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ZEROS FOR STRONGLY ACCRETIVE SET-VALUED MAPPINGS
Claudio MORALES

Abstract: Let D be an open subset of a Banach space X, and
let BTX) denote the family of all nonempty, bounded and closed
subsets of X. Suppose T:0 —> B(X) is a continuous (with respect
to the Hausdorff metric) and strongly accretive mapping. It is
shown that if for some ze D:t(x - z) &T(x) for x in the boundary
of D and t<0, it is sufficient to guarantee that T has a zero in
D. Several implications of this result are considered, particular-
ly on a lccalized version of it.

.

Key words and phrases: Strongly accretive mappings, locally
c-strongly accretive mappings, zeros.

Classification: 47HI10

Let X be a Banach space, D a nonempty subset of X, and let
B(x) denote the family of all nonempty, bounded and closed sub-
sets of % supplied with the Hausdorff metric H (defined below).

> m(X) is said to be strongly accretive if for so-

A mapping T:D
me k~1 and for each x,y <D, ueT(x),veT(y):

(1) (A- Kkix -yl (A - 1)(x - y) +u - v

for all A>k; while T is said to be accretive if (1) holds for k=1.
This latter class was introduced independently in 1967 by F.E.Brow-
der { 2] and by T.Kato (6] and their firm connection with the exist-
ence theory for nonlinear equations of evolution in Banach spaces

is well-known (see, for example, .3., 4.,.6i or .11°). The theory

of accretive operators has been closely related with the existen-

ce of fixed points for nonexpansive mappings. which is clearly
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reflected by the fact that T is accretive if and only if the map-

ping I - T is pseudo-contractive, a class of mapping which, in

the single-value case, includes all nonexpansive mappings.

In a recent paper [12), the author showed the existence of
a unique fixed point for strongly pseudo-contractive mappings (a
much wider class than contractions) under a condition weaker than
@he Leray-Schauder type, introduced by Kirk-Morales [B8]). Particu-
larly it can be derived the following result from Theorem 1 of
1123,

Theorem M. Let X be a Banach space, D an open subset of X,
and T a continuous strongly accretive mapping from D into X satis-
fying for some ze¢D:

T(x)*t(x - z) for x € 3D and t<0.
Then T has a unique zero in D.

Theorem M has been used (see 19]1) to obtain a number of re-
sults concerning the existence of zeros for continuous and accre-
tive single-valued mappings. In view of this, it appears to be im-
portant to investigate whether or not the above result holds for
set-valued mappings. In fact, we are able to answer this question
positively in Theorem 1. Our approach relies on ideas already de-
veloped in [14] for single-valued mappings, combined with a recent
theorem of Kirk [7) (see below). In the interest of attaining a
certain degree of generality, we study a localized version of The-
orem 1 via refining arguments of Kirk and the author in {91 and
[13]1. We also obtain some consequences of the main result which
improve the recent theorems of Downing [5). Finally we obtain a
domain invariance theorem for the class of mappings so-called c-

strongly accretive.
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Theorem K (Kirk,[7]). Let X be a Banach space and D an open
subset of X..Suppose T:0 —» B(X) is continuous (relative to the

Hausdorff metric) and strongly accretive. Then T(D) is open in X.

Throughout this paper we use U and 8D to denote, respecti-
vely, the closure and the boundary of D, and for u,ve&X we use
seg[u,v] to denote the segment §tu + (1 - t)v:tel0,1]}. Also, for
a subset A of X, we use |A| to denote inf ¢{WxN:x ¢A}. Finally, for
X*

a Banach space X, the mapping J:X —> 2 denotes the usual norma-

lized duality mapping:
I = L3 X% W3h = Ix b ,<x,3) = ixN?3. .

Following Assad and Kirk [1] we define the Hausdorff metric

H as follows: if r>0 and E € B(X), let
V.(E) = {xeX:dist(x,E)<r}.
Then for A,B € B(X) we define
H(A,B) = inf {r:AcV (B) and BeV (A)}.

We shall also make use of the following lemma, which is not-

ed in 111.

Lemma 1. If A,Be B(X) and xe A, then for each positive num-
ber « there exists y e B such that

Ix - yh « H(A,B) + o .

