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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,1 (1986) 

COUNTABLE INDUCTIVE DEFINITIONS IN AST 
A. TZOUVARAS 

Abstract: We transfer the notions of inductive de f in i t ion , 
fixed point and inductive class in Alternative Set Theory and sio* 
that every 2-semiset is a fixed point and every 2L -class is i n ­
ductive . 

Key words: Inductive de f in i t i on , fixed point, inductive 
ass. 

Key words: inductive delinitio 
:lass, Alternative Set Theory, 2L-cl 

Classification: 02K10, 02B99 

The main source of reference is [MO]. In Section 1 we adapt 

key definitions and cite basic facts from tM03. In Section 2 we 

prove the results which seem to be specific for the context of 

AST. In Section 3 we show that all T-classes are induc t ive . 

We assume the reader's familiarity with all basic concepts 

of the Alternative Set Theory as exposed e .g . in iVJ. 

§ 1 . Adapted definitions and f a c t s . Let g?(Z) be a normal 

formula of FLy, Z being among the class variables of gt . We say 

that gp is positive in Z, or simply <p is positive (if Z is the 

only class variable of cp ), if cp belongs to the collection 

$»p(Z) of formulas defined as follows: 

$ (Z) is the smallest class of formulas such that: 

(i) If Z does not occur in g> , then g> £ $ ( Z ) . 

(ii) If t is a constant or variable, then t€Z is in $ D ( Z ) . 
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(iii) If cp , y are in $ (Z) and x is any (set) variable, then 

<p A Y , cp v Y , (J x) <p , ( V x)g> are in $> (Z). 

The main property of positive formulas is monotonicity, 

lemma l.ir. If g>(Z) is positive in Z, then for any classes 

X, Y, X£Y and cf(X) imply <p(Y). 

Proof. By induction through the steps of the previous de­

finition . 

If the only class variable of <^(x,Z) is Z, the enly set va­

riable is x and & is positive in Z, then we can adjoin to if an 

operator VL sending the class X to the class 

f^(X) ~- 4x; <y(x,X)} . 

P is monotone, i.e. 

X£ Y —*- r^ (X) 9 r<f (Y). 

( fL is an informal object and we use it just to simplify the 

notation in some cases.) If cp contains only set-definable class 

parameters, then Q, sends every set-definable class to a set-de­

finable class. 

Lew HI a 1.2. If sp(x,Z) and y(x,Z) are positive, then 

cr(x, Hy(Z)) is positive in Z. 

Proof. ly induction.on the length of <y . 

Given a positive cp(x,Z) we define an increasing sequence of 

classes ^-^)n£pN as follows: 

l£+1 - r,(l^) = *x; ,<x,^)l. 
This is a typical inductive definition which could probably 

be centinued eeyend the finite ordina ls . 
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Here, however, we are interested in countable inductions, 

that is inductions which terminate in &;> steps. These are defined 

by positive formulas & such that Cm(Ul?M) - U i" . 

Let us put 

*<f 
for every positive <y . 

We say that I is a fixed point if o? contains no class pa­

rameters and fL(T ) = l(o -

If <$>(Z) is positive in Z and X is a class, we say that the 

[frgtir X is positive in fip(X). 
•llWMlll. Ill IMHMIII Hi lllln ••• W n.mKii-M i.tWi ***^.«^mm.m^m,m*mmm*~»—••**-* J 

I - = UJĽ$> ПÊ Fn5 

I f a l l the parameters X , , X 2 , . . . , X . of <f are p o s i t i v e and 

P t t ( I ) = I t o , then we say tha t I „ i s a flxjtri point in 
" 7 J 7 

x1,x2,...,xk. 

A class X is inductive (inductive in X,,...,X. ) if for some 

fixed point (fixed point in X,,...,X.) I- and ••*• set parameter 

a, 
x£X<f-»<.x,a>ei <~~^ x e l M a l . 

Lemma 1.3. (i) Every fixed point is inductive, (ii) Every 

inductive class is a 2-class. (iii) Every set-definable class 

is a fixed point. 

Proof. (i) Let I be a fixed point in X,,...,X. and let a 

be a parameter. Put 

y(x,y,Z)-s 9 (x,ZM|a})A y = a. 

