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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,2 (1986)

ON A CLASS OF LOCALLY COMPLETELY DECOMPOSABLE
ABELIAN GROUPS
Ladislav BICAN, Jaroslav HORA

Abstract: This paper deals with the clas 7 of all torsion-
free abelian groups G for which there is a partition sv= T U I

V. ..u::rn of the set ar of all primes such that for each j e
ef1,2,...,n% the group G @ Z:,r is completely decomposable with

J
the ordered type set T(G G)Zﬂ.). The subclasses of 991 consisting

J
of the groups having all the pure (regular) subgroups in 9 are
characterized.

Key words: Completely decomposable group, pure subgroup,
regular subgroup, type set. ’

Classification: 20K20

In the papers [2) and [3) an almost complete description of
all completely decomposable torsionfree abelian groups any pure
(regular) subgroup of which is completely decomposable was presen-
ted. The results obtained have been recently completed by A.A.
KravEienko in [6]. In the past ten years the class of Butler groups
(torsionfree homomorphic images of completely decomposable torsi-
onfree groups of finite rank) was studied very intensively by se-
veral authors. Among other results, the first author in [4] show-
ed that G is a Butler group if and only if there is a partition
n =Sflt) WU ...0 ;o of the set I of all primes such that
GC® Z“A is completely decomposable with the ordered type set for

each j¢{1,2,...,n}. So, it is natural to study the properties of
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"locally completely decomposable groups" G in the sense that the-
re is a partition = JTlu J’rzu...u:n'n of 5 such that G @Zn.
is completely decomposable with the ordered type set for each
jed1,2,...,n}. The purpose of this note is to characterize the
classes of such groups which are closed under pure (regular) sub-
groups.

By the word "group” we shall always mean an additively writ-
ten abelian group. The symbols E,EO and ar are used for the set
of all positive integers, non-negative integers and the set of
all primes, respectively. If &' is a subset of sr then {", will
denote the group of rationals with denominators prime to every
pew’ . If Jis a rank one torsionfree group of the type-% and
' is a set of primes, then the type of J® Z“, will be simply de-
noted by z ® AH . If G is a completely decomposable group, G =
=,@J;, then the set of types 2(3;), iel, is denoted by T(G).

Other notations and terminology are essentially the same as in

[s].

Lemma 1: Let £ and & be the types and ' be a set of pri-

A A .
mes such that ’:'@Zn < G'@Z“,. If =T m'zu...u;rrn is a

partition of 3 then £ ® Z <0t ® z, for some je {1,
a)

’ - .
m’nﬂJ kit

J
2,...,n}.

Proof: If & and 6 are characteristics belonging to the
types £ and & , respectively, and x(p) < 6(p) = oo for some
pe st! , then p € nj for some je{1,2, ...,n% and we are through.
In the opposite case, there is an infinite subset &r" ¢ s’ such
that T©(p)< 6(p) for each p € o" . Then, for some je{1,2,...
...,n}, the intersection a'A wj is infinite and the assertion

follows.
A ~
Lemma 2: Let fl’ rz,... be the tvnee such that

- 308 -



~ A ’ =
"cl®Zn_,<1;’2®Zﬂ.<...forsomesubset:r Q:r.If:N—Jrlu
U,U... v is a partition of ¥ and 31'3 = g'n 3y, then for
some jed{l,2,...,n} the sequence '?:1® . = %2 @I, £...
contains infinitely many different terms.

Proof: It follows easily from Lemma 1.

Notation. A sequence 'i%l’ %2,... $ of types will be simply
denoted by {‘Ei}. 1f (':.'\,ii and {g‘i} are two sequences of types

then the symbol {’?‘_ik <{8‘i§ means that %i< %j for all i,jeN.

Lemma 3: Let {’?il and {ai} be two sequences of types and
%' be a set of primes such that {%i@ Z:",f and {%’i® Zr'g are in-
creasing sequences of types and -\:Ei@) ZJT,§<§8“i® Zr,f LIt x o=
= STlu Tov. ... UI, is a partition of & then, for some je{1,2,
...,n} 2.® 1 & z and {7, z con-
ok 1% @ ﬂ'n.ﬂ‘j§<{61® :rr-nfrj{ 17 @ :r’n:nj}

tains an infinite increasing sequence of types.