In what follows we shall frequently appeal to the following

facts.

Lemma 2. Let D be a subset of a Banach space X with 0e D,
and let T:D —> B(X) be a strongly accretive mapping. Then:
(i) the set E = 4xeD:txeT(x) for some t<0}

is bounded.
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(ii) 1f (xn - u ¥ is a bounded sequence in X for u e T(x,),
t, —> t with t e £o,11, and z, = (1 - t )%, + tu —>y, then

{xn} is a Cauchy sequence.

Proof. (i) Let txeT(x) for some t<0. Select u €¢T(x) such
that tx = u and thus (1) implies
(1 -t -k)ixbhelhotx +u-vh=tvl

for all veT(0). Since t< 0, it follows that
Ixha|TC(0)|/(1 - k).

(ii) Let u e T(x_ ). Then by choosing A= t;l in (1) we ob-
tain
ol o - x TeleTh - D - x ) +ug - g
n n m n n m n m
yielding

(1 - tnk)\\xn —xmhe\l(l - tn)(xn - xm) + tn(un - um)ﬂ

ez -z 0+ Itn’tml SXp n

Therefore {xﬁk is a Cauchy sequence.

Lemma 3. Let C be a closed subset of a Banach space X and
let T7:C —> B(X) be continuous. Suppose ht(x) = (1 - t)x + tT(x)
for te(0,1) and z_ =h, (x ) where z . — 2z, t —> t >0 and x, —

—>x,. Then z shtc(xo).
Proof. Let € >0, then there exists N ¢ N such that

(2) H(T(xn).T(x))< e /2t for all nZN.

Since z e htngxn), we may choose u 3 T(x_ ) so that z = (-t x +
+ tn"n' Moreover, by Lemma 1, we may select v ¢ T(xo) satisfying
(3 u, - vy =H(T(xn),T(xo)) + /2t

Let w, = (1 - to)xO + t v, for each n, then
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Yz, - wo o= WA=+ taly - DAL - txg ¢ v 0
€11 -t | Wx - x Ve ftg -t LSRN S A
By making use of (2) and (3), we get

&) Mtz - wn\\étl -tk - xol + [ty - t Il - Uﬂl + 8

for all nzN. By letting n —><@ in (4) and observing that {u}

is bounded, we conclude

lim sup \\wn -zVle ¢.
M 00

Since ¢ is arbitrary and W, € hy (xo) for all n, the sequence iwni
o

converges to z, hence zeh, (x,).
0

We begin with a épecinl case of our main result.

Proposition 1. Let X be a Banach space, D an open subset of
X, and let T:D —» B(X) be a continuous and strongly accretive map-
ping. Sunpose that T maps bounded sets into bounded sets and sa-

tisfies for some z eD:

(5) t(x - z) &T(x) for x e 3D and t<0.

Then 0 e T(D).

Proof. By translating T and D, we may take z = 0 in (5).
Since the set E (defined in Lemma 2) is bounded, there is no loss
of generality in assuming D is bounded.

Let ht:TJ' —>» B(X) be defined by he(x) = (1 - t)x + tT(x) for
each t ¢10,1), and let

M= ite[ﬁ,l]:ﬂsht(x) for some x eD}.

We first observe that M<+f@ (since 0 «M). Now we shall show that
sup M = 1. To see this, let {tn} be a sequence of M with tn-—> t

a8 n — o . Then, for each n, there exists xneD so that

0c hy (xn). This means, we may select uneT(xn) for which
n
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1 - t_n)xn + t u, =0, implying that {xn} is a Cauchy sequence
(by Lemma 2 ii). Hence X, —> x €D and thus by Lemma 3 we conclude
that 0 e(1 - t)x + tT(x) and by (5) xeD. Therefore M is closed
in [0,1].

