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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,2 (1986) 

ATOMS IN THE FAMILY OF COREFLECTIVE SUBCATEGORIES 
OF UNIFORM SPACES 

Michael D. RICE 

Abstract: The present work complements and extends the work 
of Tashjian and Vilfmovsky by identifying two classes *(P(m) :m £JKQ} 
and {T(m):m 2* tf-Zi which, in conjunction with the unit interval 

[0,ll, are fundamental for the study of coreflective subcategories 
of uniform spaces. Using these classes, the following results are 
established: % 

The class of zero-dimensionally proximally fine spaces is the 
largest coreflective subcategory of uniform spaces which contains 
only trivial proximally discrete spaces. 

The class of Baire-Fine spaces is the largest coreflective 
subcategory of uniform spaces disjoint from the class -| i 0,11} u 
<j\P(m):m .>4-.0$ . 

Every non-uniformly discrete space inductively generates one 
of the spaces 10,13, P(m), or T(m). 

Each one of the spaces CO,13, P(m), or T(m) inductively ge
nerates a coreflective subcategory which is an atom: the only pro
per coreflective subcategory is the class of uniformly discrete 
spaces. 

Key words: Uniform space, coreflective subcategory, proximally 
discrete, proximally fine, Baire-Fine, atom. 

Classification: 18B30, 54E15 

Section one: definitions and notation. 10,1J (respectively 

R) will denote the unit interval (the real line) with the usual 

metric uniformity. 

For each pair of uniform spaces X and Y, the collection of 

uniformly continuous mappings X — * Y will be denoted by U(X,Y). 

If Y = R with the usual uniformity, then U(X,Y) is denoted by U(X). 

Unif will denote the category of separated uniform spaces and 

209 -



uniformly continuous mappings. X is uniformly discrete if 

U x h x f e X ] is a uniform cover. The class of uniformly discrete 

spaces will be denoted by Unif Discrete. X is proximally discrete 

if every finite cover is uniform. The class of proximally discre

te spaces will be denoted by Prox Discrete. 

Assume Ct c Unif. Then coref (d ) will denote the coreflecti-

ve hull of the class & , that is, coref (&) consists of all uni

form spaces which are quotients of sums of members from Cu . It is 

well known that Y is a member of coref (Q,) if and only if the fol

lowing condition is satisfied: for any uniform space Z, f:Y —•> I 

is uniformly continuous if fo h:A ~ > Z is uniformly continuous for 

every uniformly continuous mapping h:A—*> X, where A is a member 

of & . Sometimes the phrase "X generates Y" will be used instead 

of writing Yt coref (X). 

Assume that Y and Y' are uniform structures on the same set 

such that the identity mapping Y'—> Y is uniformly continuous. 

Then Y - Ydenotes the class of uniform spaces X such that U(X,Y')= 

= U(X,Y'). One can verify that Y - Y' is a coreflective subcatego

ry of Unif. 

Coz (X) denotes the family of sets of the form -Cx :f (x)=# OS, 

where f belongs to U(X). Baire (X) denotes the smallest t^-field 

containing Coz (X). The members of Baire (X) are called Baire sets. 

A family Sf of Baire sets is completely additive if the union of 

each subfamily is a Baire set. For uniform spaces X and Y, a map

ping X —** Y is measurable if the pre-image of every Baire set is 

a Baire set. X is finitely measurable if every finite Baire cover 

is a uniform cover. The class of finitely measurable spaces will 

be denoted by Fin-Meas. X is Baire-Fine if every measurable map

ping to another uniform space is uniformly continuous. It is well 

known that X is Baire-Fine if and only if every completely additive 
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Baire partition is a uniform cover. The class of Baire-Fine spaces 

will be denoted by Baire-Fine. 

Given a uniform space Y, pY denotes the uniform structure on 

Y with the basis consisting of all finite uniform covers of Y. 

A uniform space X is proximally fine if U(X,pY) = U(X,Y) for eve

ry space Y. We say that X is zero-dimensionally proximally fine 

if the preceding statement is valid for every uniform space Y with 

a basis of uniform partitions. It is clear that this property is 

weaker than being proximally fine; for example, every uniform spa

ce with a connected topology is zero- dimensionally proximally fine. 

For each infinite cardinal m, P(m) denotes the uniform struc

ture on the set C0,m) consisting of all partitions of power < m 

and D(m) denotes the uniformly discrete structure on the set 10,m). 

