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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
27.3 (1986) 

ZEROS FOR STRONGLY ACCRETIVE SET-VALUED MAPPINGS 
Claudio MORALES 

Abstract: Let D be an open subset of a Banach space X, and 
let B(X) denote the family of all nonempty, bounded and closed 
subsets of X. Suppose T:D—*- B(X) is a continuous (with respect 
to the Hausdorff metric) and strongly accretive mapping. It is 
shown that if for some zeD:t(x - z)^T(x) for x in the boundary 
of D and t < 0 , it is sufficient to guarantee that T has a zero in 
0. Several implications of this result are considered, particular
ly on a localized version of it. 

Key words and phrases: Strongly accretive mappings, locally 
c-strongly accretive mappings, zeros. 

Classification: 47H10 

Let X be a Banach space, D a nonempty subset of X, and let 

B(X) denote the family of all nonempty, bounded and closed sub

sets of X supplied with the Hausdorff metric H (defined below). 

A mapping T:D ^ 'o(X) is said to be strongly accretive if for so

me k^l and for each x,y^D, u <= T(x), v & T(y): 

(1) ( A - k)!ix - yll« i-(A - D ( x - y) + u - v ., 

for all A > k ; while T is said to be accretive if (1) holds for k = l. 

This latter class was introduced independently in 1967 by F.E.Brow-

der L 2J and by T.Kato [61 and their firm connection with the exist

ence theory for nonlinear equations of evolution in Banach spaces 

is well-known (see, for example, „31, "4: , ~~6} or ' I F ) . The theory 

of accretive operators has been closely related with the existen

ce of fixed points for nonexpansive mappings, which is clearly 
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reflected by the fact that T is accretive if and only if the map

ping I - T is pseudo-contractive, a class of mapping which, in 

the single-value case, includes all nonexpansive mappings. 

In a recent paper L123, the author showed the existence of 

a unique fixed point for strongly pseudo-contractive mappings (a 

much wider class than contractions) under a condition weaker than 

the Leray-Schauder type, introduced by Kirk-Morales [8j. Particu

larly it can be derived the following result from Theorem 1 of 

1121. 

Theorem M. Let X be a Banach space, D an open subset of X, 

and T a continuous strongly accretive mapping from D into X satis

fying for some z £ D: 

T(x)#t(x - z) for x c 3 0 and t<0. 

Then T has a unique zero in D. 

Theorem M has been used (see 191) to obtain a number of re

sults concerning the existence of zeros for continuous and accre

tive single-valued mappings. In view of this, it appears to be im

portant to investigate whether or not the above result holds for 

set-valued mappings. In fact, we are able to answer this question 

positively in Theorem 1. Our approach relies on ideas already de

veloped in 114-1 for single-valued mappings, combined with a recent 

theorem of Kirk 17} (see below). In the interest of attaining a 

certain degree of generality, we study a localized version of The

orem 1 via refining arguments of Kirk and the author in i 9 \ and 

[131. We also obtain some consequences of the main result which 

improve the recent theorems of Downing 15".. Finally we obtain a 

domain invariance theorem for the class of mappings so-called c-

strongly accretive . 
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Theorem K (Ki rk , t7J ) . Let X be a Banach space and D an open 

subset of X..Suppose T:D —> B(X) is continuous (relative to the 

Hausdorff metric) and strongly accretive. Then T(D) is open in X. 

Throughout this paper we use "D and 3D to denote, respecti

vely, the closure and the boundary of D, and for u,v*X we use 

seg[u,v3 to denote the segment \tu + (1 - t)v:t cf0,1JJ. Also, for 

a subset A of X, we use |A| to denote inf \ |1x i.:x €. A}. Finally, for 
X* 

a Banach space X, the mapping J:X—** 2 denotes the usual norma
lized duality mapping: 

J(x) = 4 j e X * : | jR =- ||xil , < x , j > = i lxl l 2 ] . 