If & (x ,Z) &a < x ,a> £ Z, then clearly # is positive and Z"4'ai = 

= fV(Z). By 1.2 Y -s positive and we can see inductively that 

1^ = l2*4.a}, whence L, = L x ^ a } , 1^ is a fixed point and 1^ = 

- -yt«T 
(ii) Let 1̂ , be a fixed point. If i" is set-definable then 
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ob viously ijl* - -fx; «.4>(x,In)J is set-definable. Similarly, for aî  

a U'-fâ  =UI^ {a. and i" ia) are set-definable. (This is no long^r 

true, however, for classes inductive in other c lasses .) 

(iii) If X is set-definable, put 

cp(x,Z) s X£ X. 

Then i" = r = X for n z1. 

Since we are interested in countable inductions, we have to 

deal exclusively with positive formulas leading to such induction 

Let <jp(Z) be positive and let (Y ) rN be an increasing sequ,. 

ence of set-definable c lasses. We say that cp is stationary in Z 

________ (Y n) n t F N, if 

<y( U Y _ ) . ^ - (._! ne FN)cf (Yn). 
* *?v n ii 

We say that GO is stationary in Z if it is stationary.w.r.t. 

any such sequence. 

Lemma 1.4. Let <y(Z) be positive and stationary. Then for e-

very increasing sequence of inductive (or, more generally, X - ) 

classes (D ) , 

^ ( W D n ) < e ^ ( a n e F N ) ťf ( Dn }-

Proof. Suppose D_, neFN, are ^.-classes and D = U D m . Let 

(E.)k PN be an enumeration of all DJJ, m,neFN. Define two functi­

ons H,, H 2 from FN to FN by recursion as follows: 

H,(0) = H2(0) = 0, and H,(k+1) = least m such that there is an n 

such that 

_H2(k) 

k+1 H^vk) m» 

H2(k+1) = least n such that 

E 
H2(k) 

k+1 ̂ Hj/k) fe
 ^H-Дk + l) 
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The definition makes sense for all ke FN because (D ) is in-

H2(n) H2(n+1) H2(n) 

c r e a s i n g . Clearly D H i( n)
 £ D

H l(n+l)
 and !^Dn = \i\(n)' 

Since a> is positive and stationary, we get 

H9(n) H2(n) 

-*- (3 k)9?(Dk). 

The other direction follows from positivity. 

It is evident that if cp(x,Z) is positive and stationary in 

Z and does not contain class parameters, then L~ is a fixed point 

A fixed point 1^ (or an inductive class i M a } ) is called statio­

nary if the defining formula is stationary. 

We shall see later that stationary formulas form a sufficient­

ly large part of all positive formulas. 

The following is a version of the Transitivity Theorem (cf. 

LM0],1C3). 

Theorem 1.5. Let cp (x,y ,Z, , . . . , Z. ,Z) be a formula positive 

and s ta t iona ry in all its class variables. If X,,...,X. are stati­

onary inductive classes, cj? (x,y,Z)s 9> (x , y ,X, , . . . , X. ,Z) , I is 

a fixed point in X,,...,X. and X = I" {a} for some a, then X is 
1 K ^o 

stationary inductive. 

Proof. To simplify the argument suppose k = 1 . The treat­

ment for k M is quite the same. Since X, is stationary inductive, 

there is a positive stationary formula 'f-, (x, ,y, ,Z) and a constant 

b, such that X, = I^^b,}. We shall combine the two inductions 

defined by Cf, and & into a single induction defined by a posi­

tive and stationary formula y) (x ,y ,x, , y, , t, Z). Consider arbitrary 

constants x*, y*, x?, yt, and put: 
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^(x,y1,y1,t,Z) 25 

[t = lA^CxpypKx'py^); <x*,y*t,x,1,y
,
1,i>ezl)jv 

[t = 2 A C . p ( x , y , { x ,
1 ; ^ x , y , x 1 , b 1 , l > e Z , 4 , < x',y'> ;< x\ y',x*,y*2 > £ Z J) L 

By 1.2 p is positive and we claim that: 

i) fD is stationary, 

ii) < x,y>€ I <e-> <x,y,x*,y*,2>S I . 
JO ? 

