Commentationes Mathematicae Universitatis Caroline

Peter Maličký
The monotone limit convergence theorem for elementary functions with values in a vector lattice

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 1, 53--67
Persistent URL: http://dml.cz/dmlcz/106429

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

27.1 (1986)

THE MONOTONE LIMIT CONVERGENCE THEOREM FOR ELEMENTARY FUNCTIONS WITH VALUES IN A VECTOR LATTICE Peter MALIČKY

Abstract: A necessary and sufficient condition for the monntone limit convergence theorem for elementary functions with values in a vector lattice is found.

Key words: Vector lattice, inner regular measure space, elementary function.

Classification: 28B15

All papers on the integration theory of functions with values in a vector lattice are based on the assumption that a measure space (x, Ψ, μ) and a vector lattice are such that the following statement holds for every sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of elementary L function s defined on X :
$\left(\forall x \in X: f_{n}(x) \geqslant 0\right) \Longrightarrow\left(\int_{X} f_{n}(x) d \mu(x)\right) \searrow 0$.
This is the monotone limit convergence theorem.
This paper gives a necessary and sufficient condition for a vector lattice L so that the monotone limit convergence theorem holds for all "reasonable" measure spaces and any sequence of elementary L-functions.

Definition 1: A real vector space L is called a vector lattice if it has a partial ordering \leqslant such that:
(i) $\forall a_{1}, a_{2}, b_{1}, b_{2} \in L: a_{1} \leqslant a_{2}, b_{1} \leqslant b_{2} \Longrightarrow a_{1}+b_{1} \leqslant a_{2}+b_{2}$

$$
\begin{equation*}
\forall a, b \in L \quad \forall \lambda \in R: a \leq b, 0 \leq \lambda \Rightarrow \lambda_{a} \leq \lambda_{b} \tag{ii}
\end{equation*}
$$

$$
\begin{array}{r}
\forall a, b \in L \quad \exists c, d \in L: c \leq a, c \leq b, \forall c^{\prime} \in L: c^{\prime} \leq a, c^{\prime} \leq b \Rightarrow c^{\prime} \leq c \tag{iii}\\
a \leq d, b \leq d, \forall d^{\prime} \in L: a \leq d^{\prime}, b \leq d^{\prime} \Rightarrow d^{\prime} \leq d^{\prime} .
\end{array}
$$

The elements c, d are called infimum and supremum of a and b respectively and they are denoted by $a \wedge b$ and $a \vee b$.

Definition 2: Let L be a vector lattice and $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of elements of L. We say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ decreases to $a \in L$ and

```
write an}\\a(n->\infty) if
```

$\forall n: a_{n+1} \leq a_{n}, a \leq a_{n}$ $\forall a^{\prime} \in L:\left(\forall n: a^{\prime} \leq a_{n}\right) \Rightarrow a^{\prime} \leq a$.
The symbol $a_{n} \mathbb{T}$ is defined dually and we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ increases to a.

Definition 3: A vector latticé L will be called Archimedean if $\forall a \in L: a \geq 0 \Rightarrow\left(n^{-1} a\right) \geqslant 0(n \rightarrow \infty)$.

For a deeper theory of vector lattices see [1] and [4].

Definition 4: Let $(X, \boldsymbol{\mathcal { S }}, \mu)$ be a measure space, i.e., X be a set, $\mathscr{\varphi}$ be a σ-ring and μ be a σ-additive nonnegative set function, and L be a vector lattice.
A function $f: X \rightarrow L$ is called elementary, if
$\exists\left\{E_{j}\right\}_{j=1}^{m} \exists\left\{c_{i}\right\}_{i=1}^{m}: \forall j: E_{j} \in \mathscr{S}, \mu\left(E_{j}\right)<\infty, c_{j} \in L$ $\forall x \in X: f(x)=\sum_{j=1}^{m} c_{j} X_{E_{j}}(x)$.
The element $\sum_{j=1}^{\sum_{i}} c_{j} \mu\left(E_{j}\right)$ is called an integral of f and is denoted by $\int_{X} f(x) d \mu(x)$.

Proposition 5: The integral $\int_{x} f(x) d \mu(x)$ of an elementary function $f: X \rightarrow L$ does not depend on the representation $f(x)=$
$=\sum_{j=1}^{m} c_{j} X_{E_{j}}(x)$. For any elementary function $f: X \rightarrow L$ there exist $\left\{E_{j}^{\prime}\right\}_{j=1}^{k}$ and $\left\{c_{j}^{j}\right\}_{j=1}^{k}$ such that $\forall i, j: i \neq j \Rightarrow E_{i}^{\prime} \cap E_{j}^{j}=\varnothing$ and

$$
\forall x \in X: f(x)=\sum_{j=1}^{\&} c_{j}^{j} x_{E_{j}^{\prime}}(x)
$$

The proof does not differ from the case when L is the real line \mathbb{R}

Now we are going to find a condition for the monotone limit convergence theorem. Suppose that a vector lattice L is such that for any sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of elementary functions defined on $[0,1$) with the Lebesgue measure we have:
(1) $\left(\forall x \in[0,1): f_{n}(x) \geq 0(n \rightarrow \infty)\right) \Longrightarrow \int_{0}^{1} f_{n}(x) d x \geqslant 0(n \rightarrow \infty) . \quad$. Consider the sequence of decompositions $\left\{D_{n}\right\}_{n=0}^{\infty}$ of the interval $[0,1)$ into the intervals $\left[(k-1) 2^{-n}, k 2^{-n}\right) k=1, \ldots, 2^{n}$. Suppose, we have a sequence $\left\{f_{n}\right\}_{n=0}^{\infty}$ of elementary functions $f_{n}:[0,1) \rightarrow L$ which are consistent with the decomposition D_{n}, i.e.: $\exists\{a(n, k)\}_{n=0, k=1}^{2^{n}}: \forall n \forall k \in\left\{1, \ldots, 2^{n}\right\}: a(n, k) \in L$ and (2) $f_{n}(x)=a(n, k)$ whenever $x \in\left[(k-1) 2^{-n}, k 2^{-n}\right)$. The sequence $\left\{f_{n}\right\}_{n=0}^{\infty}$ is uniquely determined by the double sequence $\{a(n, \dot{k})\}_{n=0, k=1}^{2^{n}}$.