- Following Assad and Kirk [U we define the Hausdorff metric 

H as follows: if r>0 and E c B(X), let 

Vr(E) = 4xeX:dist(x,E)< rV 

Then for A,B £ B(X) we define 

H(A,B) = inf 4 r:Ac Vr(B) and BcVr(A)}. 

We shall also make use of the following lemma, which is not

ed in tlj. 

Lemma 1. If A,Bfe B(X) and xcA, then for each positive num

ber oc there exists y 6 B such that 

Itx - y ft * H(A,B) + oo . 

In what follows we shall frequently appeal to the following 

facts. 

Lemma 2. Let D be a subset of a Banach space X with Oe D, 

and let T:D— r B(X) be a strongly accretive mapping. Then: 

(i) the set E = i x e D: tx e T(x) for some t<0i 

is bounded. 

457 -



(ii) If K*n - u J is a bounded sequence in X for un<= K
x
n)> 

t —> t with tne £0,1.1 , and zp = (1 - tn)xR + tnun —*- y, then 

ixn\ is a Cauchy sequence. 

Proof, (i) Let txeT(x) for some t<0. Select ueT(x) such 

that tx = u and thus (1) implies 

(1 - t - k).lxft*= ! - tx + u - vl * » v* 

for all v«ET (0 ) . Since t < 0 , it follows that 
ftxiU|T(0)|/(l - k ) . 

( i i ) Let u e T(x ). Then by choosing A= t~ in (1) we ob

tain 

yielding 

^ñ1 " k)Hxn - x ľ í , ( C - 1)(xn - XJ + un - V 

( 1 - V ) 1 , x n - x

m

6 i , l ( 1 - V ( x n " *•»> + V u n " UJ' 

*» zn - z

m»
 + l+n - *J ;;x

m -
 un,'! ' 

Therefore \x\ is a Cauchy sequence. 

Lemma 3. Let C be a closed subset of a Banach space X and 

let T:C—*B(X) be continuous. Suppose ht(x) = (1 - t)x + tT(x) 

for t 6 (0,U and z R « ht. (xR) where z n —* z, t —* tQ -> 0 and x R -*• 

— > x Then z eh^ (x ). 

Proof. Let & > 0 , then there exists N e IN such that 

(2) H ( T ( x n ) , T ( x ) )-< £,/2tQ for all n^N. 

Since z e h. ( x n ) , we may choose u s. T (x n ) so that zn = (1 - *n)
x
n+ 

n v 

+ t u . Moreover, by Lemma 1 , we may se lect v = T ( x „ ) s a t i s f y i n g n n n o 

(3) un - vp -H(T(xn),T(x0)) • 6/2t0. 

Let w„ = (1 - t)xn + t v for each n, then n o o o n ' 
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l z n - wn\\ . 1(1 - t „ )x n + V n - " - - V x o + V n " 1 

^ l 1 " * J » * n - x o , + 1 *0" * J l x o - » n » + * o , u n - vn» * 

By making use of (2) and ( 3 ) , we get 

(4 ) Rzn - w n I U U - t n | l x n - * 0 f t + | t 0 - tn | l tk 0 - U H U e 

for all n?N. By letting n —**<*> in (4) and observing that *tunl 

is bounded, we conclude 

lim sup \Wn - 2 I .6 €, . 

Since fc is arbitrary and w e ht (x ) for all n, the sequence Iw J 

converges to z, hence zeh + (xn). * 
%Q o 

Me begin with a special case of our main result. 

Proposition 1. Let X be a Banach space, D an open subset of 

X, and let T:D—*B(X) be a continuous and strongly accretive map

ping. Suppose that T maps bounded sets into bounded sets and sa

tisfies for some zeD: 

(5^ t(x - z)$T(x) for x e 3D and t<0. 

Then 0 eT(D). 

Proof. By translating T and 0, we may take z - 0 in (5). 

Since the set E (defined in Lemma 2) is bounded, there is no loss 

of generality in assuming D is bounded. 