Assume now that M is not open. Then there exists t&M and a
sequence ftni in [0,1] for which‘ﬁ1¢M and tn —» t. Let 0 eht(x)
for some x& D and let u €T(x) such that (1 - t)x + tu = 0. Suppo-
se B is an open ball centered at x contained in D. If we define

= (1 - t)x + t u for each n« N then
y.eh, (x)ch, (B)
n tn tn

while 0 ¢ ht (B), which implies the existence of u e seg [n,yn] n
n aht (8). Slnca ht is strongly accretive for t >0, it follows
that ht (B) is open (by Theorem K), while by (1) ht ® is closed.
Hence ue conclude that ahtn(B)c hy (8), yielding to the exis-
stence of a point X, e ©B so that u, e htn(xn). Since Yo, —> 0 as
n-—>co and u ¢seg [0,y 1, u —> 0 and thus Lemma 2(ii) implies
that {xn} is a Cauchy sequence which must converge, say to X e 98B.
Therefore by Lemma 3 Oeht(i') which, since x %X, contradicts the

expansiveness of ht on B, completing the proof.

Since T is strongly accretive on a set iff I - T is strongly
pseudo-contractive,- the following result is a direct consequence

of Proposition 1.

Corollary 1. Let X be a Banach space and K a closed ball in
X. Let T:K—» B(K) be a continuous and strongly pseudo-contractive

mapping. Then there exists x e K such that x & T(xo).

We now state the main result of this paper.
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Theorem 1. Let X be a Banach space, and D an open subset of
X. Suppose T:D — B(X) is a continuous and strongly accretive map-

ping which satisfies for some z €D:
(6) t(x - z)& T(x) for x ¢ 8D and t<0.
Then there exists x €D with 0 e T(x).

Proof. As before, we may assume D is bounded and z = 0 in
(6). Since the mapping U = I - T is continuous at 0, we may choo-
se a closed ball K centered at 0 and t & (0,1) such that Kc D and

tU:K — B(K). .

Since tU is also strongly pseudo-contractive, Corollsry 1 implies
the existence of x ¢ K such that x etU(x), 1.e., 06(1 - t)x +
+ tT(x).
Let hy:D —> B(X) be defined by hy(x) = (1 - t)x + tT(x) for
each t ¢ (0,1), and let
M =it e(0,13:0eh,(x) for some x €D}

Observe that hy is strongly accretive and M is a nonempty set with
sup M>0 (by the above argument). To complete the proof it suffi-
ces to show, successively, that sup M = 1 and 1 eM.

Suppose tO = sup M<1. Let {tn} be a sequence of M with tn—*
—»t, as n—>c , and let x & D be such that 0 e(l - tn)xn +
+ t T(x.). Choose u e T(x.) so that (1 - t )x + tu = 0. Since
D is bounded and {tn} is bounded away from zero, the sequence
{xn - un} is bounded. Thus by Lemma 2(ii) {xni is @ Cauchy sequ-
ence, implying x —> x € 0. It follows that, by Lemma 3,
0e(l - t))x, + t T(x,) and by (6) xg€ D, proving t eM.

Since by assumption t,< 1, we select a sequence {tn} in the
open interval (t ,1) such that tn-—>t;. Since t_¢M for each n,

the argument given in Proposition 1 leads to the same type of
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contradiction. Therefore t, = leM.

The single-valued version of Theorem 1 can be easily derived
from Theorem 1 of the author [13) in more general setting. Actu-
ally, if T is a single-valued mapping from D into X, Theorem 1
remains valid for the much wider class of locally strongly pseu-

do-contractive mappings.

Theorem 2. Let X be a Banach space and D a bounded open sub-
set of X. Suppose T:D — B(X) is a continuous and accretive map-

ping satisfying for some z eD:
(7 t(x - z) ¢ T(x) for x € ®D and t <0.
Then inf $|T(x)|:xeD} = 0.

Proof. Let T :D— B(X) be detined by T (x) = (1/n)(x - z)+
+ T(x), for each n € N. Then Tn is a continuous strongly accreti-
ve mapping which also satisfies (7). Then, by Theorem 1, there ex-
ists xne'ﬁ so that 0eT (x ) for each n. Since ix.,t is bounded it
follows that IT(xn)|-—+ 0 as n — o0 , concluding that
intf 1|T(x)|:xeD3= 0.

We should note that in [5], Downing has shown Theorem 2 un-
der the additional assumptionstﬁat T is lipschitzian and it takes
values in P(X), i.e.,.if x X and A eP(X), there exists a point
acA with flx - all= inf 4lilx - yl:yeA?.