Proof: By Lcama 2 there is jetl1,2,...,n% such that the se-

quence ’%i ® Zn'/\ xje Y, ®

different terms. The assertion now follows from the obvicus fact

7, =«... contains infinitely many
oA,

A

A . A & -
that =, ® ZJY'f\!\'jﬁ 58 Z:n'n:rfjé 6,® Z:vr'/\ ij_— ... for each icN.

Lemma 4: Let {"‘:i},i%izl,...,{% i} be sequences of types and

!
v be a set of primes such thati%'i(@ Zmi is an infinite increasing

sequence of types for each k e41,2,...,1% and '{"z\:i ® Z:n,,§<'(’812® Z}_}‘
<<k }@Zw,i. Let o= :\‘u’luﬂ‘g...u.‘!‘u‘n be a partition of the set
¥ and ‘W3 =x'A ﬂj’ je{1,2,...,n%. If 1j, jed1,2,...,n% is the

umber of pairs {%'i‘elm} <{%';+1®Z:".§. k e{l,2,...,1-1}, where
3

%‘;@Zﬂ,.g contains an infinite increasing sequence of types, then
J

+ 12 ..+ 1n21 - 1.

Proof: For any k €41,2,...,1-1% Lemma 3 yields the exist-
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ence of jke-{l,z,...,n}such that{%?@lﬂj }<{%Ii(+1®z“" { and
k Ik

{"E:Q Z,,:, ’3 contains an infinite sequence of types.
J
Lemma 5: Let M be an ordered set of types having chains of
increasing sequences of arbitrary lengths. Then M contains an in-

finite chain of increasing sequences.

M: On the set ¥ of all increasing sequences of types
from M we define the equivalence relation = in the following way:
{Qi} = -ia'i} if and only if there is an increasing seguence {@i}
of types from M such that all Qi's and all ?s‘i's are equal to so-
me element of {@;i} . Further, we define the ordering = on X in
such a way that iei}ﬁa {é’ii it and only if either {¥;} = { %i}.
or there is me¢N such that 3’m>'§i for all i €N. Since the rela-
tion 3 is obviously a total ordering on TfC, the assertion fol-

lows now easily.

Lemma 6: Let M be an ordered set of types satisfying the fol-
lowing condition:

(%) If @’is a subset of gr such that the set M ® Z1r’=
=42 ® Z“, 1T ¢ M} contains an increasing sequence ) %l'( %2<
then there is a prime p & ar' such that ¥ (p) = c0 for each type
TeM@1,, with ¥ < <. <%,

If M contains a chain {%%}<{%? < ...<{%%§ of 1 increas-
ing sequences of types then there is a partition & = n& vV

.V 31, of 5 such that &%i ® an} contains an infinite increa-

sing sequence for j4k, j,kedl,2,...,1}, and it is a finite set

of types otherwise.

Proof: Setting ar; = {pexm| 't:i(p) < oot we obviously get

that {’Qi ® ZJ\, 5 1is an infinite increasing sequence. Moreover,
t
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the assumption that {’?’.i’ @Zﬂ,} contains for some je{1,2,...,1 - 13
an infinite increasing sequenlce of types leads to a contradiction
with the condition (% ).

Assume that for some r ¢{1,2,...,1 - 1} we have constructed

the subsets ar ., ar; of a such that {%g ®Zﬂ.§ contains

T+l
an infinite sequence of types for each jefr + 1,..:.],1} and the
set {&) ®z”k} is finite whenever jK and j ¢{l1,2,...,1}, k €
edir + 1,...,1}. Denoting ﬁr’r =N (ar V...V 31y) we easily
get from Lemma 2 that the set {%§® Zﬂ.} contains an infinite in-
creasing sequence of types. Setting :Yrr=-ipc, J\"rl 'a"i.(p)< oo} we
see that the set {'?,g@ Z"r % contains an infinite increasing se-
quence of types, too. As agove, the assumption that the set
-i%g& Z‘"’rk’ jedl,2,...,r - 13}, contains an infinite increas-
ing sequence of types leads to a contradiction with the conditi-
on (% ). Moreover, the choice of ﬂ'r gives that 'ci*l(p) = 00

for each p € Jr'r and so the set -{%2@ Z,, } is finite for each je
e{r +1,...,1%. Finally, we set A, o= ;wr-'- (:rzu...u:ﬂl) and the

proof is finished.