Let ht-.D ~~*B(X) be defined by ht(x) = (1 - t)x + tT(x) for 

each t €.10,13., and let 

M « 4t e 10,1) :0 c ht(x) for some x & D h 

Me first observe that M-^0 (since O&M). Now we shall show that 

sup M « 1. To see this, let -It \ be a sequence of M with t —*• t 

18 n-*co . Then, for each n, there exists x eD so that 

0 6 ht (x ). This means, we may select uneT(x ) for which 
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(1 - tn)xn • tnun * 0, implying that ixn} is a Cauchy sequence 

(by Lemma 2 ii). Hence x n — > xeT) and thus by Lemma 3 we conclude 

that 0 e(l - t)x + tT(x) and by (5) xeD. Therefore M is closed 

in 10,11. 

Assume now that M is not open. Then there exists t&M and a 

sequence 4tnl in to,13 for which t n#M and tn —» t. Let 0 eht(x) 

for some xcD and let u cT(x) such that (1 - t)x + tu = 0. Suppo

se B is an open ball centered at x contained in D. If we define 

y = (1 - t )x • t u for each n c IN then 

y neh t (x)cht (B) 
n n 

while 04 bt (B), which implies the existence of un € seg tO,ynJ r> 
n 

A dh t (B). Since ht is strongly accretive for t >0, it follows 
n n _ 

that ht (B) is open (by Theorem K), while by (1) ht (B) is closed. 
n n 

Hence we conclude that dh. (B)ch± (9B), yielding to the exis-
n n 

stence of a point xn c 8B so that u e ht (xp). Since yn —* 0 as 
n 

n —>oo and un c seg E0,yn3, un—*- 0 and thus Lemma 2(ii) implies 

that ixA is a Cauchy sequence which must converge, say to x e dB. 

Therefore by Lemma 3 OetuOO which, since x-fx, contradicts the 

expansiveness of h. on B, completing the proof. 

Since T is strongly accretive on a set iff I - T is strongly 

pseudo-contractive, the following result is a direct consequence 

of Proposition 1. 

Corollary 1. Let X be a Banach space and K a closed ball in 

X. Let T J K — * B(K) be a continuous and strongly pseudo-contractive 

mapping. Then there exists xQe K such that x QcT(x 0). 

We now state the main result of this paper. 

- Ш -



Theorem 1. Let X be a Banach space, and D an open subset of 

X. Suppose T:D—* B(X) is a continuous and strongly accretive map

ping which satisfies for some zeD: 

(6) t(x - z)<H(x) for x c ©D and t<0. 

Then there exists x cD with OcT(x). 

Proof. As before, we may assume D is bounded and 2 - 0 in 

(6). Since the mapping U - I - T is continuous at 0, we may choo

se a closed ball K centered at 0 and t€(0,l) such that KcD and 

tU-.K—*B(K). 

Since tU is also strongly pseudo-contractive, Corollary 1 implies 

the existence of x e K such that xetU(x), i.e., 0«(1 - t)x + 

• tT(x). 

Let h t:l—» B(X) be defined by ht(x) = (1 - t)x + tT(x) for 

each tc(0,U, and let 

H - {t c(0,l3:0 €ht(x) for some xcDl. 

Observe that ht is strongly accretive and M is a nonempty set with 

sup M>0 (by the above argument). To complete the proof it suffi

ces to show, successively, that sup M = 1 and leM. 

Suppose t * sup M<1. Let -it It be a sequence of M with t -~* 

— * tQ as n — * co , and let xn* 0 be such that 0 e(l - tn)xn + 

• tnT(xn). Choose unc T(xn) so that (1 - tn)xn + tnun « 0. Since 

D is bounded and it A is bounded away from zero, the sequence 

ix - upt is bounded. Thus by Lemma 2(ii) 4x * is a Cauchy sequ

ence, implying x p — > x e t). It follows that, by Lemma 3, 

0€(1 - t0)xQ + *0T(x0) and by (6) x Q€D, proving tQeM. 

Since by assumption tQ< 1, we select a sequence i%n% in the 

open interval (t0,l) such that t n — * t * . Since t n4M for each n, 

the argument given in Proposition 1 leads to the same type of 
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contradiction. Therefore t « lcM. 

