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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27.1 (1986) 

DESTABILIZING EFFECT OF UNILATERAL CONDITIONS 
IN REACTION-DIFFUSION SYSTEMS 

Milan KUČERA, Jiří NEUSTUPA 

Abstract: Stationary solutions of reaction-diffusion systems 
with unilateral constraints are considered. It is shown in examp
les that the spatially homogeneous stationary solution of the sys
tem with unilateral constraints can be unstable even for diffusion 
coefficients for which it is stable as a solution of the classical 
problem with Neumann conditions. A general result of this type is 
announced. 

Key words: Reaction-diffusion system, unilateral conditions, 
inequalities, destabilization, spatially homogeneous stationary 
solution, eigenvalue. 

Classification: 35B30, 35B35, 35P30 

Introduction. Consider a reaction- diffusion system of the 

type 

ft-"l-$-"u.v) 

(RD) for [t,xJ € <"0,co)x <T0,1> 

8v .u 8 2v / x 

** 2T7 + 9 ' 
o 

where f, g are real functions on (R , dlt d2 are positive parame

ters (diffusion coefficients). First, consider Neumann boundary 

conditions 
(NO f^t.O) = |£(t,l) = §£<t,0) = |~(t,l) = 0 on<0,eo). 

In some cases connected with chemical and biological models there 

exists a stationary spatially homogeneous (constant) solution u,v 

of (RD), (NC) (i.e. f(u,v) = g(G,v) = 0) which is stable only 
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for some parameters d,, d2 (lying in so called domain of stabili

ty). See e.g. LlOj,CllJ. 

The aim of this paper is to show how this situation can chan

ge by introducing unilateral c o n d i t i o n s . We give simple examples 

and announce one general result showing that "u, v can be an unstab

le solution of (RD) or at least of its linearization with unilate

ral conditions even for some d,, d« lying in the domain of stabi

lity of (RD), (NC) . One of the simplest examples of unilateral con

straints we have on mind are boundary conditions 

(1) l£ ( t>0 ) = Ulx>l) = °» ix- ( t'0) = °» 
v(t,l)r> v, |y:(t,l)>0, (v(t,l)-v) f~(t,l) = 0 on <0 + « ? ) . 

The stability of a stationary solution of any initial value prob

lem ( e . g . of (RD), (NC) or (RD) with some unilateral conditions) 

is understood in the following sense: If , v is stable with respect 

to a given norm II • H if for any e, > 0 there exists <f >- 0 such 

that any solution u,.v of the problem considered satisfying 

llu(t0,O-u X < <f , • Ilv(t ,0-v II < <f for some tQ is defined on 

<(t0, + co) and ll_u(t,-)-u \< * , II v(t, O-v II < £ for all t€<tQ,-M»); 

u,v is unstable if it is not s t a b l e . In all examples below, we 

shall show an instability with respect to any arbitrary norm. 

In what follows we shall suppose u = v" = 0 without loss of 

generality. 

We shall study mainly a destabilizing influence of unilateral 

conditions for the linearization 

2 

4 T " dl §^ + bll U + b 1 2 v 

(RDL) 

4 ? • d2 f ^ + b21 u + b22 v 
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of (RO), where b n = g(u,v), b 1 2 -|£<H,v), b 2 1 = § £ ( * : * ) , 

b 2 2=|A(u,v). 

The main idea is to show the existence of a positive eigenva

lue of the problem 

d. SL-Si + b,-u + b10v = Au 1 3^1 11 12 

(R0
Л
) 

d
0
 -L__l + b

0
,u + b

00
v = Лv j i. _• T

 U r ) 1
u -* u

0 0
v 

2
 ix

2 21 22 JX 

with the corresponding unilateral conditions and with some d,„ d
2 

from the domain of stability of (RD), (NC). The instability of the 

trivial solution of (RD,) with the corresponding unilateral condi

tions is an easy consequence. In one situation we shall show that 

it means also the instability for the original nonlinear system 

(RD) with unilateral conditions . 

Notice that some abstract results of the mentioned type are 

proved in -5l,t6l. An influence of unilateral constraints to the po

sition of the first bifurcation point of the corresponding statio

nary problem is studied in 14_l , 193 . 