Lemma 7: Let M be an ordered set of types satisfying the
condition (%) from the preceding Lemma. If M contains no two in-
creasing sequences {'Qi} and {3’i} with {"\Ui}<{3’i} then there
is a partition sr=sju ", of & such that M @Z’rl is inversely
well-ordered and either 7, = for M® Zﬂ,2 contains an infinite
increasing sequence %1< %2<... such that for each ne¢N the set
{ZeM @Zﬂ,zl% < &1 is inversely well-ordered and for each
2eM® Z’Q it is either % = 6 (the type of the additive group of

all rationals) or ¢ £ %‘n for some neN.

Proof: If M contains no infinite increasing sequence, then
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it is inversely well-ordered and it suffices to put ﬂ& = 7,
w, = B.

Assume that M contains an infinite increasing sequence {éiz'
Set T =42 e M|Z >, for all ieN§, 7 ={pes|w(p)<co fOF
some Z € T} and s, = &\at,. Since M satisfies the condition (%),
the set {7, ® z‘"l} is finite and consequently the set M @ Z is
inversely well-ordered. By Lemma 2, the sequence {%18 Zgrzicon'

tains infinitely many different terms and the assertion follows

easily (by the choice of Sfl).

Definition 1: For a positive integer n let A¥U(n) be the
class of all torsionfree groups G having the property that there
is a partition ar = ’lTlu CUPYVIRRR Vi) g of the set s¥ of all primes
such that the group 6@ 2”3 is completely decomposable with the
ordered type set T(G 8>an) for every jedl,2,...,n% . For comple-
teness set 2(0) = @ and let 2 be the union of all 2¥Un)’s,

W=, O, WM.

Lemma 8: Let G be a completely decomposable group of the

o
form G = 3J G>4C)1 Ji’ where J and Ji are of rank one and of the

types £ and %i' ic N, respectively. If ='= {pl,pz,...§ is a set
of primes such that ¥ @12, <2,®7,<...<%T® Z,,, and ¥(p)<
< oo for each p e st/ , then G contains a pure subgroup S not be-

longing to the class 7T .

Proof: In each Ji, ieN, select an element uy with hg (ui)=
]
= 0 for all jeil,2,...,i} and let O04ued be arbitrary. If
hG (u) = e,, we choose the elements v,, v,, in J such that
Py i 1 2
e ey .
py vy =uand piivy = v, , for all i ¢{2,3,...5.

Considering the pure subgroup *

S = V) + Pyuy, Vo ¥ PPRlg,eny Vi ¥ plpZ"'Pi”i"">
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of G, we are going to show that S & 9U.

Proving indirectly, suppose that there is a partition Jsr=
= :!flusrzu...u.rrn of gr such that S ® Zﬂ,j is completely decom-
posable with the ordered type set T(S® Zs'r-) for each jedl1,2,...
...,n%. By Lemma 2 there is je{l,Z,...,n}Jsuch that for Jr'j =
=x'n 5y the sequence {%13 %rr'i contains infinitely many diffe-
rent terms. Obviously, S®uzdr’- is completely decomposable and
T® L, > 2, ® 1, for all ieN.

3 3 oo

The group S® Z 3 can be written in the form S ® Z‘"'fj =Jk,=®4 Sk,
where Sk is a homogeneous completely decomposable group of the ty-
pe %k and %k< %kﬂ, keN. It p e :rr3 is any prime, then v_ +
+ PPy . -PgUgE H1 = 51® Sz® ®Sr' By hypothesis, there ex-

ists an element vy * plpz...mtuteH2 =&§+1Sk' Further, PPy .-
Es+l)rl et+1 e

(ug - ) = v, + PyPy..-Poug - P11
--Pgllg P51 <Py t s 172" "¥Fs's s+l
e es+1+1 e,+1
Py (vt + plpz...ptut)e §. Hence ug - pgly Py u, €5, S
. . es+1*1 et+1
being pure in G. Therefore, Ug - P gyl - -Py uy = h1 + h2’ hlé
€ Hl’ hze H2, and from the form of S ® é"ﬁ it follows PPy .-
’ ) ’- : G =0
SPghy = Vg * PPy -PglUg which contradicts hps(vs)

Lemma 9: Let G be a completely decomposable group of the

oo o
form G =1_'(1)1 I+ &@4 3, where J;, J; are of rank one and of

A
the types Ti» T

set of primes such that %1 ® 7, < ‘%2@ Z,.<... < %@ Z, <

&, ieN, respectively. If == {py,pp,---1 is a

A, Ay A
< <@L, <...<T,0 7, < ‘51(’3 Z,, and 'l:'i(pi).:oo
for each i &N, then G contains a pure subgroup S not belonging

to the class U .