Section two: Largest coreflective subcategories 

Theorem 1: (tTVJ) Fin-Meas is the largest coreflective sub

category of Unif which does not contain CO,11. 

Theorem 1 may be restated in the following form: X generates 

10,11 if and only if X is not finitely measurable. 

Theorem 2: For each m z J*, P(m)-D(m) is the largest core

flective subcategory of Unif which does not contain P(m). 

Proof: Clearly, P(m) is not a member of P(m)-D(m). Assume 

that X is a uniform space such that U(X,P(m)) -M(X,D(m)). We will 

show that X generates P(m); then it will follow that P(m)^ coref (X) 

implies X€ P(m)-D(m). 

Assume that f :P(m) •—*' Y is not uniformly continuous . By defi

nition of P(m)4 there exists a uniformly discrete subset D « 

= i y* : j & 3} of fCP(m)l such that |3| * m. For each j€3, choose 
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Xj such that f(xj) * yj and define S « 4 X J : J € 3 } . Since |S| * m, 

S is uniformly equivalent to P(m), so by assumption there exists 

a uniformly continuous mapping g:X—*-S such that g:X—* D(S) is 

not uniformly continuous, where 0(S) denotes the uniformly discre

te space on the set S. Since f |S:D(S) —•* D is a uniform equivalen

ce, fog:X—*• Y is not uniformly continuous. It follows that X ge

nerates P(m). 

Corollary 1: Let X be a uniform space. The following state

ments are equivalent for each m z sfi : 

(i) X generates P(m). 

(ii) There exists a non-uniform partition -iV. :k€ K? of X, 

|K| S m, satisfying the following condition: 

(#) If K = U *Kt:t£ Tf, |T|< m, then {Bt:tfe Ti is a uniform 

cover, where Bt * lMVk:k*KtJ. 

Proof: We will first show —i (i) — * —i (ii). Assume P(m) + 

$ coref (X). Then by Theorem 2, X is a member of P(m)-0(m). Suppo

se that \Mk:0^k< m\ is a partition of X of power m which satis

fies (40. Define f:X~~*P(m) by f(x) = k if x6Vk. Condition (-4) 

implies that f is uniformly continuous, so f:X—*D(m) is also uni

formly continuous. Therefore, 4* (k):Q£k<m} = ^-^u) is a uniform 

cover of X, so we have established —i(ii). 

(i)—* (ii). The identity mapping i:P(m)—> D(m) is not uni

formly continuous, so by (i) there exists a uniformly continuous 

mapping f:X—* P(m) such that f:X—> D(m) is not uniformly conti

nuous. Then -tf (k) :G-» k<mi is a non-uniform partition of X whicl 

satisfies (#), so (ii) holds. 

Remark: If X is a non-uniformly discrete proximally discre

te space on the natural numbers N, it follows from Corollary 1 

that X generates P(^» ) . However, P( & ) need not be a quotient 
<k : * o 

- 212 -



of X. Let ^ be a free ultrafilter on N and let u^ be the unifor

mity on N having the following basis of partitions*. 

04(F) * -Uxi:x#F} u-iFj, F * S\ 

Since f is a free ultrafilter, u^ N is proximally discrete, but 

not uniformly discrete. Assume that Q:u^, N—*• P( *". ) is an onto 

mapping and define Q- =-fGc N:Q" (G) e £\ . Then Ĉ . is an ultrafil

ter on N and Q:u^ N — > u^ N is uniformly continuous, but the iden

tity mapping i:P(j*; )—» u..- N is not uniformly continuous since 

u^-N is not precompact. Hence Q is not a quotient mapping. 

Definition: $ = n{P(m)-D(m):m z <*Q} . 

Theorem 3: (i) $ is the largest coreflective subcategory 

of Unif disjoint from the class P(m):m zj-r }. 

(ii) $ is the class of zero-dimensionally proximally fine 

spaces. 

Proof: (i) By definition, $ is disjoint from the class 

4P(m):m2!.K . Assume 4P(m) :m ** j* }r» coref (X) » 0 for somm 

uniform space X. Then by Theorem 2, for each m, P(m)# coref (X) 

implies that X is a member of P(m)-0(m), so X is a member Qt &. 

(ii) Assume that X is zero-dimensionally proximally fine. 

If f:X—* P(m) is uniformly continuous, then f:X—» pD(m) is also 

uniformly continuous, so f:X —> D(m) is uniformly continuous. 