Suppose that the double sequence $\{a(n, k)\}_{n=0, k=1}^{\infty} 2^{n}$ is such that $a\left(n, k_{n}\right) \searrow 0$ for every sequence $\left\{k_{n}\right\}^{\infty} n_{n=0}$ such that $k_{0}=1$ and $\forall n$:
$: k_{n+1}=2 k_{n} \vee k_{n+1}=2 k_{n}-1$. Then (2) implies $\forall x \in[0,1): f_{n}(x) \geqslant$ $\forall 0(n \longrightarrow \infty)$.
From (1) we have $\int_{0}^{1} f_{n}(x) d x \ngtr 0(n \rightarrow \infty)$. Looking at (2) we see that $\left(2^{-n} \cdot \sum_{k=1}^{2^{m}} a(n, k)\right)>0(n \rightarrow \infty)$. The preceding consideration motivates us to formulate the following definition.

Definition 6. Let L be a vector lattice. A double sequence $\{a(n, k)\}_{n=0, k=1}^{\infty}$ of elements of L is called a dyadic tree. A sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$ is called a chain of the dyadic tree $\{a(n, k)\}_{n=0, k=1}^{\infty,} 2^{n}$ if there exists a sequence $\left\{k_{n}\right\}_{n=0}^{\infty}$ such that: $k_{0}=1$
$\forall n: k_{n+1}=2 k_{n} \vee k_{n+1}=2 k_{n}-1, b_{n}=a\left(n, k_{n}\right)$.
The dyadic tree $\{a(n, k)\}_{n=0, k=1}^{\infty} 2^{n}$ is called chain-decreasing to zero if all its chains decrease to zera.
We say that L satisfies the dyadic tree condition (briefly DTC), If $\left(2^{-n} \sum_{k=1}^{2^{m}} a(n, k)\right) 0(n \rightarrow \infty)$ for every dyadic tree $\{a(n, k)\}_{n=0, k=1}^{\infty}, 2^{n}$ which is chain decreasing to zero.

Theorem 7: Let L be a vector lattice such that the implication
$\left(\forall x \in[0,1): f_{n}(x) \forall 0\right) \Longrightarrow \int_{0}^{1} f_{n}(x) d x \not y 0$
holds for every sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of elementary functions defined on the interval $[0,1$) with Lebesgue measure. Then L is Archimedean and satisfies DTC.

Proof: The fact that L satisfies DTC was proved before the Definition 6. Suppose that L is not Archimedean, i.e.
$\exists a \in L: a \geq 0,\left(n^{-1} a\right)$ i $0(n \rightarrow \infty)$.
For every natural n define an elementary function
$f_{n}:[0,1) \rightarrow L$
$f_{n}(x)=0$ if $x \in\left[0,1-\frac{1}{n}\right)$
$f_{n}(x)=a$ if $x \in\left[1-\frac{1}{n}, 1\right)$.
Then we have:
$\forall x \in[0,1): f_{n}(x) \geq 0(n \rightarrow \infty)$ and
$\int_{0}^{1} f_{n}(x) d x=n^{-1}$ a $X_{ \pm} 0$, which is a contradiction.
Now we are going to precise the notion "reasonable" measure space.

Definition $8:$ Let $(X, \mathscr{S}, \boldsymbol{\mu})$ be a measure space. It is called inner regular if there exists a system $\mathscr{C} \subset \mathscr{S}$ such that: $\forall\left\{k_{n}\right\}_{n=1}^{\infty}:\left(\forall n: k_{n+1} \subset k_{n}, k_{n} \in \varphi, k_{n} \neq \theta\right) \Rightarrow \overbrace{m=1}^{\infty} k_{n} \neq \theta$. $\forall A \in \mathscr{S}: \mu(A)=\sup \{\mu(K): K=A, K \in \mathscr{C}\}$.

Proposition 9: (i) If (X, \mathscr{P}, μ) is an inner regular measure space and $A \in \mathscr{S}$ then $\left(A, \mathscr{\mathcal { S }}_{A}, \mu_{A}\right)$ is an inner regular space, where $\mathscr{S}_{A}=\{B: B \in \mathscr{P}, B \subset A\}$ and μ_{A} is the restriction of μ.
(ii) If X is a Hausdorff space and μ is a measure in Bourbaki's sense then $(X, \mathcal{B}(X), \mu)$ is an inner regular space.

The part (i) is obvious. The part (ii) follows from the Bourbaki's definition of measure, see [7] pp. 435-540. Our definition of the inner regular measure is less strict than Pfanzagl-Pierlo's definition of a compact approximable measure, but the idea is the same, see [2].