Proof: In each Ji', ie N, select an element ui' with hg (ui')=0
i
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and for all i,jeN, select the elements u,.e€Jd . with h® (u,.) = 0,
= 137703 Py 1)
JeN. t

Considering the pure subgroup
S =<ui + piuij“" jéy_)g
of G, we are going to show that S ¢ 27T .

Proving indirectly, suppose that there is a partition Jsr-=

= Jrlu :n‘zu S U I of gr such that S® Z_,”. is completely decom-
posable with the ordered type set T(S® Z".g for each jedl,2,...

J
...,n}. By Lemma 2 there is je41,2,...,n} such that for ar’j =

= 5'n .-.ﬂ’j the sequence {%16 Z:rr'.i contains infinitely many dif-
ferent terms. Obviously, S @ Z“, is completely decomposable and
o J

¥ ® 1, >% &1, for all i, keN.

on
The group S @ Zﬂ_,j can be written in the form S® Z]T, =)‘k@4 Sk'

where Sk is a homogeneous completely decomposable group of the ty-
pe S'k and §k< aka»l’ keN. If pge «3 is any prime, then u; +
+ Pgug € Hy = 5169 52 ®...0 S.. By hypothesis, there exists an
element u; + PgUgys the type of which is greater than 8}, so that
u; + Pgug€ Hy =h=@~4 S, - Further, ps(us1 - Ugy) = (u; + Pglgy) -
- (u; + ps"st)"s‘ Hence Ugy = Ugt€ S, S being pure in G. Therefo-

Te ugy - Ugy = hy + hy, hy€H;, hp€H,, and from the form of

. o . ) G oy _
S ®Za'j it follows pgh, = Ug *+ Pglg) which contradicts hps(us) =0

Lemma 10: Let G be a completely decomposable group of the

form G =, é Ji‘, where Jg are of rank one and of the types %:,
14,‘2%1 1
i,jeN. If the sequences {’9%}, {%{},... form an infinite chain

of increasing sequences of types, then G contains a pure subgroup

S not belonging to the class @1 .

Proof: Let ov= {pl,pz, ......... } be the set of all primes

and p be a fixed prime. For each pair of sequences with i%?_’] >
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> $2 1} and af(p)* oo for all icN select in {2 5% the type

Pr

with index p and in the sequence {"t\:if select the types with in-

dices pps, 1e¢N. In the corresponding groups choose the elements

u®, ”‘II.’ T PRI with zero p-heights. Finally, denote : M(p) =
Now, let us use the construction described above for all

pairs r,se N with {%§§<{%§§ and 'L‘;"(p) % o for all ieN and

all pe .

Suppose that S ¢ M7 and

S M(p), s,reN>E

We set S =(fbk£:" r

let X = w'lu .17'2 v ...uo’r'l be the corresponding partition of the
set 3 . From Lemma 3 it easily follows that for any :;r'j, jefl,2,
...,1% there are u,v,w ¢ N such that

{%‘i‘@zx‘j}< {%z@zwj}<{%;’@ za'st,
and each of these sequences contains infinitely many different

terms. Clearly, for some p e, t‘i’(p) @ Zx'. 00 for any i€ N.

J J
However, for these p € ¥ and u,vc N we have already constructed

u

the set v M(p) and for the elements of this set we get contradic-

tion by the same methods as in the preceding proof.

Lemma 11: Let G = D@ H be a completely decomposable group
with the ordered type set, where D is divisible and H reduced. If
T(H) is either inversely well-ordered or it contains an infinite
increasing sequence %1< %2< ... such that for every £ ¢ T(H)
it is 3 < %n for some ne N and the set {2 ¢ T(H)| % é%nl is
inversely well-ordered for every n &N, then any pure subgroup of

G is completely decomposable.