To see i) put 

Kx'.y^i^/.x'py'pDe Z} = Z1, 

4x,1;<x,y,x
,
1,b1,l>6 ZJ = Z

2, 

4<x\y,>;<x,,y,,y*,yp2>cZ} = Z3. 

Then, 

jt> (t,Z)sr Ct = l A ^1(Z
1)3 v Et = 2 A 9 (Z2,Z3)J . 

Let (Yn)nt:FN
 b e a n i n c r e a s i n9 sequence of set-definable clas­

ses. Then so are the sequences (Y*) , i = 1,2,3. Then, 

? ( t , U Y n ) = rt = lA y i(aY n)]vrt = 2^Cp(UY2,ViY^J, 

and since cp -. , cp are stationary in all variables, we get 

J>(t,UYn)<->(^ k,m,n<sFN) { t = l A g ^ Y*) ] v £ t = 2 A <p (Y2 , Y3)j , 

whence, by monotonicity, 

f ( t , U Y n ) ^ G nfi FN) jo(t,Yn). 

The essential part of the theorem is, of course, claim ii) 

and this is just the content of the Combination Lemma 1C.2 of 

[M03. From ii) we have 

X£X«-><x,a>£ I <-+• < x , a , x*", y*, 2> £ I , 
70 ) 

hence X is stationary inductive. 

Remarks. 1) If cp in the preceding theorem does not cont­

ain class variables, then the condition that I be a fixed point 
^o 

is obviously satisfied, hence for any formula 9 (x ,X, , . . . ,X.) 

with X,,...,X. as in the theorem, the class 4x; <y (x ,X, , . . . ,X. ){ is 

stationary inductive. 
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2) It follows from the previous remark that, given 

cp(x,X, , . . . ,X. ,Z) with X,,...,X. as in the theorem, I is statio­

nary inductive and we see inductively that all i" are inductive. 

Thus, by 1.4 <p(x ,X, , . . . ,Xk,I^) «-*- x e I« , that is, 1^ is a fixed 

point in X,,...,X. . This shows that the requirement for I in 

^ o 

the preceding theorem to be a fixed point in X,,...,X. is super­

fluous . 

The reason that we use positive formulas instead of merely 

monotone ("up hereditary" in the terminology of M15ek,!.M.l) is that 

the former admit a canonical form. Namely the following holds: 

Theorem 1.6. Let <f(2) be a positive formula. Then there is 

a quantifier-free set-formula #(z,u) =? © (z, , . . . ,z ,u) and a 

string lsQ,...Q of quantifiers such that 

y(Z) s (QlZl) . ..(Qnzn)(Vu) I6(z1,...,zn,u)v' us Zj, 

for all Z4=V, or briefly, 

(*) <y(Z)= (Qz)(Vu) (@(z,u)v u£ Z), 

for all Z4=V. 

Proof. CM01, 41,1. 

Remark. The restriction Z4-V is for the case that <y (V) is false, 

since the right hand side of (*: ) is always true for Z = V. How­

ever, given <y , we can put f (x,Z) =•? <g> (x,Z)v (VyMye Z). 

If <f is positive and stationary then so is Y , I = I and, in 

addition, (Vx)y(x,V) is true. Thus studying fixed points we may 

always assume that (*) holds for all Z. 
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§ 2. Some results on fixed p o i n t s . In the proof of the next 

lemma we just use the fact that for every set-definable class X 

and for every .IE-class tJY , 

X £ U Y n ^ (3 n)(X£Yn). ti, n n 

Lemma 2 . 1 . Let <p(x,Z) be p o s i t i v e . If cf> has a canonical 

form 

(I3z)(Vu)(9(x,z,u)vu6Z), 

— k k k k 
where Q = 0, or V , or 3 , or 3 V/ , then <p is stationary. 

Proof. Put R =4<x,z, u>; ~l$(x,z,u)r, and let 

RM(x,z) =4u;<x,z,u>e R?. Then 

(1) <$>(x,Z) s (Qz)(RH(x,z)cz). 