Lemma 10: Let (X, \mathscr{S}, μ) be a probability measure space and $\left\{E_{m, j}\right\}_{m=1, j=1}^{\infty} \ell_{m}$ be a system of \mathscr{S}-measurable sets such that
(3) $\forall m: X={ }_{j=1}^{\ell_{\text {im }}} E_{m, j}, j \neq i \Rightarrow E_{m, i} \cap E_{m, j}=\emptyset$
(4) $\forall m \forall s \in\left\{1, \ldots, \ell_{m+1}\right\} \quad \exists j \in\left\{1, \ldots, \ell_{m}\right\}: E_{m+1, s} \subset E_{m, j}$
(5) $\forall m \forall i, j \in\left\{1, \ldots, \ell_{m}\right\}, \forall r, s \in\left\{1, \ldots, \ell_{m+1}\right\}:$
$i<j, E_{m+1, r} \subset E_{m, i}, E_{m+1, s}<E_{m, j} \Longrightarrow r-s$
(6) $\forall m \quad \forall j \in\left\{1, \ldots, \mathcal{C}_{m}\right\}:\left(u\left(E_{m, j}\right)>0\right.$

Then:
(i) For every $\varepsilon>0$ there exists a system $\left\{\lambda_{m, j}\right\}_{m=1, j=1}^{\infty,}$
of dyadic-rational numbers such that:
(7) $\forall m \sum_{j=1}^{l_{m}} \lambda_{m, j}=1, \sum_{j=1}^{l_{m}}\left|\lambda_{m, j}-\mu\left(E_{m, j}\right)\right|<\varepsilon\left(1-2^{-m}\right)$
(8) $\forall_{m} \forall j \in\left\{1, \ldots, \ell_{m}\right\}: \lambda_{m, j}=\Sigma \lambda_{m+1, s}$, where the sum on the right hand side is taken over the set of all $s \in\left\{1, \ldots, \ell_{m+1}\right\}$
such that $E_{m+1, s}{ }^{e} E_{m, j}$.
(9) $\forall m \quad \forall j \in\left\{1, \ldots, \ell_{m}\right\}: \lambda_{m, j}>0$.
(ii) If moreover (x, \mathscr{S}, μ) is inner regular then $\forall \varepsilon>0$ $\exists E \in \mathscr{S}: \mu(E) \leq \varepsilon$ and $\forall\left\{j_{m}\right\}_{m=1}^{\infty}: \forall m: j_{m} \in\left\{1, \ldots, \ell_{m}\right\}^{\prime}$, $E_{m+1, j_{m+1}} \subset E_{m, j}, \stackrel{\infty}{m=1}_{\infty}^{E_{m, j_{m}}}=\quad \exists m_{0}: E_{m_{0}, j_{m}}=E$.

Proof: (i) The system $\left\{\lambda_{m, j}\right\}_{m=1, j=1}^{\infty,} \ell_{m}$ will be constructed by the induction with respect to m. Let $\varepsilon>0$ be fixed. Take $m=$ $=1$. If $l_{1}=1$ then put $\lambda_{1,1}=1$. If $\ell_{1}>1$ then for every $j \in$ © $\left\{1, \ldots, \ell_{1}-1\right\}$ let $\lambda_{1, j}$ be a dyadic rational number such that $0<\lambda_{1, j}<\mu\left(E_{1, j}\right)<\lambda_{1, j}+\frac{\varepsilon}{4 \cdot \ell_{1}}$. Such $\lambda_{1, j}$ exists because the set of all dyadic rational numbers is a dense set in $[0,1]$.

$$
\text { Put } \lambda_{1, l_{1}}=1-\sum_{j=1}^{\ell_{1}-1} \lambda_{1, j} \text {. Then } \lambda_{1, \ell_{1}}>\mu\left(E_{1, l_{1}}\right)>\lambda_{1, l_{1}}-
$$

- $\frac{\varepsilon}{4}$ and the system $\left\{\lambda_{1, j}\right\} \underset{j=1}{\ell_{1}}$ has the required properties.

Suppose that $\left\{\lambda_{m, j}\right\}_{j=1}^{\ell_{m}}$ has already been constructed. We are going to construct the system $\left\{\lambda_{m+1,}\right\}^{\ell_{m}=1}{ }_{s}$. From the properties (3) - (5) it follows that there exists a sequence of integers $\left\{p_{j}\right\}_{j=1}^{\ell_{m}+1}$ such that:

$$
\begin{aligned}
& 1=p_{1}<p_{2}<\ldots<p_{\ell_{m}}<p_{\ell_{m}+1}=\ell_{m+1}+1 \text { and } \\
& {\underset{p}{p+m^{-1}}}^{-1}=p_{j} E_{m+1, s}=E_{m, j} \text { for every } j \in\left\{1, \ldots, \ell_{m}\right\} .
\end{aligned}
$$

Let $s \in\left\{1, \ldots, \ell_{m+1}\right\}$, then $s \in\left\{p_{j}, \ldots, p_{j+1}-1\right\}$ for some $j \in\{1, \ldots$ $\left.\ldots, \boldsymbol{\ell}_{m}\right\}$. Let $\mu_{m+1, s}^{\prime}$ the the number $\frac{\mu\left(E_{m+1, s}\right)}{\mu\left(E_{m, j}\right)} \cdot \lambda_{m, j}$
Then we have:

$$
\begin{aligned}
& =\frac{\lambda_{m, j}}{\mu\left(E_{m, j}\right)} \cdot \mu\left(E_{m, j}\right)=\lambda_{m, j} \text { and } \\
& \sum_{s=1}^{l_{m+1}}\left|\mu_{m+1, s}^{\prime}-\mu\left(E_{m+1, s}\right)\right|=\sum_{j=1}^{l_{m m}} \sum_{s=1 y+1}^{1 y+1} \mu\left(E_{m+1, s}\right) \mid 1- \\
& -\frac{\lambda_{m, j}}{\mu\left(E_{m, j}\right)}\left|=\sum_{j=1}^{\ell_{m}}\right| 1-\frac{\lambda_{m, j}}{\mu\left(E_{m, j}\right)}\left|\sum_{\Delta=\eta_{j+j}}^{n_{k+1}-1} \mu\left(E_{m+1, s}\right)=\sum_{j=1}^{l_{m}}\right| 1- \\
& \left.-\frac{\lambda_{m, j}}{\mu\left(E_{m, j}\right)}\left|\mu\left(E_{m, j}\right)=\sum_{j=1}^{\ell_{m}}\right| \mu\left(E_{m, j}\right)-\lambda_{m, j} \right\rvert\,<\varepsilon\left(1-2^{-m}\right) .
\end{aligned}
$$

The last inequality is the inductive assumption.
Unfortunately $\mu_{m+1, s}^{\prime}$ are not dyadic rational and they must
be "repaired". We shall "repair" the numbers $\mu_{m+1, s}^{\prime}$ in the fol-
lowing way. Let $j \in\left\{1, \ldots, \ell_{m}\right\}$ be fixed. If $p_{j+1}=p_{j}+1$, then
the $\operatorname{set}\left\{p_{j}, \ldots, p_{j+1}-1\right\}$ has only one element p_{j} and $\mu_{m+1, p_{j}}^{\prime}=$ $=\lambda_{m, j}$, which is dyadic rational by the induction hypothesis
and we put $\lambda_{m+1, p_{j}}=\mu_{m+1, p_{j}}^{\prime}$. In this case $\mid \lambda_{m+1, p_{j}}$.

- $\mu_{m+1, p_{j}}^{\prime} \mid=0$. If $p_{j+1}>p_{j}+1$, then for all $s \in\left\{p_{j}, \ldots, \dot{p}_{j+1}-2\right\}$
take dyadic rational $\lambda_{m+1, s}$ such that
$0<\lambda_{m+1, s}<\mu_{m+1, s}^{\prime}<\lambda_{m+1, s}+\frac{\varepsilon}{2^{m+2} \ell_{m+1}}$
Let $\lambda_{m+1, p_{j+1}-1}$ be the number $\lambda_{m, j}-\sum_{\substack{n_{j}+1}} \lambda_{m+1, s}$. Then we have:
$\lambda_{m+1, p_{j+1}^{-1}}$ is dyadic rational,
$\lambda_{m+1, p_{j+1}^{-1}}>\mu_{m+1, p_{j+1}-1}^{\prime}>\frac{-\varepsilon\left(p_{j+1}-p_{j}-1\right)}{2^{m+2} \cdot \ell_{m+1}}+\lambda_{m+1, p_{j+1}-1}$

$\sum_{s=m_{j}}^{n_{s+1}^{-1}}\left|\lambda_{m+1, s}-\mu_{m+1, s}^{\prime}\right|<\left(\sum_{s=\mu_{j-1}-2}^{\mu_{j}} \frac{\varepsilon}{2^{m+2} \ell_{m+1}}\right)+\frac{\varepsilon\left(p_{j+1}-p_{j}-1\right)}{2^{m+2} \ell_{m+1}}=$
$=\frac{\varepsilon\left(p_{j+1}-p_{j}-1\right)}{2^{m+1} \ell_{m+1}}<\frac{\varepsilon\left(p_{j+1}-p_{j}\right)}{2^{m+1} \varepsilon_{m+1}}$
This means
$\sum_{s=1}^{\ell_{m+1}}\left|\lambda_{m+1, s}-\mu_{m+1, s}^{\prime}\right|=\sum_{j=1}^{\ell_{m}} \sum_{\Delta=1 \eta_{j}}^{l_{m+1}^{-1}}\left|\lambda_{m+1, s}-\mu_{m+1, s}^{\prime}\right|<$
$\frac{\varepsilon}{\left(\ell_{m+1}\right) 2^{m+1}} \sum_{j=1}^{\ell_{m}} p_{j+1}-p_{j}=\frac{\varepsilon}{2^{m+1} \ell_{m+1}}\left(p_{\ell_{m}+1}-p_{1}\right)=$
$=\frac{\varepsilon}{2^{m+1} \ell_{m+1}}\left(\ell_{m+1}+1-1\right)=\frac{\varepsilon}{2^{m}+1}$. Therefore $\sum_{\ell_{m+1}}^{\ell_{\ell_{m+1}}^{\ell_{m+1}} \mid \lambda_{m+1, s}-. . ~ . ~ . ~}$
$-\mu\left(E_{m+1, s}\right)\left|\leq \sum_{s=1}^{l_{m+1}}\right| \lambda_{m+1, s}-\mu_{m+1, s}^{\prime}\left|+\sum_{m=1}^{\ell_{m+1}}\right| \mu_{m+1, s}^{\prime}-$
$-\mu\left(E_{m+1, s}\right) \left\lvert\,<\varepsilon\left(1-\frac{1}{2^{m}}\right)+\frac{\varepsilon}{2^{m+1}}=\varepsilon\left(1-\frac{1}{2^{m+1}}\right)\right.$.
The proof of (i) is complete.
(ii) Now let (X, \mathscr{S}, μ) be an inner regular probability measre space and \mathscr{C} be a system such that: $\mathscr{C} \subset \mathscr{Y},\left(\forall n: K_{n} \in \mathscr{C} \cdot K_{n+1}{ }^{c}\right.$ $\left.\subset K_{n}, K_{n} \neq \emptyset\right) \Longrightarrow \bigcap_{n=1}^{\infty} K_{n} \neq \emptyset$ and $\forall A \in \mathscr{S}: \mu(A)>0 \Longrightarrow \forall \varepsilon>0 \exists K \in$ $\in \mathscr{C}: \mu(A-K)<\varepsilon$. Let $\varepsilon>0$ be fixed. We shall construct a system $\left\{K_{m, j}\right\}^{\}_{m=1}^{\infty}, \quad \ell_{m}}$ such that:
(10) $\forall m, \forall j \in\left\{1, \ldots, \ell_{m}\right\}^{\xi}: K_{m, j} \subset E_{m, j}, K_{m, j} \in \mathcal{C} \vee K_{m, j}=\emptyset$
(11) $\forall \boldsymbol{\forall}, \forall j \in\left\{1, \ldots, \dot{x}_{m}\right\} \forall s \in\left\{1, \ldots, \ell_{m+1}\right\}: E_{m+1, s} \subset E_{m, j} \Rightarrow$