Proof: See [2, Theorem 2) and (6, 7heorem 1].

Definition 2: We shall say that a torsionfree group G satis-
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’

fies the condition (P) if for any subset ' c 71 such that 6 Z,
is completely decomposable with the ordered type set T(G ® Zvr')

containing an increasing sequence %l< %2 < ... there is a pri-
me p € av’ such that' ¥(p) =oo for each type Ze T(C® Z_,”,) with
A A A
'dl< 'L’2<...< T .

Proposition 1: If G is a torsionfree group which does not
satisfy the condition (P), then G contains a pure subgroup not be-

longing to the class T .

Proof: By hypothesis, there is a subset ar'c ar such that
6® Zﬂ, is completely decomposable with the ordered type set
T(6® Zﬂ,) containing an increasing sequence %1< '?:2< ... such
that for every prime p € o' there is a type Te (6O Z:rr’) with
-%1< '?:2<...<% and t(p) < o0 .

Let o' = {pl,pz,...} be any ordering on the set ar’ . By hypo-
thesis, there is a type %’16 T(6 ©1,,) with %14 ’%2<...< T’

1
and t'l(pl) < oo ., Suppose that we have found the types 'gi’ %2',
,'l\'\::< in T(6 ®12,,) in such a way that %1< '2’2< ...<%L5...
R 6"2 6:'!"1 and 't'i(pi)<oo for each i e€f1,2,...,k}. If

"d"((pk+1)<oo , then we set ’E':“l = z?’k. 1f v\ (p, ) = then,

1< ‘7.‘2<...

R R '9'k and 'r:'kd(pk“) < oo . Thus, by the induction, we

by hypothesis, there is "E;(+1€f(G ®17_,) such that z

have constructed the types '2'1, "t\:é,... in T(6 ® Z_,) in such a way
-~ A A Ay x4 ct ’

that ¢, < T,<...cT <...<c¥ | &...6T,4 ¥, and ;(p;) <o

for all ie N. An application of Lemma B or 9 gives the existence

of a pure subgroup S of G & Zﬂ, which does not belong to the class

U . This finishes the proof owing to the simple facts that SNG

is pure in G and (5N G) ® Ipe = S.

Definition 3: We shall sav that a torsionfree group G satis-
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fies the condition (R) if there is a non-negative integer 1 such

that for any subset or'SJ for which 6 ® Z,, is completely decom-
posable with the ordered type set T(6 @ Z,,) any chain of increa-
sing sequences {'gi} <4z §}< ... of elements from T(C ® Z”.) con-

tains at most 1 terms.

Proposition 2: If G is a torsionfree group which does not
satisfy the condition (R), then G contains a pure subgroup not be-

longing to the class #T.

Proof: We can suppose that G € 29T and so there is a parti-
tion & = :rluﬂ'zu...u:n’n of ¥ such that G@Z,”_ is a comple-

J
tely decomposable groyp with the ordered type set T(G @& Zﬂ.)
J
for each je{l,2,..., n}. By hypothesis, for every leN there is

a subset 313 e or such that 6 & An’ is completely decomposable
1

with the ordered type set T(G ® %W ) containing at least 1 incre-
1

asing sequences {%\%}<{f€§}<... <{"E’%} of elements. It fol-
lows from Lemma 4 easily that for some j e{1,2,...,n} the type
set T(G G)Zﬂ_) contains the increasing chains of increasing se-
quences of arbitrary lengths. Consequently, Lemma 5 yields that
T(6® [ﬂ.) contains an infinite chain of increasing sequences.

Now it suffices to apply Lemma 10.

‘The following example shows that the condition (P) is not
sufficient for a group G € 221 to have all pure subgroups in the

class 1 .

Y
Example: Let or=,_J o be a disjoint decomposition of
'_—L h:" k
into infinite subsets, zrk =-{pk13pk2,...} for each keN. For
g such that for
each 1e N we set ©)(p ;) =0 for k<3, ®J(p,,) = 1 for k = )

each pair i,j<¢ N we define the characteristic =«
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and ft{(pkl) = 0 for k>j. Then the corresponding types form an

infinite increasing chain of increasing sequences {%i}< 1 %§<
< ... . It Ji‘ is a rank one group of the type %ij, then the group
G =\4'v,§=1 J{ obviously satisfies the condition (P), but does not

satisfy the condition (R).