Remark 1. (Domains of stability and instability - classical 

case. See e.g. tlO],tll] .) Let us denote 

B = 
/Ь_i.ь

1 2
\ Ђ я / -.0 4 

V ь
2 1
, ь

2 2
/
 v

 0,1 ' 

Suppose that the assumption 

(2) b
1 1
> 0 , b

2 1
> 0 , b

12
-<0, b

2 2
< 0 , b

n
 + b

2 2
< 0 , det B> 0 

is fulfilled. This is true in some models from chemistry and bio

logy where u and v represents a density of an activator (or a prey) 

and a density of an inhibitor (or a predator), respectively. Remem-
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ber that the trivial solution of (RDL), (NC) is stable if all ei

genvalues of (RD^), (NC) have nonpositive real parts and it is un

stable if there is an eigenvalue of (ROO, (NC) with a positive 

real part. Any solution U = f,u,vj of (RD^), (NC) can be written as 

CO 

U(x) = 21A C cos n fl* x 

(with some Cne fR
2, n = 0,1,2,...) and therefore (RD,), (NC) is 

equivalent to the system 

Un*r)2D - B + A E J Cn = 0, n = 0,1,2,... . 

It follows that A is an eigenvalue of (RD^), (NC) if and only if 

(3) A2 - [(bn + b22) - (dx + d2) (n?r)
2JA + 

+ [ b u - (n*r)2 dxJ • [b22 - (n#)
2 d2J- b 1 2b 2 1 = 0 

for some n. 

In this case U(x) = C cos n # x is the corresponding eigenvector. 

Denote by F the hyperbolic curve in the quadrant d,, d2£ 0 given 

by 

U 1 1 - (nir)2 d 13-Tb 2 2 - (ntf )
2 d22 - b12b21 = 0 

(n = 1,2, ...) and let ? be the envelope of P , n = 1,2,... (see 

Fig. 1). Elementary investigation of the roots of (3) shows that 

for any d1,d2> 0 all the complex eigenvalues of (RD.), (NC) have 

negative real parts; for d,, d2 on the right from F all the re

al eigenvalues are negative; for d,, d2 on the left from F there 

exists a positive real eigenvalue of (RD,), (NC). Hence, P divi

des the quadrant d,,d2> 0 onto the domain of stability (on the 

right from P ) and the domain of instability (on the l e f t from!"1). 

See Fig. 1. 

Example 1. Let (2) hold. Consider (RD. ) with unilateral con

ditions 
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(4) 

u
x
(t,o) = v

x
(t,o) = o, u(t,i)гo, v(t,i)гo, 

u
x
(t,i)гo, v

x
(t,i)гo, u(t,i)u

x
(t,i)=v(t,i)v

x
(t,i) = o . 

The corresponding boundary conditions for the eigenvalue problem 

(RD.) read 

(4') 

u
x
(o) = v

x
(o) = o, u(i)гo, v(i)гo, 

u
x
(l)20, v

x
(l)Г0, u(l)u

x
(l) = v(l)v

x
(l) = 0 . 

Let us search for nonnegative eigenvalues of (RD*), (4') correspor-

ding only to eigenvectors of the form [u
k
,v.3with 

(5) v
k
(x) = (-l)

k+1
 cos(k + \) * x . 

It follows from the second equation in (RD*) that 

(6) u. (x) = (-l)
k+1 [tr-£(k + i ) 2 * 2 - JZ—Jcos(k + i) <?r x. 

K D 2 l l D 2 l L 

The boundary conditions (4') are fulfilled with respect to (2) 

for X 2 0. It is easy to see (by substituting into (RD,)) that 

X > 0 is an eigenvalue corresponding to uk,vk if and only if 

X2 - [ < b n + b2 2 ) - (d x + d 2 ) ( k + \)2X21& + 

(7 ) 
+ [ b x l - (k + \)2 ir2 dxJ • Cb9 2 - (k + \)2 n2 d2J -

" b 1 2 b 2 1 = 0 . 

Denote by !"\ (k = 0 , 1 , . . . ) the hyperbolic curve in the quadrant 

d - , d 2 > 0 defined by 

[ b n - (k + \)2K2 d-J . [ b 2 2 - (k + \)2n2 d2] - b 1 2 b 2 1 = .0 

and let T* be the envelope of f*., k = 0,1,2,... (see Fig. 2). 