Let us show for example the case Q = V . The rest is shown 

similarly. Let (YpLbe an increasing sequence of set definable 

classes. Then: 

c p ( x,UY n)^(Vz 1...z k)(R"(x,z 1,...,z k)ctyY n)^> 

U - l R » ( x f z l f . . . f z k ) i z j z k e V U U Y n f > 

( 3 n) E U 4 R " ( x , z 1 , . . . , z k ) ; z x , . . . , z k e V \ c Yp 3 «e-» 

( 3 n ) ( V ' z 1 . . . z k ) ( R , , ( x , z 1 ) . . . , z k ) £ Y n ) ^ ( 3 n) qp (x , YR) . 

Let us call an existential quantifier in the prefix Offz") of 

the canonical form (# ) inessential if there is some set-definable 

Skolem-function for it. The following is obvious: 

Lemma 2.%. If the prefix (Qz) of the canonical form of <p af­

ter the extraction of all inessential quantifiers is as in Lemma 

2.1, then <y is stationary. 

The last two lemmas imply that the simplest positive non-sta­

tionary formula cannot be less complicated than the formula 

( Vz1)( 3 z2)(R"(x,z1,z2) S Z), where (^*2) is not inessential. 

However we do not know whether there exist non-stationary 

24 



positive formulas . 

The next result restricts further the possible f for which 

there is not a fixed p o i n t . 

Lemma 2.3. If (un)nepN' *
s an increasing sequence of sets, 

then every positive formula is stationary w.r.t. (u
n)nfepN-

Proof. Let g> (x,Z) be positive. Taking a canonical form of cp 

and defining R as in 2.1, we have 

Qp(x,Z) s (Qz)(R"(x,z)SZ). 

Then, <?(x,^un s (Qz)(R"(x,z)c U u n ) -e-> (Qz)(3 n)(R"(x,z) S u R ) . 

Put R"(x,z)£ uR s^(x,z,u n). 

Y is positive in un and it suffices to show that for every set-

formula y(x,z,w), positive in w and every increasing sequence 

(unWN' 
(Qz)(3 n)y(x,z,un)«->- (3 n)Qz)y(x,z,un) 

Suppose y and (u )nepfyj are given. Prolong the sequence 

(un)ncF|s| to a set -\û ; (3 £ cc f such that u* £ u~ for /3 ̂  y . If 

the string Q has length m, the above equivalence is shown in m 

steps by pulling at the step ae the quantifier (3n) to the front 

of the quantifier Qf-j.̂  + i- I* ̂ m-k + l = ̂  tnis is trivially possi­

ble. Thus it suffices to show that 

( + ) ( V O U n ) 6 ( x , z , u n ) ^ (3n)(Vz)tT (x,z,un) 

for 6 positive in u . 

Let F:V—>N be a function such that 

F(z) = $*-+ S (X , Z , U / I ) A (y-y <: (I )-i€f (x,z,ur). 

The direction " < — " of (+) is obvious. 

Now, if the left hand-side of (+) is true, then F is (set-) 

defined on V and F"VCFN. Therefore F"V is f i n i t e . It follows that 

(V z)(3 n)er(x,z,un)< > (3 n)(V z) ltf(x,z,u-)v ... v ff (x,z,un)J . 
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Since «o is positive and (un)ne_cki is increasing, we get 

0(x,z,u-.)v ...v 6* (x,z,un)«—> 6(x,z,un) 

and the proof is complete. 

A positive formula <gp(x,Z) will be called reversible, if the­

re is some positive tfr(x,Z) such that HL( fl (Z)) = Z for every 

class Z. Y is called a reverse of <f . 

For example the formula 

Y (x, Z) ~E (3y)(xeyAyeZ), 

with operator f^ = U is a reverse of the formula 

9 ( x , Z) S£ xcz, 

with operator P (the power-set ope rato r ) , since UP(Z) = Z. 

Lemma 2.4. If 1̂  is a fixed point and g>(x,Z) is a statio­

nary in (I«)nri CM and reversible positive formula, then HLd^ ) 

is a fixed point. 

Proof. Let 6"(x,Z) be a reverse of y any put 

p(x,Z) ~- y(x, 1̂  1£ (Z)). 

By 1.2 p is positive. We show that l£ = P, (In) for n>l. 

First notice that 1*̂ (0) = 0 because Q f', (0) = 0 and 0 £ 

£ ry(0) and %(0) 6. £ 1^(0). Hence l£ ={x; y(x, £ f6-(0) = 

Mx;y(x, Py(0) = 4x;f(x,I^) = r f(^). 