Definition 4: We shall say that a torsionfree group G is of
the type (n, 1) if G & 9L (n) \ 29 (n-1) and G satisfies the con-
dition (R) with 1 the smallest possible.

Proposition 3: If G is a torsionfree group of the type (n,l)
satisfying the condition (P), then every pure subgroup of G be-

longs to some class 291 (m), where m£ 2nl.

Proof: By Lemmas 6 and 7 there is a partition of the set ar
inté at most 2nl parts, o7 = Jrlu-‘frzu...u.n'k, such that for
each je{1,2,...,k¥ the group G ® Z’rj is completely decomposable
of the form D ® H, where D is divisible, H reduced and T(H) is ei-
ther inversely well-ordered or it contains an infinite increasing
sequence '€1< %2<... such that for every T eT(H) it is v < %i
tor some ie€N and the set {Z € T(H)| 2 < '91} is inversely well-or-
dered for every i€ N. An application of Lemma 11 now finishes the

proof.

Remark: With respect to the proofs of Lemmas 6 and 7 it is
not too hard to show that to any neN, 1eﬂ0 and me N with m<2nl
there exists a torsionfree group G of the type (n,l) containing

a pure subgroup S belonging to the class 3(m) \ 21(m-1).

Theorem 1: Any pure subgroup of a torsionfree group G be-

longs to 2™ if and only if G satisfies conditions (P) and (R).

Proof: By Propositions 1, 2 and 3.
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Definition 5: We shall say that a torsionfree group G sa-
tisfies the condition (Rg) if for any subset of 'c # such that
G @Z:r' is completely decomposable with the ordered type set
T(6 ® Z,,) containifng an increasing sequence '21»< '92<... the-

re is a prime p € o’ such that ’Ck(p) = 0o for some ke N.

Lemma 12: If a torsionfree group G satisfies the condition

(Rg) then it satisfies the' condition (P).

Proof: Obvious.

Lemma 13: Let M be an ordered set of types satisfying the
following condition:

(xx) If x’ is a subset of ¥ such that the set M® Z,,=
= {'t'® Zm,, l'? € MY contains an increasing sequence ;L“1< %2<

then there is a prime p € ov’ such that v (p) =oo for some keN.

If M contains no two increasing sequences {'/c\i} and {3‘1}
with {’%i} < {S’i} then there is a partition o = o, v, of o
such that M ® Zar is inversely well-ordered and either My = B
or M® Z:,r2 contains an infinite increasing sequence 3‘1 < %2<
such that for each ne N the set {Te M® 2“2178 £ %’n} is inverse-
ly well-ordered, for each ZTeM ®Z,,2 it is either 5:‘= ﬁ or % <
< g'n for some ne N and for every prime p it is G’k(p) = oo for

some ke N.

Proof: If M contains no infinite increasing sequence, then
it is inversely well-ordered and it suffices to put a, =T,
:{2 = B.

Assume that M contains an infinite increasing sequence < %ii.
Set o, ={p €| v;(p) <eo for all ieNtand o, =ar \ ;. Sin-

ce M satisfies the condition (xX), the set {%, ® Z_ } is fini-
: 1
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te and consequently the set M @ Z,_,.r is inversely well-ordered.
1

By Lemma 2, the sequence {"ﬁi ® Z, t contains infinitely many dif-
2

ferent terms and the assertion follows easily.

Lemma 14: Let G be a completely decomposable group of the
form G =;é1 Ji' where Ji are of rank one and of the types %i'
1e€N. It &'=4p ,p,,...} is a set of primes such that %, @ Z,.<
<Ty® Ly <... and T;(p)<co for all ieN and pe &' , then
G contains a regular subgroup H not belonging to the class %t

Proof: For each i €N set U; =hé1 J | and decompose G into
—_— =1 K
i

oo

G =4.(.-91 Ui@ V. In each ka select an element Uik with zero' p; -
i
height in G and consider the subgroup
H =<v’piui’uik - ui,k+1‘i$keﬁ)

of G. It is easy to see that H is a regular subgroup of G.

First, we shall show that uil¢ H for all i eN. Proving indi-
rectly, suppose that uileH for some i €N. In view of the form of

-4 .