It follows from an elementary investigation of the roots of (7) 

that for any 6^t d2 on the left from f* there exists a positive 

eigenvalue X of (RD*), (4') with the corresponding eigenvector 

uk,vk from (5),(6) for some k. The couple u(t,x) = exp (Xt) • 
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» gu. (x), v(t,x) =• exp (^t).i5vk(x) with an arbitrary small 6 > 0 

is a classical solution of (RD,),(4) satisfying lim llu(t,Ol = 
L t -• +<» 

= lim exp (At).eflu. Il = + <x> , lim l)v(t,*•) 1) = + ao for any 
%-***> k t >+<*> ^ 

arbitrary norm H • « . Hence, for d,, d« on the left from P , the 

trivial solution of (RD. ),(4) is unstable. A comparison of P with 

P from Remark 1 shows that there is a nonempty intersect )n of 

the domain of instability of ( R D , ) , ( 4 ) with the domain of stabili

ty of the classical problem (see Fig. 2 ) . 

Example 2.(A simple free boundary p r o b l e m . ) Consider the 

problem 

(8) ut = d i u
x x

 + -̂ iiU *t-,b-»i2v o n ^°>ao^ x ^°>-^> 

f vt " d2vxx " b21 u " b 2 2 v e 0 ' v ? 0 ' 
(9) 4 

^vt " d2vxx " b21 u " b22 v^ v = ° a,e" o n ^ ° > a > ) x<0,l>, 

(10) v is continuous on <0, + oo) x <0,1>, (NC) holds, 

where (8) can be understood in the classical sense, (9) should be 

fulfilled a.e. on <0,<-©) x <0,1> with the derivative v. existing 

a.e. on < 0 , c o ) x <0, 1> . It is another formulation of the free boun

dary problem 

u. = cliuxx + bll u + Dio v o n ^° ,oc>^ x ^°>-^> 

(11) vt = d2vxx + b21 u + b22 v o n Q+' 

v = 0 on <0,oo) x <0,1>\Q +, v is continuous on 

<0,oo) x <0,1> , (NC) holds, 

where the domain Q+ - «{i t ,xj s <0,a.>) x<0,l>; v(t,x)>0{ is un

known. We shall neither give here a precise definition of the so

lution (this will be given in a more general setting in Remark 5) 

nor discuss its existence and properties. We want to show only 

that under the assumption 
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(12) b u > 0 , b 2 1 ^ 0 

spatially homogeneous classical solutions tending to infinity (as 

t ~-> + co ) start in any neighbourhood of the origin . For this, it 

is sufficient to realize that for any £ ^ 0 the couple u(t,x) = 

= exp (bi:it) § , v(t, x) = 0 satisfies (8)-(10) c lass ica l ly . It 

follows that the trivial solution of (8)-(10) ( i . e . of (ID) is un

stable for any d,, d? (even for those from the domain of stability 

of (RDj), (NC) under the assumption (2) -.see Remark 1). Moreover, 

this is an instability even with respect to spatially constant so

lutions only. 

2 Remark 2. (A motivation for inequalities in fR .) A couple 

of functions u(t), v(t) is a spatially constant solution of (8)-

(10) if and only if 

u. - b^u - b,2v = 0 on^OjOo), 

(13) 

v>0, (vt-b21u-b22v)( y-v) Z 0 for all i|/s <0,o>), a .a . t € < O.oo) . 

This system can be written also in the form 

U(t) £ K for all t €<0too>), 

'(14; 

<Ut(t) - BU(t), 1 - U(t)>>0 for all 1 e K,a.a.t <s <0,o>), 

where U = tu,v3, K = K* = i t = C <$> , y 1 c IR2; y > 0}, <. , «> is the 

2 scalar product in IR Hence, the study of spatially constant so- , 

lutions of (8)-(10) can be a motivation for an investigation of 
• * • * » 

the inequality (14) which has a good sense for any closed convex 
2 

qone K in IR with its vertex at the origin. 

2 
Remark 3. (Trajectories of inequalities in JR .) Let K be 

2 
a closed convex cone in lR with its vertex at the origin determi
ned by half-lines kp k2 (Fig. 3). Denote by K° and SK the inte-
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rior and the boundary of K. For any V e IR2 let Uy(t) be the solu

tion of the system of equations 

(15) U t * BU 

sat isfy ing U(0) = V. I f Vc K, V + 0 then the following cases are 

possible: 

(a) V + t ;BVeK0 for a l l tr > 0 su f f i c ien t ly small; 

(b) V + r B V ^ K for a l l tf > 0; 

(c) V + TBV e dK for all % > 0 sufficiently small. 

The conditions (a),(b) and (c) mean that the trajectory of (15) at 

V tends into K°, outside of K and along dK, respectively. In the 

case (a) we have Uy(t)e K for t e<0,tQ) with some tQ> 0 and it fol

lows that Uy(t) is simultaneously a solution of (14) on<0,to). 

