u_ = 5{ v, and the se-

v _{ is either increasing or de-

quence of natural numbers ‘Vn+1 -V,

creasing (tu! is the unigque « € N such that uR e ).

Proof. Suppose, without loss of generality, that (un)nsFN

is increasing. Then either
(1) (Fn)(¥m>n)(3K >m)(|um —unl‘_'-luk - ),
or the negation of (1) is true:

(2) (Vnﬂ3m>nNVk>mN|% -uM<|um—u ).

N
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In the first case we can find a subsequence (u_ ) = (v ), ,
ng 'k k 'k

such that |Vk+1 - v,kl is increasing and in the second case we find

a subsequence (v, ), such that |v'<+1 - Vkl is decreasing.

Theorem 2.8. For every sequence (un)neFN’ % u, is a statio-

nary fixed point.

Proof. Case 1. Suppose there is an increasing sequence (vn)n

with lvn+l - v

to a set '("(b i B Lo} with lv(s+l - vﬂl increasing.

nl increasing such that Yu = L”{vn. Extend (v ),
For every 8, 2£ 3 £ , let 9p be the surjection from Ve~

onto v _p which is least in the usual set-definable

" Vg1 p-1" "8
ordering of V. Let also 9, be the least surjection from vy onto Vo-
The correspondence 3 +> 9 is set-definable and put f{f
=Udigy; 74B3-

Then f!3 is a function from v; onto Va-1- Let £ = f, . It is ea-
sily seen that fl‘v(s =fp and f—l"vﬂ = V(3+1' (Some Venn-diagrams

illustrate best the situation.)

If we put
@ (x,7) = xevov(.:\ya (£ (x) = y)
s R n+l _ - =
then @ is stationary and I(P = v, hence Y u, = % Vg T Iq .
Case 2. Let again \;{ u, = ‘van where |vm_1 - an is, dgcre—

asing. Extend as before (vn)n to a set {vﬁ;(s £t . Let O

:v‘;_1 Vg2 Va T Y-l be least surjections for 2 £ 8 £ ¢ , whi-
le g; is the identity on v . Put I{S =Uig. ¥ 2 8% ; then £,

maps v onto vg - (v1 - Vo)‘ Put f = ¢

< - Then ff‘vﬁ = f{i+1 for

p-1

<o . Consider the formula
¢ (x,2) = xev,v(Iye)(f(y) = x).

Again 3 is stationary and I,? = v, for nzl.

n
A completely analogous result holds for sequences of cosets
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(v - un)nEFN or, more generally, (X - un)neFN' where X is set-de-
finable. It is evident that Lemma 2.7 is equally true if we sub-
stitute "decreasing" for "increasing" and M for U . Then, gi-
ven a set-definable X ard a seguence (un)n, such that

.SUIE UOSX,
with lun

construct a set-definable function f with dom(F)& X and such that

- un+1| either increasing or decreasing, it is easy to

either F" or Frin defines X - u +1 by means of X - u Therefore:

n n’

Lemma 2.9. If X is set-definable and (un)n is any sequence

of sets, then 'kn/ (X - un) is a stationary fixed point.

§ 3. All ¥ -classes are inductive. Let Fix, Ind, = denote

respectively the (codable) classes of fixed points, inductive clas-

ses and Z -classes. By 1.3
FixeInd € = .

We shall prove in this section that

Theorem 3.1. = = Ind.

This will be done through a number of lemmas.

Lemma 3.2. If Sdy has a code {K,S» such that the class S is
stationary inductive, then = = Ind.

Proof. Let<K,5> be a code of Sd, such that S is stationary
inductive and let X = % Xn be a 2 -class. Then evidently there
s a countable Y& K such that

X sne FNE = {S"yk;ye Vi,
hence we get

x€ Xe> (JyeY)(xeS"{y}).
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The formula (3ye Y)(xe S"{yt) contains the class-parameters
Y, S in positive stationary paositions and Y (by 2.6) as well as S
(by assumption) are stationary inductive. It follows from the

Transitivity Theorem 1.5 that X is stationary. Thus Z € ind.

Take alGﬁdelization of the language FSLV, i.e. of all the fi-
nite set-formulas, as a mapping G:FSLV —> V defined as follows:
1) 6(x,) = {0,n”?, for the set variables X, NEFN.
2) G(x) = <1,x?>, for the set-constants xeV.
3) G(t=s) =<2,6(t),6(s)>, for constants or variables t, s.
4) G(tes) =<3,6(t),G(s)y, " oo " "
5) G(ag ) =<4,6(gp ).
6) G(aw ~Ay) =<5,6(e¢),6(y ).
7 6@x)Dg) =<6,n,6(g)7.
We say that G(¢ ) is the Godel-set of o

Lemma 3.3. The class Fml = {x; x is the Godel-set of a set

formula} is stationary inductive.