The single-valued version of Theorem 1 can be easily derived 

from Theorem 1 of the author 113J in more general setting. Actu

ally, if T is a single-valued mapping from D into X, Theorem 1 

remains valid for the much wider class of locally strongly pseu

do-contractive mappings. 

Theorem 2. Let X be a Banach space and D a bounded open sub

set of X. Suppose T:D—* B(X) is a continuous and accretive map

ping satisfying for some zeD: 

(7) t(x - z)$T(x) for x £ dD and t<0. 

Then inf 4|T(x)|:x e D> = 0. 

Proof. Let Tn:l—> B(X) be defined by TR(x) = (l/n)(x - z) + 

+ T(x), for each n € U. Then T is a continuous strongly accreti

ve mapping which also satisfies (7). Then, by Theorem 1, there ex

ists x eO so that u f tI n(
x
n) for each n. Since \x } is bounded it 

follows that |T(x )|—*> 0 as n —*• oo , concluding that 

inf 4|T(x)|:x*in * 0. 

We should note that in t5l, Downing has shown Theorem 2 un

der the additional assumptions that T is lipschitzian and it takes 

values in P(X), i.e., if x &X and AeP(X), there exists a point 

a c A with ttx - a ft = inf \\\x - y tt:y £ AL 

Next, we extend a theorem of Kirk and Schoneberg 110 J to a 

set-valued mapping, and we also improve Theorem 2.1 of 15J, which 

is also an extension of the aforementioned theorem of 1103. 

Theorem 3. Let D be a bounded open subset of a Banach space 

X, and let T:D—~* B(X) be continuous and accretive. Suppose there 

exists z e D such that 
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(8) |T(z)|< |T(x)| for? all x e 80. 

Then inf {|T(x)|:x cVi * 0. If in addition, 0 has the fixed point 

property with respect to (single-valued) nonexpansive self-map

pings, then 0 e T(B). 

Proof. We first show that (8) implies condition (7): t(x -

- z)4T(x) for x « 9D and t<0. Suppose u = t(x - z) for some 

ucT(x), x & d D and t<0. Then by choosing A= 1 - t and k - 1 in 

(1) we have 

-tib< - z U l.~t(x - z) + u - A/K = J M 

for each veT(z). Since |T(x)|̂ -tllx - z II and -tllx - z**|T(z)|, 

we conclude that |T(x)|=< |T(z)| which contradicts (8). Therefo

re, Theorem 2 implies inf •£ |T(x) | :x e0 } = 0. From this latter 

fact one may assume the existence of z eD such that 

|T(z)|<inf * |T(x)|:x * ©D J. 

By Theorem 2.4 of 173, there exists a (single-valued) nonexpansi

ve mapping f:lT—> D whose fixed points are zeros of T. Hence the 

added assumption on D completes the proof. 

The following theorem is a localization of Theorem 1. To pro

ve this result, we invoke some lemmas whose proofs are patterned 

after Kirk-Morales C91 and Morales £133. 

Theorem 4. Let X be a Banach space, and D an open subset of 

X. Suppose T:D—» B(X) is a continuous and locally strongly accre

tive mapping on D which satisfies for some zeD: 

(9) t(x-z) + T(x) for x e dD and t<0. 

Then there exists x«.D with 0 &T(x). 

To prove this theorem we need the following lemmas. 

Lemma 4. Let X be a Banach space and D an open subset of X. 
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— X 

Suppose T:0—* 2 is a continuous mapping which is locally strong

ly accretive on D. Suppose also that t x c T(x ) for some x m. D 
and t Q<0, and suppose for <5'o>0, B(xQ; <fQ)cO. Then: 

(a) If t<0 satisfies 

(10) | t - t 0 | ^<T0(1 - k)/llx0li, 

there is a unique point xt«B(x0; cT) such that txteT(xt). 

(b) The point xt in (a) satisfies 

»xt - X oU»X t l i |t - t j / d - t0 - k). 