Suppose l" = VY(l"). Then 

- r r ( i^ + 1 ) . 

Since if' is stationary, we have 

V - i . v n ' - r * ( I » ) = rv ̂ ^ = n>' ( V -
It remains to show that Qc (I.J = I,, . 

r? V = rv ̂  f« < y = r¥ i- ̂  r̂  c y - ry ̂  c y - ryci^) =^ 
(If moreover ly , ef are s ta t iona ry , then <£> is s t a t i o n a r y . ) 
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Corollary 2.5. If L is a fixed point and F is a 1-1 set-

definable function with I £ dom(F), then F"I is a fixed point. 

If I„ is stationary, ?'*!& is stationary. 

Proof. Consider the formula 

Y(x,Z)ss ( 3 y e Z ) ( F ( y ) = x ) . Clearly fy(Z) = F"Z for 

Zcdom(F) , y is stationary and the formula 

£(x,Z)2sf ( 3 y e Z ) ( F ( x ) = y) which is stationary, is a rever­

se for y - IRe conclusion follows from 2.4. 

Corollary 2.6 Every countable class is a stationary fixed 

point. 

Proof. Since for any countable class X there is a 1-1 set-

function f such that f"FN = X, it suffices by 2.5 to prove that 

FN is a stationary fixed point. 

Let < be the ordering of natural numbers and put 

cj> (xJ )n- ( v* u ) (u < x --*- u e Z). 

Clearly <y is positive, stationary and i" = n. 

We shall now prove that every countable union of sets (21-se-

misets) or cosets is a fixed point. First a lemma. 

Lemma 2.7. Let (u
n)nepN be a sequence of sets. Then there is 

an increasing sequence (v
n)n£cN such that y

; u = }J v and the se­

quence of natural numbers Iv 1 - v \ is either increasing or de­

creasing (iu! is the unique oG e N such that u^cc ). 

Proof. Suppose, without loss of generality, that (u ) rN 

is increasing. Then either 

(1) (Jn)(Vm> n)(3k >m)(|um - %\ * \ \ - U|n | ), 

or the negation of ( 1 ) is true: 

(2) ( Vn ) (5 ' m> n ) (Vk > m)(|uH - u j * | um - up | ) . 
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In the first case we can find a subsequence (u ). = (v^)^ , 

such that |v^ + , - v.A is increasing and in the second case we find 

a subsequence (vj<)k such that |v* , - VjJ is decreasing. 

Theorem 2.8. For every sequence (u ) rN, U u is a statio­

nary fixed point. 

Proof. Case 1. Suppose there is an increasing sequence (v ) 

with |v„^, - v\ increasing such that U un =l/v n. Extend (v„)rt • n + l n 1 a ' i r v U / n n n n 

to a set { V A jti^oc? with |vfi+, - v^| increasing. 

For every $ , 2 =r (I £ oc , let g« be the surjection from v*-

" vft-l o n*° V A - 1 " vA-2 wnicn is I63-5* in *he usual set-definable 

ordering of V. Let also g, be the least surjection from v, onto v . 

The correspondence ft f—* g* is set-definable and put f = 

= tugf; r*£*. 

Then f* is a function from v* onto v^ ,. Let f = frf . It is ea­

sily seen that f f vft =f» and f" "v^ = v.* , . (Some Venn-diagrams 

illustrate best the situation.) 

If we put 

9(x,Z)s x«.v0v(.r.y€.Z)(f(x) = y) 

then © is stationary and i"4" = v . hence O u„ = U v„ = lrn . * J f n* i* n <*»- n 9 
Case 2. Let again U u „ = l^ v„ where 1 v , - v I is. decre-» /rv n ^ n ' n+1 n1 • 

asing. Extend as before (v ) to a set ̂ v*; ti 4 cc \ . Let g-.: 
: V A - 1 " vA-2 ""*"*" vti ~ vft-1 De l e a s* surjections for 2 .=" ft & °o , whi­

le g, is the identity on v . Put f* = Ui g ; y -& P>} ; then f« 

maps v , onto v» - (Vj - v Q ) . Put f = f^ . Then f I
s v« = f«+, for 

ft <- 06 . Consider the formula 

<j. (x,Z)s x ev-.vCJ ye Z)(f(y) = x). 