$$
\Rightarrow K_{m+1, s} \subset K_{m, j}
$$

(12) $\forall m \sum_{j=1}^{\sum_{m}} \mu\left(K_{m, j}\right)>1-\varepsilon\left(1-2^{-m}\right)$.

The system $\left\{K_{m, j}\right\}^{\}_{m}^{\infty}, \ell_{m}, j=1}$ will be constructed by the induction with respect to m. Take $m=1$. For all $j \in\left\{1, \ldots, \ell_{1}\right\}$ let $k_{1, j}$ be
a set such that $K_{1, j} \in \mathscr{\mathcal { C }}, K_{1, j} \subset E_{1, j}$ and $\mu\left(E_{1, j}-K_{1, j}\right)<$ $<\frac{\varepsilon}{2 \cdot \ell_{1}}$. The system $\left\{k_{1, j}\right\}^{\ell_{1}=1}$ has the required properties. Let m be a fixed integer. Sippose that for all $m^{\prime} \leqslant m$ we have constructed the systems $\left\{K_{m^{\prime}, j}\right\}_{j=1}^{\ell_{m^{\prime}}}$ such that (10) - (12) are satisfied for all $\mathrm{m}^{\prime} \leqslant \mathrm{m}$. We are going to construct the system $\left\{\mathrm{K}_{\mathrm{m}+1,}\right\}_{\mathrm{s}=1}^{\boldsymbol{l}_{\mathrm{m}+1}}$. Let $\left\{p_{j}\right\}_{j=1}^{\ell_{m}+1}$ be a sequence of integers such that:

$$
1=p_{1}<p_{2}<\ldots<p_{\ell_{\mathrm{m}}}<p_{\ell_{\mathrm{m}}+1}=\boldsymbol{\ell}_{\mathrm{m}+1}+1 \text { and }
$$

Let $s \in\left\{1, \ldots, \ell_{m+1}\right\}$ then $s \in\left\{p_{j}, \ldots, p_{j+1}-1\right\}$ for some $j \in\{1, \ldots$ $\left.\cdots, \ell_{m}\right\}$. If $\mu\left(E_{m+1, s} \cap k_{m, j}\right)=0$, let $k_{m+1, s}$ be \emptyset. If $\mu\left(E_{m+1, s} \cap K_{m, j}\right)>0$, let $K_{m+1, s}$ be a set such that $K_{m+1, s} \in \mathscr{\varphi}$, $K_{m+1, s} \subset E_{m+1, s} \cap K_{m, j}$ and $\mu\left(\left(E_{m+1, s} \cap K_{m, j}\right)-K_{m+1, s}\right)<$ $\frac{\varepsilon}{2^{m+1} \ell_{m+1}}$. Then (10) and (11) are satisfied and $\sum_{s=1}^{\ell_{m+1}} \mu\left(K_{m+1, s}\right)=\sum_{j=1}^{\ell_{m}} \mu\left(K_{m, j}\right)-\sum_{j=1}^{l_{m n}} \sum_{s=\eta_{j}}^{r_{j+1}^{-1}} \mu\left(\left(E_{m+1, s} \cap K_{m, j}\right)-\right.$ $\left.-K_{m+1, s}\right)>1-\varepsilon\left(1-\frac{1}{2^{m}}\right)-\varepsilon \frac{1}{2^{m+1}}=1-\varepsilon\left(1-2^{-(m+1)}\right)$.
The system $\left\{k_{m, j}\right\}_{m=1, j=1}^{\infty}, \ell_{m}$ is constructed Let $E=X-(\bigcap_{m=1}^{\infty} \underbrace{\ell_{m}}_{j=1} K_{m, j})$. Then $\mu(E) \leqslant \varepsilon$ and E has the required property.
Let $\left\{j_{m}\right\}_{m=1}^{\infty}$ be a sequence such that for all m :