The cases (b),(c) can occur for V e d K only. If (b) holds then the

re exists Xn such that 

o 

(16) < %QM - BV, }>- V > ^ 0 for all f> e K. 

Indeed, this condition means that the vector O - B V shifted to V 

tends into K and is perpendicular to the half-line k. containing V 

(see Fig. 3). It is clear from Fig. 3 that this is fulfilled with 

some X . In other words, in the case (b), V is an eigenvector cor

responding to some eigenvalue X of the inequality (16). It fol

lows (by substituting into (14) and using (16)) that Uj(t) = 

= exp ( X t)V is a solution of (14) on<0, + oo). Moreover, XQ> 0 

or XQ< 0 if <BV,V> > 0 or <BV,V> < 0, i.e. if the trajectory of 

(15) and the oriented half-line k. enclose an acute or an obtuse 

angle, respectively; see Fig. 3, 4; it is &Q » 0 if <BV, V>*0, 

i.e. if the trajectory of (15) is perpendicular to dK at V. 

In the case (c) we have Xv « BV for some X , i.e. V is an 

eigenvector corresponding to some eigenvalue of B (and simultane-

- 178 



ously of (16)). The function Uy(t) * exp ( :XQt)V is simultaneously 

a solution of (14) and (15) on <0,oo). 

Now, for any VcK, V-#0 we can set ty « inf |t2rO;Uv(t)« K}. 

(The cases tv * 0, tv « * oo are possible.) It follows from our 

considerations that the function 

UK,V(t) = UV ( t ) for * e<0»V> 
exp A Q(t-t v) • Uy(ty) for t*t v 

is a solution of (14) on <0,ot?), where A (if tv < oo) is an ei

genvalue of (16) corresponding to the eigenvector V = U v(t v). It 

is easy to see that it is a unique solution of (14) satisfying 

UK,V(0) = V' 

2 
Example 3. (Oestabilization for inequalities in JR and a free 

boundary problem.) Suppose that b,,>0, b 2 1> 0 and B has a pair 

of complex conjugate eigenvalues with negative real parts. Let 

K = Kv = iCu,v3e IR ;v£0?. In this case the character of trajecto

ries of (14) and (15) is shown on Fig. 5. Any solution of (15) 

tends exponentially to the origin. Any solution of (14) touches 

the line k, = -C £ u,0] ;u< 0i and then tends to infinity in the di

rection of the eigenvector [-1,01 corresponding to a positive ei

genvalue of (16). (See Remark 3, where (b) with<BV,V>>0 holds 

for any Vsk,.) It follows that any spatially constant solution 

of (8)-(10) tends to infinity in spite of that any spatially con

stant solution of (RDL), (NC) tends to zero. Particularly, the tri

vial solution of (8)-(10) is unstable for any d,, d« as we have 

known already from Example 2. 

2 Example 4. (Stabilization for inequalities in /R and a free 

boundary problem.) Suppose that b|2< 0, b 2 2< 0 and B has a pair 

of complex conjugate eigenvalues with positive real parts. Fig.6 
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shows the character of trajectories of (14) and (15) with K = K = 

s4tu,v]c IR ;u>:0i. Any solution of (14) tends to zero along the 

half-line k, *-[ £0,vJ ;v > Oj in spite of that any nontrivial solu

tion of (15) tends exponentially to infinity. Notice that 1.0,13 is 

an eigenvector corresponding to a negative eigenvalue of (16). (See 

Remark 3, where (b) with <BV,V>< 0 holds for any V€k,.) Now, con

sider the unilateral problem 

(17) 
• V V x x " b H U ' b 1 2 v г ° ' u 2 ° -

( u t - d l u x x - b l l u * b 1 2 v ) u " °. 

( 1 8 ) v
t
 = d

l
v
xx

 + b
l l

u + b
1 2

v 

(19) u are continuous on <0,<x>)x <0,1>, (NC) holds (cf. Exam

ple 2 ) . Using considerations analogous to those from Remark 2 we 

obtain that any spatially constant solution of (17)-(19) tends to 

zero, i.e. the trivial solution of (17)-(19) is stable with res

pect to constant p e r t u r b a t i o n s . Simultaneously, the trivial solu

tion of (15) is unstable even with respect to spatially constant 

perturbations because any constant solution of (15) tends to infi

n i t y . Of course, we do not obtain any result about the stability 

for the inequality (with respect to nonhomogeneous perturbations). 