Again t» is stationary and iJ = v for n > l . 

A completely analogous result holds for sequences of cosets 
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(V - u)n*pw or, more generally, (X -
 u

n)n€pw» where X is set-de­

finable. It is evident that Lemma 2.7 is equally true if we sub­

stitute "decreasing" for "increasing" and O for U . Then, gi­

ven a set-definable X ard a sequence (un)n, such that 

. . . S u l S u 0 C X , 

with |u - u -J either increasing or decreasing, it is easy to 

construct a set-definable function f with dom(F)S X and such that 

either F" or F " defines X - u -by means of X - u . Therefore: 

Lemma 2.9. If X is set-definable and (u ) is any sequence 

of sets, then U (X - u ) is a stationary fixed point. 
<Tir n 

§ 3. All X -classes are inductive. Let Fix, Ind, 5. denote 

respectively the (codable) classes of fixed points, inductive clas­

ses and 2. -c lasses . By 1.3 

Fixe Ind S 2. . 

We shall prove in this section that 

Theorem 3.1. _E = Ind. 

This will be done through a number of lemmas. 

Lemma 3.2. If Sdy has a code <K,S> such that the class S is 

stationary inductive, then IE = Ind. 

Proof. Let<K,S> be a code of Sdv such that S is stationary 

inductive and let X = O X„ be a 21 -class. Then evidently there 

s a countable Y£ K such that 

4Xn;ne FN* --f S'Mylrjys Yi, 

hence we get 

xc X«-> (J y eY)(xeS"{y)). 
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The formula (3 y £ Y)(xe S"-\y}) contains the class-parameters 

Y, S in positive stationary positions and Y (by 2.6) as well as S 

(by assumption) are stationary inductive. It follows from the 

Transitivity Theorem 1.5 that X is stationary. Thus 2* £ ind. 

Take a Gbdelization of the language FSLy, i.e. of all the fi­

nite set-formulas, as a mapping G:FSLV —> V defined as follows: 

1) G(xn) =<0,n>, for the set variables x , neFN. 

2) G(x) = <l,x>, for the set-constants xeV. 

3) G(t=s) = < 2,G(t),G(s)>, for constants or variables t, s. 

4) G(t€ s) = <3,G(t),G(s)>, " " ' " 

5) G(-i<? ) = <4,G(q> )>. 

6) G(<.j A f ) = <5,G(<y ),G(Y )> . 

7) G((3 x n )q? ) =< 6,n,6(g> )> . 

We say that G(<y ) is the Gbdel-set of to . 

Lemma 3.3. The class Fml = -tx; x is the Gbdel-set of a set 

formula} is stationary i n d u c t i v e . 

Proof, Let us denote by AFml the class of (Gbdel-sets of) 

atomic formulas. Then , from the definition of G we have 

x e AFml «--> (3 m,ne FN)(3 y,z)Cx = < 2 ,<0 ,m>,<0 ,n >> v 

x = <3,<0,m>,<0,n»v x = < 2 ,<0 ,m> ,<1 ,y» v x = <3 ,<0 ,m> ,<1 ,y» v 

x = <2,<l,y>,<l,x»vx = <3,<l,y>,<l,x»]> 

It is clear that the defining formula is positive and stati­

onary in FN and FN is stationary inductive, thus AFml is station­

ary inductive by 1.5. 

Next, 

xcFffll*-^ (3 f)(3 n«.FN)(dom(f) = n+l/\f(n) = x A 

(Vk<n)if(k )e AFmlv (3 l,m^ k.)(f(k ) = < 4,f(1)>v f( k ) = 

= <5,f(l),f(m)>)v(3i£FN)(3 j - k)(f(k) = < 6 , i ,f (j)> ) J -

Again the defining formula is positive and statisnary in 
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FN, AFml while the latter are stationary inductive, hence Fml is 

stationary i n d u c t i v e . 

Consider now the predicate of satisfaction Sat(x,g) express­

ing the fact: "x is the Gbdel-set of a set-formula cp , g is a se­

quence of valuations for the variables x , neFN, and cp is true 

substituting g(i) for its free variable x.". 

We fix a number o£ eN-FN and let o 

A = «{g,dom(g) = <* Q A (3 n & FN)( Vk > n)(g( k ) = 0)} . 