Therefore, X is a member of T « l^H P(m)-D(m) :m **,,** . 

Conversely, suppose X is a member of T and f:X —** pY is uni

formly continuous, where Y has a basis of uniform partitions. If 

f:X—> Y is not uniformly continuous, choose a uniform partition 

-iVk:0*k«c:ml of Y of minimal cardinality m such that *f"
l(Vk)f 

is not a uniform cover of X. Define h:Y—** P(m) by h(y) * k if 

yc Vk . Then h«f:X—* P(») is uniformly continuous, so by assump-
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tion h«f:X—> 0(m) is also uniformly c o n t i n u o u s . It follows that 

|(h « f ) ~ l ( k ) : Q & k * m } = 4*f_1(VkH is a uniform cover of X, which 

is a contradiction . Therefore, f:X—*• Y is uniformly continuous, 

so X is zero-dimensionally proximally fine. 

Corollary 2: $ is the largest coreflective subcategory of 

Unif such that f n Prox Discrete = Unif Discrete. 

Proof: It is easy to verify that 3* r» Prox Discrete = Unif 

Discrete. Suppose that Prox Discrete n coref (X) = Unif Discrete 

for some uniform space X. Then P(m)<£ coref (X) for every m > y; « 

so by Theorem 3 ( i ) , X is a member of (? , which establishes the 

result. 

Corollary 3: Baire-Fine is the largest coreflective subcate

gory of Univ disjoint from the class -C C 0,11$ tr (P(m) :m 2" js } . 

Proof: A uniform space X is Baire-Fine if and only if it is 

measurable and proximally fine ((HaJft, 5 . 2 ) . Since every precom-

pact measurable space is finite, 10,13 is not Baire-Fine. Since 

every proximally fine proximally discrete space is uniformly dis

crete, no P(m) is proximally fine. Hence Baire-Fine is disjoint 

from the given class. Now suppose that -LtO ,1]} u { P(m) :m > j* } o 

rv coref (X) = 0 for some uniform space X. Since 10,11 is not a 

member of coref (X), it follows from Theorem 1 that X is finitely 

measurable and since no P(m) is a member of coref (X), it follows 

from Theorem 3 that X is a member of '3* . Let IB. :kc D f be a com

pletely additive Baire partition of X and define f:X —*> 0 by f ( x ) = 

- k if xf*B. , where D is a uniformly discrete space. Since X is 

finitely measurable and B. is a completely additive Baire fami

ly, f JX-V-* pD is uniformly continuous. Since X is a member of 3̂  , 

Theorem 3(ii> implies that f:X—* 0 is uniformly continuous. 
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Therefore, \B^,"\ = {t~ (k):keD} is a uniform cover of X. Hence X 

is Baire-Fine and Corollary 3 is e s t a b l i s h e d . 

Corollary 4: The following statements are equivalent for a 

uniform space X: 

(i) 410,13 ,P( *0)hr> coref (X) « 0. 

(ii) Every precompact member of coref (X) is f i n i t e . 

(iii) Every countable Baire cover of X is un i form . 

(X is separably-measurable in the sense of t H a J , . ) 

Proof: Clearly, ( i i ) — > ( i ) . The implication (iii) — ^ (ii) 

follows from the facts that (a) the separably measurable spaces • 

are a coreflective subcategory of Unif and (b) the precompact me

asurable spaces are f i n i t e . The implication (i)—>(iii) is esta

blished by an argument analogous to the one presented in the se

cond part of the proof of Corollary 3 . 

Corollary 5: The separably-measurable spaces are the lar

gest coreflective subcategory of Unif disjoint from H0,1] ,P(̂ » )h 

Proof: Corollary 5 follows at once from Corollary 4 . 

Section three: Atoms 

lemma: Assume X is Baire-Fine and every disjoint family of 

Baire sets is completely a d d i t i v e . Then X is uniformly d i s c r e t e . 

Proof: Let 4Sk:0.= k<m] be a family of Baire sets of power 

m. Inductively, define TQ = S T, = S, - T ,..., T. = S, -

- U-fT^:Q4 k< j{ for j<.m. Assume that T. is a Baire set for eve

ry j< n, where n<m. Since -CT.:j<m} is a disjoint family, by as

sumption U$T.:j<m} is a Baire set, so Tn = SR - U ^ T . : j < n } is al

so a Baire set. Therefore, T.~is a Baire set for every j<m, so by 
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assumption, U-fT .:j<m} = U4S.:j<m} is a Baire set. It follows that 

Baire(X) is closed under the formation of arbitrary unions and in

tersections. Since the members of Baire(X) separate distinct pairs 

of points, every singleton subset is a Baire set, so 01 = 44 x?: 

:xsX} is a completely additive Baire partition. Since X is Baire-

Fine, % is a uniform cover and X is uniformly discrete. 