Proof. Since T is locally strongly accretive on D, there ex

ists a closed ball B = B(x ; of) where T is globally strongly ac

cretive. Suppose t<0 satisfies (10). Me shall show that the map

ping T-tl satisfies (9) on 3B (with z = x ). To see this, suppo

se there exist s<0 and x e dB such that 

s(x - x)sT(x) - tx. 

Choose u«e T(x^) and u c T ( x ) so that u„ = t„x„ and s(x - x„) = o o o o o o 

« u - tx. Then by setting A . l - t - s in (1) we have 

(1 - t - s - k) lx - x 0 i U * - (s • t ) ( x - xQ) + u - u Q l 

• ft- (s + t ) ( x - xQ) • s(x - xQ) • tx - tQx0 II 

* &x0(t - t 0 ) l 

from which (using (10)) and the fact that tx - x I « cT ) 

<1 . t - s - k) Ix - xQ i i<.( l - k) lix - x Q l . 

This implies s>0, which is a contradiction. Therefore, by Theo

rem 1, T - tl has a unique zero xt in B, i.e., txt«T(xt). 

To prove (b), select X « 1 - tQ. The strong accretiveness 

of T implies 

(1 - t0 - k)ixt - x0Uii-t0(xt - xQ) + txt - t0x0*| 
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yielding 

lxt - x QUlx tl |t - t0|/(l - tQ - k). 

Lemma 5. Let X be a Banach space, 0 an open subset of X and 

— x 

T:0—• 2 a continuous mapping which is locally strongly accreti

ve on 0. For AcO, set E. *- ^t<0:txeT(x) for some x%A$ and let 

E s -f x * D:tx eT(x) for some t<0}. Then 

(i) the set E is either empty or the union of nontrivial 

components, each of which is a continuous image of a subinterval 

of (-oo,03. 

In addition, if F is any component of E, then 

(ii) if X < 0 and tQe Ep, then the set G « k x eF.tx cT(x) 

for some tcE^nCt ,0)".i is bounded^ and 

(iii) if tnxneT(xn) with tn—-» t^O (t n^0) and Jxn*cF, 

then x is a Cauchy sequence. 

Proof, (i) is an immediate consequence of Lemma 4. 

(ii) Suppose x c F with t^x«cT(x#%), and choose &>0 such 
rr o o o o * 

that T is global ly strongly accretive on the closed ba l l B(x ;Cf)c 

cD . Let t x t c T ( x t ) , where x t * B(xQ; eOo F and t o < t < 0 . Then by 

selecting .A= 1 - t i n (1) we have 

(1 - t - k ) l x t - x 0 t U t - t ( x t - xQ) * t x t - t 0 x p l 

- ( t - t0 ) i tx0 t i f 

which implies 

(1 . t - k)lxtl*(l - t - k)(lxt - xql*lx0l.) 

&(1 - t - k)((t - t0)/(l - t - k) + l)lx0l • (1 - t0 - k) lx0». 

Therefore lxtl*ttx 1(1 - tQ - k)/(l - k) for all xte 6. 

(iii) Suppose t <t . Then by Lemma 4 the segment tt-j,,tn.3 

can be covered by a finite number of overlapping subintervals 
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41.1 * . which have the property that for each i and t, s€l i, the 

correspondent xt,xg« F satisfy 

(11) ttxt - xsIUM|t - s | / ( l - k), 

where M = sup 4lxt&.xt« F,to^t<0i with tQ = inf *tn*. 

Me may now select s i c I i r i I i + i s u c n t n a t *m
 = s o < s l < * • • 

...< s r > f l • t n . Then by (11) , 

«Xft - x„ U M | 8 i - « U 1I/(1 - k), i = 0,1,...,r, 
si si+l 

and thus 

»y- *-» *X%\ - \J * Mifo |s i - s i+ i | / ( 1 - k ) • 

• "I*. - *nl/(1 - k)-

Therefore 1x1 is a Cauchy sequence. 

Proof of Theorem 4. Without loss of generality, we may as

sume z - 0 in (9). As it was shown before (see the proof of Theo

rem 1), there exists se(0,l) and a ball B centered at 0 such that 

the mapping (1 - t)I + tT has a zero in B for each te(0,s). The

refore, if we define the set E as in Lemma 5, there exists a com

ponent F of E for which G«F . 