$$
\begin{aligned}
& j_{m} \subset\left\{1, \ldots, \ell_{m}\right\}, E_{m+1}, j_{m+1} \subset E_{m, j} \text { and } \overbrace{m=1}^{\infty} E_{m, j_{m}}=\emptyset \\
& \text { Then for some } m_{0} \text { we must have } k_{m_{0}}, j_{m_{0}}=\emptyset \text {. In the opposite case we }
\end{aligned}
$$ would have a sequence $\left\{K_{m, j_{m}}\right\}_{m=1}^{\infty}$ such that $\forall m: K_{m, j_{m}} \neq \emptyset, K_{m, j_{m}} \subset \mathcal{C}$, $K_{m+1, j_{m+1}} \subset K_{m, j_{m}}$ and $\emptyset \not \overbrace{m=1}^{\infty} K_{m, j} \subset \overbrace{m=1}^{\infty} E_{m, j_{m}}$, which is a contradiction. Since $K_{m_{0}, j_{m_{0}}}=\varnothing$, then $E_{m_{0}, j_{m_{0}}} \cap K_{m_{0}, j_{m_{0}}}=\varnothing$. If $j \in\{1, \ldots$ $\left.\ldots, \ell_{m_{0}}\right\}, j \neq j_{m_{0}}$, then $E_{m_{0}, j_{m_{0}}} \cap K_{m_{0}}, j=\emptyset$, because $K_{m_{0}}, j \in$ $c E_{m_{0}, j}$ and $E_{m_{0}, j_{m_{0}}} \cap E_{m_{0}, j}=$ by (3). Therefore $E_{m_{0}, j_{m_{0}}} \subset x$ -

The proof of (ii) is complete.

Theorem 11: For every vector lattice L the following properties are equivalent:
(i) L is Archimedean and satisfies DTC.
(ii) For every inner regular measure space (X, \boldsymbol{f}, μ) and every sequence $\left\{f_{m}\right\}_{m=1}^{\infty}$ of elementary functions $f_{m}: X \rightarrow L$ the following implication holds:
$\left(\forall x \in X: f_{f}(x) \searrow 0(m \rightarrow \infty)\right) \Longrightarrow \int_{x} f_{m}(x) d \mu(x) \geq 0(m \rightarrow \infty)$.
Proof: The implication (ii) \Rightarrow (i) follows from the Theorem
7. Let L be an Archimedean vector lattice with DTC property, (x, \mathcal{y}, μ) be an inner regular measure space and $\left\{f_{m}\right\}_{m=1}^{\infty}$ be a sequence of elementary L-functions decreasing to zero. There exist systems $\left\{E_{m, j}\right\}_{m=1, j=1}^{\infty, \quad \ell_{m}},\left\{c_{m, j}\right\}_{m=1, j=1}^{\infty, \ell_{m}}$ such that

$$
\begin{aligned}
& \forall m \forall j \in\left\{1, \ldots, \ell_{m}\right\}: E_{m, j} \in \mathscr{C}, \mu\left(E_{m, j}\right)<\infty, c_{m, j} \in L \\
& \forall m \forall x \in X: f_{m}(x)=\sum_{j=1}^{\ell_{m v}} c_{m, j} \cdot x_{E_{m, j}}(x) .
\end{aligned}
$$

Since $\mu\left(\bigcup_{j=1}^{\ell_{1}} E_{1, j}\right)<\infty$ and $f_{m}(x) \geqslant 0$ for every $x \in X$, without loss of generality we may assume that (x, φ, μ) is an inner
regular probability measure space and the system $\left\{E_{m}, j^{3^{\infty}}{ }_{m=1, j=1}^{\ell_{m}}\right.$ has the properties (3) - (6) of the Lemma 10.

Let $\left\{j_{m}\right\}_{m=1}^{\infty}$ be a sequence of integers such that

$$
\begin{equation*}
\forall m: j_{m} \in\left\{1, \ldots, \ell_{m}\right\}, E_{m+1, j_{m+1}} \subset E_{m, j_{m}} . \tag{13}
\end{equation*}
$$

Since $f_{m}(x) \geqslant 0$, we have $c_{m+1}, j_{m+1} \leqslant c_{m, j_{m}}$, but we are not able to prove that $c_{m}, j_{m} \geqslant 0$. But when $\overbrace{m=1}^{\infty} E_{m, j_{m}} \neq \varnothing$, we have $c_{m}, j_{m} \neq 0$, because $c_{m, j_{m}}=f_{m}(x)$ for some $x \in \underset{m=1}{\infty} E_{m, j_{m}}$. We are going to modify the system $\left\{c_{m, j} j^{\}^{\infty}=1, \ell_{m}=1} \boldsymbol{\ell}_{m}\right.$. Let $\varepsilon>0$ be a real number. By Lemma 10 there exists a system $\left\{\lambda_{m, j}\right\}$ with the properties (7) - (9) and a set $E \in \mathcal{Y}$ such that:
(14) $\mu(E)<\varepsilon$

$$
\begin{align*}
& \forall\left\{j_{m}\right\}_{m=1}^{\infty}:\left(\forall m: j_{m} \in\left\{1, \ldots, \ell_{m} \mathfrak{q}, E_{m+1} \cdot j_{m+1} \subset E_{m, j_{m}}\right) \Rightarrow\right. \tag{15}\\
& \quad \Rightarrow \exists m_{0}: E_{m_{0}, j_{m_{0}}}=E
\end{align*}
$$

Put
(16) $r_{m, j}= \begin{cases}c \\ m, j & \text { if } E_{m, j} \notin E \\ 0 & \text { if } E_{m, j} \subset E\end{cases}$

Then we have:
(17) $d_{m, j_{m}} \because 0(m \rightarrow \infty)$ for every sequence $\left\{j_{m}\right\}_{m=1}^{\infty}$ with the property (13).
If $\overbrace{m=1}^{\infty} E_{m, j_{m}} \neq \emptyset$, then $0 \leqslant d_{m, j_{m}} \leqslant c_{m, j_{m}}=f_{m}(x) v 0$ for some
$x \in \underset{m=1}{\infty} E_{m, j_{m}}$. If ${\underset{m}{m}=1}_{\infty}^{\infty} E_{m, j_{m}}=\varnothing$, then $d_{m, j_{m}}=0$ for all $m \geq m_{0}$ by
(15) and (16).