2 
Remark 4. (Eigenvalues and stability for inequalities in (R .) 

Using Remark 3 and the fact that the eigenvectors of the inequality 

(16) lying in K° coincide with those of the matrix B, it is easy 

to determine all the eigenvalues and eigenvectors of (16) for a 

given 2x2 matrix B. By a detailed examination of all possibilities 

of the behaviour of trajectories ot (15) and using the considera

tions from Remark 3 it is possible to prove that the trivial •so

lution.of (14) is stable if and only if there is no positive 
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eigenvalue of (16). 

This assertion does not hold for-inequalities in higher-di

mensional spaces. (It is not difficult to find a counterexample in 

1R .) We have no analogue of a complex eigenvalue for an inequality. 

Example 5. (Destabilization in a nonlinear case.) Consider 

the problem 

(20) ut = d1uxx + f(u,v) on <0,oo)x <0,1>, 

( vt = d2vxx " 9(u,v)£0, v?0 

^ £ vt " u2vxx 
(21) 

(22) vx are continuous on <0,oa)x <0,1>, (NC) holds 

representing a free boundary problem (cf. Example 2). If f(0,0) = 

= g(0,0) = 0 (i.e. u = v = 0) and f, g are two-times differentiab-

le, then spatially constant solutions of (20)-(22) are solutions* 

of the inequality 

U(t)£ K for all t e<0,oo), 

(23) 

<Ut(t) - BU(t) - N(U,t)), 1 - U(t))20 for all y € K > 

a.a. t£0 

with K = K* (cf. Remark 2) and with a mapping N: IR2 — > IR2 satis

fying 

(24) (t lim -4-i-U = 0. 
Hu.i~->0 *u* 

The assumption (2) together with (24) ensure that the trajectory 

of the system Ut = BU + N(U) tends outside of K at any V = tu,03, 

u e <-& ,0) (with some e > 0) and <BV + N(V),V> *> 0 for these V. 

Considerations analogous to those from Remark 3 imply that for any 

V = Cu,0], ue(-&,0) there is a solution U of (23) such that 

U(0) = V, U(t) = tu(t),0l with u(t) e (-£, ,0) for t &(0,tQ) and 
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U(tQ) = £-e.O] for some t Q>0. This gives the instability of the 

trivial solution of (23) and also the instability of the trivial 

solution of (20)-(22) (even with respect to the spatially homoge

neous perturbations) for all d,, d« (even for those from the domain 

of stability from Remark 1). 

Remark 5. (A general formulation of unilateral problems.) 

Let wi = wi(0,l) be the usual Sobolev space with the norm I * B1 2 

(see e.g. [33), K a closed convex cone in wi with its vertex at 

the origin. Consider the inequality 

f{ut(t,x) 9>(x) + d1ux(t,x) g>x(x) -

- [bxlu(t,x) + b12v(t,x)3 f (x)j dx = 0, 

v(t,-)e K, 

(25). 

)/-;vt(t,x)[Y(x)-v(t,x)3 + d2vx(t,x) Eyx(x)-vx(t,x)J -

j - [b21u(t,x) + b22v(t,x)J [y(x)-v(t,x)j{ dx>0 

^ for all <j>e W2, ye K, a.a. t€<0,oo). 

We do not need a general definition of a solution in fact because 

our aim will be to show only the existence of a smooth in T solu

tion starting arbitrarily close to the origin and tending to in

finity; for such a solution it will be clear in which sense (25) 

is fulfilled. In general* the solution on<0,T) (eventually with 

T « oo) could be defined as a couple u,ve L2(0,T;W2) such that 

ut,vte L2(0,T;(W2)*) and (25) is fulfilled for a.a. te(O.T) (cf. 

e.g. L2J). A function from L2(0.T;wi) has a derivative in the sen

se of distributions with values in wi, i.e. also with values in 

L2(0,1). By ut£tL2(0,T;(wi)*) we mean that this distribution can 

be represented by a function ut with values in L2(0,1) such that 

sup fTif1u.(t,x)g> (x) dxl2 dt is f i n i t e . 
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Notice that any function ueL2(0,T;W2) with u^e L2(0,T;(W2)*) is 

continuous as an abstract function with values in L2(0,1). Hence, 

initial conditions u ,v e L2 for (25) can be considered. 

Remark 6. If we set for instance K = •(v«e wi;v(l)ir Oi then 

u, v satisfies (25) if and only if (RD._),(1) is fulfilled in the 

classical sense. It is not hard to show by using integration by 

parts, boundary conditions (1) and elementary considerations about 

the regularity of the solution (cf. e.g. i 3J). 