Clearly A is stationary inductive. For g<s A write g )** cp for the 

fact that <f is true w.r.t. the valuation g. 

The following is a version of 5.3.2 of f MOJ . 

Lemma 3.4. The class Sat = \< x,g> ;Sat(x,g)} is stationary in­

ductive . 

Proof. Define the predicate Val(x,g,t) by: 

Val(x,g,t)= (x is the Godel-set of a formula y )Age A A 

A T (t = OAg t= 9>)v(t = l/\gi=~-~iap ) j . 

Then obviously 

Sat(x,g)*-» Val(x,g,0), 

and it suffices to prove that there is a formula sp positive and 

stationary in all its class parameters, the latter being stationa­

ry inductive, such that 1^ is a fixed point and 

Val(x,g,t)<e*< x,g,t>cl . 

Let AVal(x,g,t)s x €. AFml A Val(x ,g, t). 

Then: 

AVal(x,g,t) «—>geAA(3m,n£FN)(3y,z) 

Ax = < 2,<0,m>,<0,n>>^ [ (t = O A g(m) = g(n))v(t = 1 Ag(m)4= g(n))j$v 

Ax =<3,<0,m>,<0,n>>AL(t = 0 Ag(m) £ g(n)) v (t = l A g(m)£ g(n))3 r v 

•Tx = < 2,<0,m>,<l,y»^ C(t-OAgU) = y)v(t-lAg(m)=j-y)3i v 

31 



lx= O,<0,m>,<l,y»At.(t=0Ag(m)& y)v(t = lA g(m) + y)j| v 

{x= <2,<l,y>,<l,z»A[(t = 0Ay = z) v (t = lA y 4- z)j } v 

4x= <3,<l,y>,<l,z»A C(t = OAyez)v(t = lAy^z)J? 

Then the class AVal = $< x,g,t>; AVaKx ,g,t)i is stationary in­

ductive since Aval(x,g,t) is positive stationary in A, FN. 

Define the function F on V x c C x V as follows: 

F(g,/S ,u) = (g - *<|J ,g(/i)>* ) ̂-C < li ,u>* 

i.e., F(g,jS ,u) is the function resulting from g if we replace its 

value at (S by u. Now define the required formula p as follows: 

jD(x,g,t,Z)» xe FmlA geAA{<x,g,t> e AVal v 

(3y)t(x =<4,y>^t = 0A<y,g,l>e Z) v 

(x = < 4 , y > A t = l A < y , g , 0 > £ 1)1 v 

( 3 y , z ) E(x= < 5 , y , z > A t = 0 A < y , g , 0 > £ Z A < z , g , 0 > e Z ) v 

(x = < 5 , y , z > A t = l A « y , g , l > 6 Z v < z , g , l > £ Z ) 

( 3 k e FN)(3 y)C(x= <6 , k ,y>A t = 0A ( J z ) « y , F ( g , k , z ) , 0 > € Z ) ) v 

(x= <6 , k , y > A t = l A ( V z ) « y , F ( g , k , z ) , l > Z))J} . 

We can summarize fp as follows: 

p(x,g,t,Z)== xe FmlA g€ A A [<x,g,t> e AVal v 

(3k € FN)(3y)(Vz)6"(t,x,g,y,z,Z)J , 

where # is positive in Z and contains only inessential existenti­

al quant i f iers . It follows from 2 .1 and 2.2 that p is stationary 

in Z. That j> is positive stationary in Fml, A, AVal, FN is evid­

ent. Also all these class-parameters are stationary inductive as 

we proved earlier. We must also prove that induction by p closes 

in ft) steps but this is clear from the remarks following Th. 1.5. 

It remains to see that 

Val(x,g,t)«~*<x,g,t>el9-

Direction " —**• " is shown by induction on the length of the for­

mula x, while by induction on n we show that 

<x,g,t>6l£-->Val(x,g,t). 
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Proof of Theorem 3.1. The pair <Fml,Sat> is a code for Sdy 

since for every Xe. Sdv such that X
 s-fx;^(x)i, we have 

X = 4 g;Sat(x,g)} = Sat"«txi, where x is the Gbdel-set of <j> . From 

3.4 it follows that the code is inductive, and by 3.2 _SE = Ind. 
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