Proof. Let us denote by AFml the class of (Godel-sets of)
atemic formulas. Then , from the definition of G we have

x e AFml e (Am,ne FN)(Jy,z)Ix =< 2,{0,m>,<0,n>> V

x = <¢3,40,m>,40,ndv x =<2<0,m»,<1,y>>vx = <3,€0,m>,<1,y>> ¥

X

"

{2,41,y2,<1,xO>vx =<3 ,<1,y>,<1,x>>].

It is clear that the defining formula is positive and stati-
onary in FN and FN is stationary inductive, thus AFml is station-
ary inductive by 1.5.

Next,
xeFmle> (2 £)(3 neFN)(dom(f) = n+lAf(n) = x A
(Vk<)If(k e AFmLlv (T 1,m< k)(f(k ) =<4, f(1)yv f(k) =
=45, 81, E(mIVv(Tie PN~ KI(E(k) = <6,i,f(33)]-

Again the defining formula is positive and statienary in
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FN, AFml while the latter are stationary inductive, hence Fml is
stationary inductive.

Consider now the predicate of satisfaction Sat(x,g) express-
ing the fact: "x is the Godel-set of a set-formula ¢ , g is a se-
quence of valuations for the variables X0 neFfN, and ¢ is true
substituting g(i) for its free variable xi".

We fix a number L, € N-FN and let

A = {g;dom(g) = o A (IneFN)(Vk > nM(g(k) = 0)}.

Clearly A is stationary inductive. For ge¢ A write g= @ for the
fact that ¢ is true w.r.t. the valuation g.

The following is a version of 5.3.2 of [MO].

Lemma 3.4. The class Sat = {<{x,g?;S5at(x,g)t is stationary in-

ductive.

Proof. Define the predicate Val(x,g,t) by:
val(x,g,t) = (x is the Godel-set of a formula ¢ )Age A A
At = 0Aag=glv(t = lag= g9 )].
Then obviously
Sat(x,g)<«> Val(x,g,0),
and it suffices to prove that there is a formula © positive and
stationary in all its class parameters, the latter being stationa-
ry inductive, such that IS° is a fixed point and
Val(x,g,t)€*><x,g,t>< Ijo .
Let Aval(x,g,t) = x € AFml AVal(x,g,t). ,
Then:
AVal(x,g,t) <> geAA(A mnefN)(3y,z)
ix = €2,0,m>,<0,M>>AL(t = 0~aglm) = g(n))v (t = L Aagm)4g(n))itv
{x =(3,<0,m>,<0,n>>AL(t = 0Ag(m) e g(n))v (t=1AagmE g(n))It v
Ix ={2,40,m>, L,y >> A [(t=0Ag(m) = y)v (t=lagm)4y)It v
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tx= {3,€0,m>, <1,y AL(t=0Ag(Mz y)v (t=1Agmé y)I} v
{x= (2,41,y0,{1,z20A[(t=0Ay = 2)v (t=1Ay*2)]} v
fx= ¢3,41,y>,<1,z>> AL (t=0Ayez)v (t=1Aydz)]}

Then the class Aval ={<{x,g,t?;Aval(x,g,t)t is stationary in-
ductive since Aval(x,g,t) is positive stationary in A, FN.

Define the function F on V%x &y %V as follows:

- F(g,B,u) = (g - LR,a(ENIHIvIKB ,ud}
i.e., F(g,p ,u) is the function resuiting from g if we replace its
value at § by u. Now define the required formula @ as follows:
P (x,0,t,2) = xe FmlA g&AAKX,g,t> € AVal v
Ay I(x =£a,y>~t = 0ACy,0,1>€ Z) v
(x ={4,y> At =1a(y,0,00e )1V
(Ay,2) [(x=45,y,z>A t = 0A<{y,8,00€2ZAKz2,3,00€2) Vv
(x =<5,y,z>Aat =1 A(y,g,1>€Zv<z,9,1>€2)
(3k € FN)(3 y)[(x=<6,k ,y>At=0A (F 2)Ky,F(g,k ,2),0>€2)) v
(x= <6,k ,yDAt=1A(V2)Ky,F(g, k ,2),1> 2))1} .

We can summarize © as follows:

So(x,g,t,l)s xeFmiageAA [<{x,g,t>€Aval v
(3k € FN)(3y)(VYZ)6(t,x,0,V,2,2)],

where & is positive in Z and contains only inessential existenti-
al quantifiers. It follows from 2.1 and 2.2 that P is gtationary
in Z. That @ is positive étationary in Fml, A, AvVal, FN is evid-
ent. Also all these class-parameters are stationary inductive as
we proved earlier. We must also prove that induction by p closes

in w steps but this is clear from the remarks following Th. 1.5.

It remains to see that

Val(x,g,t)e—> (x,g,t)eI\o .

Direction " -—>» " is shown by induction on the length of the for-

mula x, while by induction on n we show that

{(x,g,t> EI; —> Val(x,g,t).
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Proof of Theorem 3.1. The pair {Fml,Sat)> is a code for de

since for every Xe S5dy such that X ={x; @(x)§, we have
X = {g;Sat(x,g)} = Sat"{x}, where x is the Godel-set of ¢ . From
3.4 it follows that the code is inductive, and by 3.2 X = Ind.
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