We are going to prove that $\left(\sum_{j=1}^{\sum_{m}, ~} d_{m, j} \cdot \lambda_{m, j}\right) \searrow 0(m \rightarrow \infty)$. We

$\lambda_{m, j}$ are dyadic rational with the properties (7) and (8), there
exist sequences of natural numbers $\left\{n_{m}\right\}_{m=1}^{\infty}$ and $\left\{t_{m, j}\right\}_{m=1, j=1}^{\infty, \ell_{m}}$ such that
(18) $\quad \lambda_{m, j}=t_{m, j} 2^{-n_{m}}, t_{m, j} \in\left\{1, \ldots, 2^{n_{m}}\right\}$.

We may assume that the sequence $\left\{n_{m}\right\}^{\infty} \infty=1$ is increasing, i.e.
$n_{1}<n_{2}<\ldots<n_{m}<n_{m+1}<\ldots$. If $0<n<n_{1}$ we put:
(19) $a(n, k)=\mathcal{V}_{j=1}^{\ell_{1}} d_{1, j}$ for all $k \varepsilon\left\{1, \ldots, 2^{n}\right\}$.

If $n_{m}<n<n_{m+1}$ and $k \in\left\{1, \ldots, 2^{n}\right\}$ we put:
(20) $a(n, k)=d_{m, j}$ where j is a natural number such that:
(21) $\left(\sum_{m=1}^{j-1} t_{m, s}\right) 2^{n-n_{m}}<k \leq\left(\sum_{s=1}^{j} t_{m, s}\right) 2^{n-n_{m}}$

From (18) and (7) we have ($\sum_{=1}^{\ell_{m}} t_{m, s}$) $2^{n-n_{m}}=2^{n}$, which means that j is uniquely determined by k and $j \in\left\{1, \ldots, \ell_{m}\right\}$. We are going to show that the dyadic tree $\{a(n, k)\}_{n=0, k=1}^{2^{n}}$ is chain-decreasing to zero. Let $\left\{k_{n}\right\}_{n=0}^{\infty}$ be a sequence such that:
(22) $k_{0}=1, \forall n: k_{n+1} \in\left\{2 k_{n}, 2 k_{n}-1\right\}$.

If $n<n_{1}$ then we have from (19):
(23) $a\left(n, k_{n}\right)={\underset{j}{1}}_{\ell_{1}} d_{1, j}$.

For every natural m let $j_{m} \in\left\{1, \ldots, \ell_{m}\right\}$ be such that
(24) $\quad \sum_{s=1}^{-1+j m} t_{m, s}<k_{n_{m}} \leqslant \sum_{s=1}^{i m} t_{m, s}$.

Then we have:
(25) $a\left(n, k_{n}\right)=d_{m, j_{m}}$ whenever $n_{m} \leqslant n<n_{m+1}$ and
(26) $E_{m+1, j_{m+1}} \subset E_{m, j_{m}}$ for all m.
(25) follows from (24),(22),(21) and (20).

We are going to show (26).

Let m be a fixed natural number and $\left\{p_{j}\right\}_{j=1}^{1+\ell_{m}}$ be a sequence such that:

$$
\begin{equation*}
1=p_{1}<p_{2}<\ldots<p_{\ell_{m}}<p_{\ell_{m}+1}=\ell_{m+1}+1 \text { and } \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\bigcup_{s=p_{j}}^{-1_{+} n_{j+1}} E_{m+1, s}=E_{m, j} \tag{28}
\end{equation*}
$$

(see the proof of Lemma 10).
Since the both sides in (24) are integers, it may be rewritten as $\left(\sum_{s=1}^{-1+i_{m}} t_{m, s}\right)+1 \leq k_{n_{m}} \leq \sum_{s=1}^{j m} t_{m, s}$. Using (28),(3)-(5), (8) and (18), we have
$2^{-\left(n_{m+1}-n_{m}\right)}\left(\left(\sum_{i=1}^{-1+k_{j_{m}}} t_{m+1, i}\right)+1\right) \leq k_{n_{m}} \leq\left(\sum_{i=1}^{-1+m i+j_{m}} t_{m+1, i}\right) 2^{-\left(n_{m+1}-n_{m}\right)}$. The inequality $2^{n_{m+1}-n_{m}}\left(k_{n_{m}}-1\right)<k_{n} \leq 2^{n_{m+1}} 1^{-n_{m}} k_{n_{m}}$ follows from (22) by the induction. Comparing the last two inequalities we have: $\sum_{i=1}^{-1+p j_{m}} t_{m+1, i}<k_{n_{m+1}} \leq \sum_{i=1}^{-1+\sum_{1+1} j_{m}} t_{m+1, i}$. Looking at (24) we see that $j_{\mathfrak{m}+1}$ must be found in the set $\left\{p_{j_{m}}, \ldots, p_{j_{m}+1}-1\right\}$, which proves (26).

$$
\text { Finally }\{a(n, k)\}_{n=0, k=1}^{\infty, 2^{n}} \text { is chain-decreasing to zero by (25), }
$$

(26) and (17). Since L satisfies DTC, we have:
$\left(2^{-n} \sum_{k=1}^{2^{n}} a(n, k)\right) \downarrow 0(n \rightarrow \infty)$ and $\left(2^{-n_{m}} \sum_{k=1}^{2^{n} m} a\left(n_{m}, k\right)\right) \searrow 0(m \rightarrow \infty)$, which means
(29) $\quad\left(\sum_{j=1}^{\ell_{m}} \lambda_{m, j} d_{m, j}\right) \searrow 0(m \rightarrow \infty)$ by (20) and (18).

