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COMMENTATIONES MATHEMAT1CAE UNIVERSITATIS CAROUNAE 
273(1986) 

OSCILLATION THEOREM FOR A SECOND ORDER NONLINEAR 
ORDINARY DIFFERENTIAL EQUATION WITH DAMPING TERM 

S. I t GRACE and I . S. LALU 

Abstract: A new oscillation criterion for the equation 

(a(t)x*(t))- + p(t)x'(t) + c(t).x(t) -v 9(t)|x(t)|^ sgn x(t) = 0, 

0 <-c ? < 1, 
is established. 

Key words: Differential equation, oscillatory solutions, 
nonoscillatory, sublinear. 

Classification: Primary 34C10 

Secondary 34C15 

Consider the second order nonlinear differential equation 

(1) (a(t)x-(t)r* p(t)x#(t) • c(t)x(t) -> <|(t)|x(t)|y sgn x(t) « 0, 

0 -c T < 1 , 

where a, p, c, q:Ct ,oo)—>• R « (-00,00) are continuous and a(t)>0 

He shall restrict our attention to solutions of equation (1) 

which exist on some ray it ,co). A solution of equation (1) is 

called oscillatory if it has no largest zero; otherwise it is cal

led nonoscillatory. An equation is said to be oscillatory if eve

ry solution is oscillatory. 

Recently Kwong and Wong [3] considered the sublinear ordina

ry differential equation 

(*) x'Xt) * q(t)|x(t)|rsgn x(t) * 0, 0 < r<l, 

and proved the following theorem: 

4 

Theorem A. If there exists a positive function j> such that 
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p2T0 and JD#-£ 0 that sat is f ies 

<*#) lim f <p'ar(s)q(s)ds = o© 

then Eq. (1) is oscillatory. 

Theorem A extended and unified Belohorec Theorem til. 

The purpose of this paper is to proceed further in this di

rection and to present a new oscillation theorem for Eq. (1) which 

extends Theorem A of Kwong and Wong. 

Our main result is the following theorem: 

- 2 / JL \ 

Theorem 1. Let c(t)2: ° •• '— and tt> be a positive twice dif-
4tfa(t) 

ferentiable function on the interval tt0,co) such that: 

(2) p(t)<p* (t)>0, and (a(t) pm (t)Y & 0 for t2rtQ; 

and 

(3) lim sup — — i f* --ir J* <PTC-*)q(*)dTds = oo •, 

then Eq. (1) is oscillatory. 

Proof. Let x(t) be a nonoscillatory solution of equation (1), 

say x(t)>0 for t Z t . For t£t , define 

co "«>=(f&)r' 
which is again posi t ive . Let (3= :j>1> t n e n 

x(t) =f(t)w^(t). 

Differentiating (4), we obtain * 

- ^ (a(t)(?(t)w^(t)V)- « ̂  (a(t)(f(t)wA"1(t))-r + 

-, 1 (a(t)f(t))-w(i"1(t) +(*a(t)§>(t)w,3~3(t)w#2(t). 

From equation (1) and (4) we have 

(a(t)x'(t))* . (a(t)(<p(t)wfr(t)yr - P.(t)x'(t) _ c(t)x(t) _ 
5XTJ mtj wTt) w u ; 
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_ q(t)y(
r<*> - - £^|>[?*(t)w/l(t) + (i? (t)w^-1(t)wKt)] -

- ££|£p(t)w<*(t) " f^t>q(t> = -fT(t)q(t) - p(t)f>*(t)w
/3-1(t) -

- c(t)p(t)w/5-1(t) - | 3 p ( t ) f ( t ) w / 3 - 2 ( t ) w K t ) . 

Thus, 

A (a(t)(^(t)w^1(t))')* + yip (a(t)?'(t))
Jw/3-1(t) + 

+ (*a(t){>(t)w^3(t)w#2(t) + p(t)j>#(t)w|3"1(t) +/3p(t)^(t)w^2(t)w'(t) + 

* c(t)f>(t)w^1(t) = - f * " ( t ) q ( t ) . 

Using (2) we get 

A - (a(t)(f>(t)wP"1(t))-)* -h|3a(t)f?(t)w
r'-3(t)w"2(t) + 

+ 1ip(t)?(t)w
(l"2(t)W(t) + c(t)?(t)w'

,"1(t)i- f * " ( t ) q ( t ) . 

Now 

^(a(t)(5>(t)w
(5-1(t))-)- • c ( t ¥ t ) , H ( » ) . Pp2(t)f(t)w^1(t) 

• [(pa(t^(t)w<3-3(t))V(t) t ( j p ( t y ( t ) ^ ( t ; f 6 
L ' ^ 2(pa(t)fr(t)w

p_,)v--

£ - ̂ (t)q(t). 

n t + ̂  

Using the fact that c(t)^ A gtf\» we obtain 

(5) (a(t)(f.(t)w^1(t))*)'-: - £p-i C^(t)q(t). 

Integrating (5) twice from t to t we get 

(6) ( f Ш w ^ Ш ) - ^ + C
Q
 j£ ^-j ds -

where C and C, are appropriate integration constants. Obviously 

r °° 1 J "QTQT ds exists in (0,ao) LMoci and consequently 

lim ( J -J-jp. ds) = L for some LcEO.oo). 
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So we derive 

lim sup — j — I Jf J--T J' v'*'(x)q(x)4'Vds £ 

*~ 4 iTiTds S ̂  *o * 
^-d- HCrt + C,L - lim inf — i- (tp(t)w^"1(t)) -«- oo , 

^ ° * ^ X* aT¥7ds 

which contradicts (3). This completes the proof. 

In Theorem 1 no assumption is made on J°° r-r-ry ds. Therefore, 

its conclusion holds in both cases where (I) or (II) below is sa
tisfied: 

«> Г ^ üTsT ds = co 

(II) C *&***'" to 

In the second case, i.e. when (II) is satisfied, the condition 

(3) is clearly equivalent to the following one: 

(7) lim sup f --i-rr J' i%)q(t)dvds -co . 
t-»o> \ a{<s) Jtc

 s 

Remarks: 1. Our Theorem 1 improves and includes Theorem 1 

of Kwong and Wong [33 (take a(t) = 1, c(t) = p(t) = 0). Also, it 

includes the sufficiency part of Belohorec Theorem in £ 13, for 

a(t) = 1, c(t) = p(t) = 0 and^(t) = t. 

2. Theorem 1 can be extended to more general nonlinear e-

quations of the form 

(8) (a(t)x'(t))' • p(t)x(t) + c(t)x(t) + f(t,x(t)) = 0, 

where a, p, c are as above, f: Lt ,oc)x.R—* R is continuous such 

that xf(t,x)>0 for x % 0 , and 

iLLj^i^qCt), 0^ ,r- 1, 
UV 

where q: £t ,<*-) —*> R is a continuous function. 

3. It is clear that the oscillatory behavior of Eq. (1) or 
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-̂  - - U O , oĉ  + o s 2oC2, 4 y > 1. 

2 
(8) (with a(t) = 1 and c(t)> P ^ h and equation (*) are exactly* 
the same. 

For illustration we consider the following example: 

Example 1. Consider the differential equation 

(9) (t V ) # + t V + t ̂ x + (t*sin t)|x|r sgn x = 0, 

0 < r < 1, t£l, 

where oc,, <*-«» ̂ 3 and A are constants. Let p(t) = t , where & 

is any nonnegative constant such that 

<ac, + 

If 

T e * A >1, 

then all solutions of equation (9) are oscillatory. One can easi

ly check that none of the known criteria [1-6 3 is applicable to 

Eq. (9). 
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