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CONSTRUCTION OF THE CUSS FN 
J. SGALL 

Abstract: In the paper we construct the class of finite 
natural numbers by a normal formula from a class which is a well-
ordering of V. This result shows that in the alternative set 
theory with Gbdel's scheme of existence of classes the class 
of finite natural numbers e x i s t s . 

Key words: Alternative set theory, axiom of choice, gxiom 
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In the alternative set theory (AST) we can formulate the axi­

om of choice in two ways: either as the axiom of well-ordering, 

or as the axiom of extensional coding . The two formulations are 

equivalent to each other (see £V} ,£S1] ) . However, if we substitu­

te Gbdel s scheme of existence of classes for Morse s scheme 

(i.e. if we restrict the scheme to normal formulas on ly ) , then 

the axiom of well-ordering is stronger. In the theory with the 

axiom of extensional coding it is impossible to construct the 

class FN, but in the theory with the axiom of well-ordering we 

can construct the class FN, as is shown in this paper. This con­

struction also demonstrates that for many issues AST with Gbdel's 

scheme of existence of classes is strong enough. 

Theorem. Let R be a well-ordering of the class V. Then we 

( v r x ) ( F i n ( x ) 3 S e t ( R n x 2 ) ) . 

Proof. Suppose at first F i n ( x ) . Then we have Fin(x ), this 
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2 - 2 
implies Fin(Rnx ) and hence Set(Rnx ) . The converse implication 

t 2 

is proved by contradiction. Suppose that ~i Fin(x) and Set(Rnx ). 
2 

Let r-Rnx . Every subset of x has an r-maximal element, because 

r is a linear ordering which is a set (see tV], Ch. I). Let y be 

the R-first element of x for which iFin(r,,4y}) holds (from the 

assumption ~i Fin(x) it follows that such an element exists - e.g. 

the r-maximal element of x satisfies ~iFin(r"$y})). Let z be the 

r-ma-ximal element of r"-ty }\4y1L Then we have Fin(r""£z}), because 

zRy and z + y, hence also r"-fy! = r"-Cz}\4yl is a finite set; this 

is a contradiction, and thus the equivalence is proved. 

Now we substitute Fin(x) by an equivalent normal formula 

2 

Set(Rn x ) in the definition of the class FN, and then from Go-

del s scheme the existence of the class FN in AST with Gbdel's 

scheme of existence of classes follows. 
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