Let h t:D—* B(X) be defined by ht(x) = (1 - t)x + tT(x) for 

each t fc (0,ij , and let 

M = it c (0,ll:0eht(x) for some xeF 0}. 

He first note that M is a nonempty set (by the argument men

tioned above) having sup M>0, We shall show successively that 

sup M « 1 and 1e M. 

Suppose t = sup M < 1. Let *t 1 be a sequence of M with 

t n — * tQ as n—*oo , and let xn€ FQ be such that 0«.ht (xn). 
n 

Then by Lemma 5(iii), the sequence i*n) is Cauchy and since F is 
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a closed set in E. {xA converges to x„c F . It follows, from Lem-n CT o o 

ma 3, that Oc h^ (xQ), proving tQ«M. 
o 

Since by assumption t -<1, we may choose a sequence -ft } in 

the open interval (tQ,l) such that tn —*-t*. Since x iD ( by (9)) 

and t $ M for each n, we may carry out the proof of Proposition 

1, concluding that t * lcM. This means there exists x • D for 

which 0«-T(x). 

Our next theorem involves an apparently wider class of strong

ly accretive mappings. Let e: C0,oo ) —*• £0,oo) be a continuous 

function having c(t)>0 for each tcL0,o->), and let D be a subset 
v 

of a Banach space X. A mapping T:D—• 2 is said to be locally c-

strongly accretive if for each point zeD there is a neighborhood 

N such that for each x,ycN there exists jc3(x - y) satisfying 

(12) <u-v,;j>2 c(max -CllxIJyM ) iix - ytt2 

for u cT(x) and v cT(y). 

Theorem 5. Let X be a Banach space, D an open subset of X 

and T:D—-» B(X) a continuous locally c-strongly accretive mapping. 

Then T(D) is open. 

Proof. Let y &T(D). Then there exists x 0 « D such that y e 

s T(x ). Since T is locally c-strongly accretive, we may choose 

an open ball B centered at xQ for which (12) holds for all x,ycB. 

Then the assumptions on c imply 

T * inf *c(lluft):ueB*>0. 

Now i f u e T ( x ) and v € T(y) for x , y e B , then 

<u-v,«)> * T l i x - y« 2 

for some •} « 3(x - y). This means T is strongly accretive on B, 

and thus Theorem K implies T(B) is an open subset of X, completing 
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the proof. 

Me remark that Theorem 5 extends Theorem 4.1 of Ray and Wal

ker 1153 and Theorem 2 of Torrejon £ 16J. Acutally they show the 

single-valued version of Theorem 5 under a more restrictive as

sumptions on the function c (defined above). We should also ment

ion that our proof for single-valued mappings can be obtained via 

using Theorem 3 of Deimling [41. 

Our final theorem is a combination of Theorem 4 with the fol

lowing coercive condition imposed on the operator T: 

(13) T (K) is bounded whenever K is compact. 

Theorem 6. Let X be a Banach space and let T:X—*~ B(X) be 

continuous and c-strongly accretive, satisfying condition (13). 

Then T(X) = X. 

Proof. Since by Theorem 5 T(X) is open, it remains to show 

that T(X) is closed. To see this, let 4u \ be a sequence in T(X) 

such that u —** u. We choose x e X such that u « T(x ) for each 

n. By (12) there exists jc3(xn - xm) such that 

<un - um,j>ec(max-fllxnll,»xmn)llxn - xjl
2. 

Since (13) implies that -tx } is bounded, there is a number y > 0 

(as in the proof of Theorem 5) for which 

< u n - u m , j > > r l ! x n - x j l 2 

for all n,m c (N. Hence the sequence ix \ is a Cauchy sequence 

which must converge to some xaX. Since T is continuous, Lemma 3 

(with t • 1) implies that ueT(x). 

The author wishes to thank Professor 0.3. Downing for pro

viding him with a copy of 153. 
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