If we set K = -£veW*;v>0 on<0,l>? then (25) is another for

mulation of the free boundary problem from Example 2. This follows 

by integrating by parts again. * 

In general, we can say that (25) is an abstract formulation 

of (RD, ) with the constraints given by the cone K. 

Remark 7. (An eigenvalue problem for inequalities in W„ and, 

stability.) The unilateral eigenvalue problem corresponding to 

(25) is 

//Ld1ux «yx-(bjj.u + b12v -Au)gOdx = 0 for all 9 e W2, 

(26)} v e K > 

'/4[d2vx( yx-vx)-(b21u + b 2 2v-Av)( Y-v)]dx^ 0 for all y e K. 

A real X Q is called an eigenvalue of (26) if there exists a 

nontrivial couple u ,v 6 W2 satisfying (26). In this case, [u0,v 3 

is called the corresponding eigenvector. It is easy to see (by 

substituting into (25) and using (26)) that then for any % y 0 

fixed the couple u(t,x) = exp (%Qt). fuQ(x), v(t,x) = 

= exp ( A t ) • % vQ(x) satisfies (25) on <0,oo). If A Q > 0 then 

l)u(t,OII + I v(t, •) H -~* °° for t —* 00 (for any reasonable norm 

II • II ) and this implies the instability of the trivial solution 
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of (25) for such dj, d 2 . 

Set 1̂ . =-f£d1,d23; tdx -<T,d23 6 P? for any oT ̂  0, where 

r is the curve from Remark 1 (see Fig, 1 ) . 

Theorem 1 . Let (2) be fulfilled and let 0 < f < ij • T n e n 

there is cf > 0 such that for any £d,,d2Zi lying between P , fj-

and satisfying | «-» d2 -ss ̂  , d^> 0, there exists a positive ei

genvalue of (26), 

Consequence 1• The trivial solution of (RD,) with unilate

ral constraints given by K (see Remark 6) is unstable for all 

rdpdjj between P , l̂ .,£ -£ d2 ^ ^ , d-^ 0. It follows directly 

from Theorem 1 and Remark 7. 

Remark 8. Theorem 1 is a special case of a more general re

sult proved in [6J. The proof is based on a continuation theorem 

related to the known Dancer's global bifurcation result [13 and 

on an investigation of branches of solutions of the corresponding 

penalty equation (cf. also C7J ,[8J ,[ 53 ). 

Remark 9. Theorem 1 together with Consequence 1 say that the 

domain of instability of the problem with unilateral constraints 

intersects the domain of stability of the classical problem. For 

any 0 < | < n* there is a cf-strip G? (d*) (see Fig. 1) such that 

for [d1,d23c G^ (cf) the trivial solution of (25) is unstable in 

spite of that the trivial solution of (R0L), (NC) is stable (see 

Remark 1). In the case of chemical or biological models, u and v 

represent the density of an activator (or prey) and of an inhibi

tor (or predator), respectively, under the assumption (2). Hence, 

unilateral conditions for the inhibitor (or predator) have a de

stabilizing effect. On the other hand, analogous unilateral condi-

184 -



tions for the activator (or prey) have a stabilizing effect in a 

certain sense (see [ 9 3 ) . Notice that in applications the instabi

lity of a spatially constant solution signals that the correspon

ding spatially homogeneous equilibrium state will not occur and, 

eventually, some spatially nonhomogeneous patterns can a r i se . 

Remark 10. The problem ( R D L ) , ( 1 ) ( i . e . (25) with K = 

= { ve W^vd)*- 0} ) looks like that from Example 1 at the first 

sight, but an analogy of the considerations from Example 1 gives 

no r e s u l t . (The eigenvectors of (RD~ ) , (1 ) cannot be expressed ela-

mentarily; this is a consequence of the fact that different con -

ditions are prescribed for u and v . ) A destabilizing effect of the* 

conditions ( 1 ) follows from Theorem 1 and Consequence 1. 

In the case of the problem ( 8 ) - ( 1 0 ) (i.e. (25) with K = 

= 4v€wi;v£0 on <0 ,1>{ ) , Theorem 1 gives a weaker information 

than the elementary considerations in Example 2. 

Theorem 1 cannot be used for the problem from Example 1 be

cause (4 ) represents unilateral conditions for both u and v. Even 

the more general theory given in 16J (cf . also t51) ensures a de

stabilizing effect of unilateral conditions prescribed for v only 

under the assumptions of the type (2 ) ( i . e . for an inhibitor or a 

predator). 
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