For each regular cardinal m 2 J*, , T(m) denotes the uniform 

structure on the set [0,m.l with the basis of uniform covers of the 

form 

{4 x*:x -* oc}u4£oc,m3l , oc<m. 

One can verify that every T(m) is a Baire-Fine space and that 

Baire(T(m)) = 4 A:(m£A and |A|< m) or (m€ A and |AC|*̂  m)f . 

For the remainder of the paper, we will assume that the car

dinal m satisfies the preceding restriction when referring to T(m). 

Theorem 4: Every non-uniformly discrete Baire-Fine space X 

generates T(m), for some m >J^, . 

Proof: Assume that X is a non-uniformly discrete Baire-Fine 

space.Define m = inf 4 I tf I : tf is a disjoint Baire family and 

U \$ $ Baire (X )} . By the preceding lemma, m is a well-defined un

countable cardinal and one can verify that m is regular. We claim 

that X generates T(m). 

Assume that f : T ( m )—>Y is not uniformly continuous. Since 

T(m) is Baire-Fine, f is not measurable, so there exists B 5- Bai-

re(Y) such that A = f ( B )# Baire(T(m)). Without loss of generali

ty, assume that m^A and |A| = m. Choose a disjoint Baire family 

4&k:k« Kf such that |K| = m and U4Bk:ke Kl # Baire(X) . Let e:K-^ A 

be a bijection and define h:X —-> T(m) by 
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e(k) xeB 
h(x) { ̂^ ""* 

m xfU^Bk:k6Ki. 

We claim that h is measurable, and therefore uniformly conti

nuous, since X is Baire-Fine. Suppose H e Baire(T(m)) and m^H. 

Since |H|<m, h_1(H) = U •{ Bk :e(k) € H ] is the disjoint union of fe

wer than m Baire sets; hence h~ (H)€ Baire(X), so h is measurable. 

On the other hand, (f o h)"1(B) = h_1(A) = U4Bk:k*-K3# Baire(X), 

so fo h is not measurable, and hence is not uniformly continuous. 

Therefore, X generates T(m). 

Remark: The proofs of the Lemma and Theorem 4 show that a 

Baire-Fine space X generates T(m) if Baire(X) is n-additive for 

every n<m, but not m-additive. 

Corollary 6: Every non-uniformly discrete space X generates 

one of the following spaces: 

(i) 10,13 

(ii) P(m), for some m 2: & . 

(iii) T(m), for some m & ¥< . 

Proof: Assume that X is a non-uniformly discrete space and 

define tf= 4" C 0 ,11 * u { P(m) :m * J**. If.tfncoref (X)*0, then 

either (i) or (ii) holds. If !^n coref (X) = 0, then by Corollary 

3, X is Baire-Fine, so by Theorem 4, X generates T(m), for some 

m 2 - ^ . 

Definition: A coreflective subcategory K£ of Unif is an 

atom if the only proper coreflective subcategory of *€ is Unif 

Discrete. 

Corollary 7: Unif has exactly the following coreflective 

atoms: 
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(i) ci * covet (10,11) 

(ii) £P(m) - coref (P(m)), m & &0 

(iii) ^(m) « coref (T(m)), m-2r^1. 

Proof: Corollary 6 shows that the subcategories listed above 

are the only possible coreflective atoms. We will now show that 

each subcategory is an atom. 

(i) Suppose that 10,1.3 generates the non-uniformly discrete 

space X. If X is finitely measurable, it has a P-space topology, 

so every uniformly continuous mapping L0,l3—• X is constant. The

refore, X is uniformly d isc rete . Hence X is not finitely measurab

le, so by Theorem 1, X generates £0,13, 

(ii) Suppose P(m) generates the non-uniformly discrete space 

X. Since Prox Discrete is a coreflective subcategory, X cannot ge

nerate any member of the class -U0,ll}u* iT(m).m >$*,}; hence by 

Corollary 6, X generates some P(n). Therefore, P(n)e coref (P(m)), 

which implies that m = n. (If n< m, P(n)€ coref (P(m)) implies 

that P(n) admits n and hence is uniformly discrete. If n>m, the 

range of every uniformly continuous mapping P(m) —**• P(n) is uni

formly discrete, which also implies that P(n) is uniformly discre

te.) Hence X generates P(m). 