Computing integrals of f_{m} and using (16),(14), (3) and (7) we ob-

$$
\begin{aligned}
& \text { tain: } \\
& \int_{x} f_{m}(x) d \mu(x)=\sum_{j=1}^{\ell_{m}} c_{m, j} \mu\left(E_{m, j}\right)=\sum_{j=1}^{\ell_{m}} d_{m, j} \lambda_{m, j}+ \\
& +\sum_{j=1}^{\ell_{m}} d_{m, j}\left(\mu\left(E_{m, j}\right)-\lambda_{m, j}\right)+\sum_{j=1}^{\ell_{m}}\left(c_{m, j}-d_{m, j}\right) \mu\left(E_{m, j}\right) \leq \\
& \leq \sum_{j=1}^{\ell_{m}} d_{m, j} \lambda_{m, j}+2 C \varepsilon, \text { where } c=\bigvee_{i} c_{1, j} .
\end{aligned}
$$

From (29) it follows
$\bigcap_{m=1}^{\infty}\left(\int_{x} f_{m}(x) d \mu(x)\right) \leq 2 C \varepsilon$.
Since L is Archimedean and ε is an arbitrary positive real number, we have: $\left(\int_{x} f_{m}(x) d \mu(x)\right)>0(m \rightarrow \infty)$. The proof is complete.

Now, we shall give some examples of vector lattices satisfying DTC.

Proposition 12: The vector lattice \mathbb{R} of all real numbers with natural operations and order satisfies DTC.

Proof: The monotone limit convergence theorem holds for real functions.

Proposition 12 may be proved also in a direct way using Dini's theorem for compact spaces.

Definition 13: A vector lattice L is called separative if for every $x, y \in L, x \neq y$, there exists a linear form $f: L \rightarrow \mathbb{R}$ such that:
$\forall a \geq 0: f(a) \geq 0$
$\left.\forall \tan _{n}\right\}_{n=1}^{\infty} \cdot a_{n} \geqslant 0(n \rightarrow \infty) \Longrightarrow f\left(a_{n}\right) \searrow 0$
$f(x) \neq f(y)$.

Theorem 14: Any separative vector lattice satisfies DTC. This fact follows from the Definitions 2, 6 and 13. It follows also from the results of Šipoš paper [5].

Theorem 15: Let (Y, τ, ν) be a $\tilde{\sigma}$-finite measure space (not necessarily inner regular). For all $p \in(0, \infty]$ the vector lattice $L^{P}\left(Y, J^{\prime}, \nu^{\prime}\right)$ satisfies DTC.

Proof: If $p \in[1, \infty]$ then $L^{p}(Y, \mathcal{N}, \nu)$ is separative and satisfies DTC - Theorem 14. If $\rho \in(0,1)$ then $L^{P}(Y, \mathcal{T}, \mathcal{Y})$ need not be
separative (see [4] p. 318), but it also satisfies DTC. We shall use the fact that $L^{\infty}(Y, \mathcal{J}, \nu)$ satisfies DTC which was shown above. Let $\left\{f_{n, k^{\prime}}\right\}_{n=0, k=1}^{\infty}$ be a dvadic tree of functions $f_{n, k} \in L^{p}(Y, \mathcal{T}, \nu)$ which is chain-decreasing tozero.

Put $g_{n, k}(x)= \begin{cases}\frac{f_{n, k}(x)}{f_{0,1}(x)}, & \text { if } f_{0,1}(x) \neq 0 \\ 0, & \text { if } f_{0,1}(x)=0 .\end{cases}$
Then $\forall n: \forall k \in\left\{1, \ldots, 2^{n}\right\}: 0 \leqslant g_{n, k} \leqslant 1$, i.e.: $g_{n, k} \in L^{\infty}(Y, \mathcal{J}, \nu)$. Moreover, the dyadic tree $\left\{g_{n, k^{\prime}}\right\}_{n=0, k}^{\infty}, 2^{n}$, is chain-decreasing to zera. Therefore, $\left(2^{-n} \sum_{k=1}^{2^{m}} g_{n, k}\right) \ngtr 0$ which means $\left(2^{-n} \sum_{k=1}^{2^{n}} f_{n, k}\right) \searrow 0$.

References

[1] JAMESON, G.: Ordered Linear Spaces, Berlin 1970.
[2] PFANZAGL,J., PIERLO, W.: Compact systems of sets,Berlin 1966.
[3] RIEČAN, B.: 0 prodolženii operatorov so značeniami v linejnych poluuporiadočennych prostranstvach, Čas.Pěst.Mat. 93 (1968), 459-471.
[4] SCHAEFER, H.H.: Topologičeskije vektornyje prostranstva, Moskva 1971.
[5〕 ŠIPOŠ, J.: Integration in partially ordered linear spaces, Math.Slovaca 31(1981), 39-51.
[6] WRIGHT, J.D.M.: The measure extension problem for vector lattices, Ann.Inst.Fourier 21,Fasc.4(1971), 65-85.
[7.] BOURBAKI, N. : Integrirovanije, Moskva 1977.
KTPaMŠ MFF UK, Mlynská dolina, 842 15, Bratislava,
Czechoslovakia
(Oblatum 17.4. 1985)