G we then have uj, = pju; + k§4 Q\k(uik) - ui,k+1)' Sl:ce u; €Uy,
there are integers m, My Moy My such that mu; =k=21 ™Yk

and owing to hg (uj,) = 0 we can suppose that (m,p;) = 1. Thus we
i

n n-1
have m uil = pi k§_4 (“‘k“ik +m k§_4 Ak(ulk - ui,k+l) and consequ-

ently
Py “‘1 ""\1-7\1 = m,
Pytg - mA +md, -0,
-0
Pithp ) ~MAp p+mA 75
Pitr - mA__ =0,

X = m, which contra-
Adding all these equalities we get Pj u§-4 ¢ K '
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dicts the hypothesis (m,pi) = 1.

1'Supﬁose now that H € 271 . Then there is a partition =
= Jflusrzu ...u.ﬂ'n of I such that H® Z,, is completely de-
composable with the ordered type set T(H® Zﬂ ) for each je<{l,2,

.,n}. By Lemma 2 there is je{1,2,...,n3 such that the sequen-

ce %18 ij-‘. "l\:z@ Z, &..., where :rr3 =a'n Jlj, contains infi-
nitely many different terms.

The group H@ Z”’J is obviously completely decomposable,

H @Zﬂ,i =‘@A Id . Let Py be any prime from Jr's. Because piu“e

€HEH® Z:rr' , the element PiYy, has a non-zero component in fini-
tely many I“ ‘s. Let H1 be the direct sum of those direct summands
I“ of H®Z,, in which PiYi, has a non-zero component, and H2

be the direct sum of all other direct summands I, of H® Z;r"
J
From the finiteness of T(Hl) and from the preceding part the exi-
A A A A
stence follows of Ty ® Z’r,j with Ty ® Z“,:l >t for all Ze T(Hl)
and so Pjusg€ H2.
Further, u;, - us = (uu - u”) + (u12 - UU) ...+
+ (ui,s-l - uis)"H®Z;q'j and hence ug; - uy . = hy + hy, h eH,,
h2€ H2. Multiplying by p; we get Pjuyy = pih1 and so ujy = hle H.

This contradiction completes the proof.

Lemma 15: Let G = D@ H be a completely decomposable group
with the ordered type set, where D is divisible and H reduced. If
T(H) either is inversely well-ordered or it contains an infinite
increasing sequence "El< "é2<... such that for every T €T(H)
it is £ < %n for some ne N, the set 4% ¢ T(H)| %A%n?is inver-
sely well-ordered for every ne N and for every prime p it is
'Vk(p) =co for some k€ N, then every regular subgroup of G is

completely decomposable.
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Proof: See [3, Theorem 2] and [6, Theorem 2].

Proposition 4: If G is a torsionfree group which does not
satisfy the condition (Rg), then G contains a regular subgroup not
belonging to the class 271 .

Proof: By hypothesis, there is a subset or’c o such that
6® 7, is completely decomposable with the ordered type set
T(G®~Zﬂ,) containing an "increasing sequence €1< %2< ... such
that ’ri(p)<oo for all ieN and p € o’ . An application of Lem-

ma 14 now finishes fhe proof.

Proposition 5: If G is a torsionfree group of the type (n,l)
satisfying the condition (Rg) then every regular subgroup of G be-

longs to some class 729t(m) where m<2nl.

Proof: Using Lemma 12 we see that by Lemmas 6 and 13 there
is a partition of the set oy into at most 2nl parts, Jar-= roaA,0
v... u‘nk,»lsuch that for each j €41,2,...,k} the group G ez,
is completely decomposable of the form D®H where D is divisible,
H reduced and T(H) is either inversely well-ordered or it contains
an in finite increasing sequence '?:1 < '92< ... such that for eve-
ry R € T(H) it is R < &, for some ieN, theset {2 e T(H)|R < £}
is inversely well-ordered for every i€ N and for every prime p it

is 'er(p) =00 for some r€ N. Now it suffices to apply Lemma 15.

Theorem 2: Any regular subgroup of a torsionfree gfoup G e
e ML belongs to W% if and only if G satisfies conditions (Rg)
and (R).

Proof: By Propositions 2, 4 and 5.
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