(iii) Suppose T(m) generates the non-uniformly discrete spa

ce X. Then X is Baire-Fine, so Theorem 4 implies that X generates 

T(n), for some n .?rA-;, . Therefore, T(n) £ coref (T(m)), which implies 

that m * n. (If n<m, T(n)ecoref(T(m)) implies that T(n) admits n 

and hence is uniformly d isc rete . If n> m, the range of every uni

formly continuous T(m)---* T(n) is uniformly discrete, which also 

implies that Tt(n) is uniformly discrete.) Hence X generates T(m). 

Remark: One can also establish that the intersection of any 
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two distinct coreflective atoms is exactly the class of uniformly 

discrete spaces. 

Section four: Topological results. Let Tychonov denote the 

category of completely regular Hausdorff spaces and continuous 

mappings. In this setting, T(m) will refer to the topological 

space with the induced uniform topology: for each oc<m, the sin

gleton set 4oc1 is open, and the set V is a neighborhood of m if 

|T(m) - V|<m. (The uniform space T(m) is the fine space associat

ed with this topology.) 

Corollary 8: Let X be a non-discrete Tychonov space. Then * 

generates 10,11 if and only if X is not a P-space. 

Proof: Consider X as a fine uniform space. Then X is fini

tely measurable if and only if X is topologically a P-spece, so 

Corollary 8 follows from Theorem 1. 

Corollary 9: Every non-discrete P-space X generates T(m), 

for some m z y% . 

Proof: Consider X as a fine uniform space. Since X has a P-

space topology, X is Baire-Fine, so by Theorem 4, in Unif X gene

rates some T(m). Since X and T(m) are fine spaces, it follows that 

X generates T(m) in Tychonov. 

Using the analogous definition of a coreflective atom in Ty

chonov, we can also establish the following result. 

Corollary 10: Tychonov has exactly the following coreflec

tive atoms: 

(i) coref (L0,U ) 

(ii) coref (T(m)). m ** * 
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Proof: Suppose that £0,13 generates the non-discrete space X. 

Then X is not a P-space, so by Corollary 8, X generates CO,13. 

(ii) Suppose that T(m) generates the non-discrete space X. 

Then in Unif, T(m) generates the fine uniform space X. Since T(m) 

is a P-space, X is also a P-space, so it is Baire-Fine. Hence by 

Theorem 4, X generates some T(n). Therefore, T(m) generates T(n). 

The argument used in the proof of part (iii) of Corollary 7 shows 

that m = T., so X generates T(m). 

R e f e r e n c e s 

[Frl, 2. FROLlK: Measurable uniform spaces, Pacific J. Math. 55 
1 (1974), 93-105. 

[Frl« : Interplay of measurable and uniform spaces, 
Proc. 2nd International Conf. in Topology, Bud--
va, Yugoslavia, 1972 (Beograd 1973), 98-101. 

[Hal, A.W. HAGER: Measurable uniform spaces, Fund. Math. LXXVIII 
'1 1(1972), 51-73. 

I Hal« : Uniformities induced by Cozero and Baire sets, 
'2 Proč. Amer. Math. Soc. 63,1(1977), 153-159. 

lRli M.D. RICE: Metric-fine uniform spaces, 3. London Math. 
Soc. (2)11(1975), 53-64. 

[Rl7 : Uniformities in the descriptive theory of sets 
1 I: Basic operators, Amer. 3. Math. 99,2(1977), 

227-237. 

[R], : Uniformities in the descriptive theory of sets 
II: Measurable functions, Amer.3. Math. 100,4 
(1978), 717-725. 

LTV.1 O. TASH3IAN and 3. VILlMOVSKf: Coreflections not preser
ving the interval and Baire partitions of unifon 
spaces, Proc. Amer. Math. Soc. 77(1979), 257-263 

Department of Computer and Information Sciences, George Mason 
University, Fairfax, Virginia 22030, U.S.A. 

(Oblatum 15.3. 1985, revisum 15.1. 1986) 

220 


		webmaster@dml.cz
	2012-04-28T12:24:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