Next, we extend a theorem of Kirk and Schoneberg [10] to a
set-valued mapping, and we also improve Theorem 2.1 of [5], which

is also an extension of the aforementioned theorem of [10).

Theorem 3. Let D be a bounded open subset of a Banach space
X, and let 7:D — B(X) be continuous and accretive. Suppose there

exists z & D such that
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(8) |T(z) | < |T(x)| Zor all x & 0.

Then inf {|T(x)|:x €Tt = 0. If in addition, D has the fixed point
property with respect to (single-valued) nonexpansive self-map-

pings, then 0e T(D).

Proof. We first show that (8) implies condition (7): t(x -
- 2)4T(x) for x ¢ @D and t<0. Suppose u = t(x - z) for some
ueT(x), xe 83D and t<0. Then by choosing A=1 - t and k = 1 in
(1) we have

athx -zl g 0-t(x - 2) + u -wh=lvi

for each veT(z). Since |T(x)]£-tlx - zWand -tlix - z HélT(z)l,‘
we conclude that |T(x)|< |T(z)| which contradicts (8). Therefo-
re, Theorem 2 implies inf {|T(x)|:x €D} = 0. From this latter

fact one may assume the existence of z €D such that
|T(z)| <inf §|T(x)|:x & ®D}.

By Theorem 2.4 of 17], there exists a (single-valued) nonexpansi-
ve mapping £:D —> D whose fixed points are zeros of T. Hence the

added assumption on ] completes the proof.

The following theorem is a localization of Theorem 1. To pro-
ve this result, we invoke some {emmas whose proofs are patterned

after Kirk-Morales [9] and Morales [13]. .

Theorem 4. Let X be a Banach space, and D an open subset of
X. Suppose T:D —» B(X) is a continuous and locally strongly accre-

tive mapping on D which satisfies for some ze D:
(9 t(x-z) & T(x) for x ¢ D and t<0.

Then there exists x« D with 0 eT(x).

To prove this theorem we need the following lemmas.

Lemma 4. Let X be a Banach space and D an open subset of X.
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Suppose T:D —» 2X is a continuous mapping which is locally strong-
ly accretive on D. Suppose also that t x e T(x,) for some x,eD

and t <0, and suppose for d"°> 0, B(xo; d‘D)CD- Then:
(a) If t<0 satisfies
(10) It-t | & o, (1 - k)/“xoll,

d;) such that tx, eT(xt).

there is a unique point X4 GB(XO;

(b) The point x; in (a) satisfies

by - x Bélxg Ut - ¢ l/7Q1 - £, - K.

t

Proof. Since T is locally strongly accretive on D, there ex-
ists a closed ball B = B(xD; d;) where T is globslly strongly ac-
cretive. Suppose t< 0 satisfies (10). We shall show that the map-
ping T-tI satisfies (9) on 8B (with z = xo). To see this, suppo-

se there exist s< 0 and x « 3B such that
s(x - xo)s T(x) - tx.

Choose u e T(xo) and u &6 T(x) so that ug = t and s(x - xo) =

o%o
= u - tx. Then by setting A=1 -t - s in (1) we have
(1-1t-s-k)x - x < f- (s + t)(x - xg) +u - ul

= l- (s + t)(x - Xg) + 8(x = x) + tx - t x |

bx (t - t )N
from which (using (10)) and the fact that Ix - x V= J7)
(1 -t-s8-k)Hix- xoﬁi(l - k) lix - xol.
This implies s >0, which is a contradiction. Therefore, by Theo-
rem1l, T - ﬁI has a unigque zero x, in B, i.e., tx, € T(xt).

To prove (b), select A=1 - t,. The strong accretiveness
of T implies
-t - k)lxt - xokcﬂ-to(xt - xg) + txy - tnxol,
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yielding
x, - xolé“xtﬂ It -t 170 -t - k).
Lemma 5. Let X be a Banach space, D an open subset of X and
1:.0— 2X a continuous mapping which is locally strongly accreti-

ve on D. for AcD, set E, = 4t <0:tx eT(x) for some x eA} and let
E ={ixeD:tx «eT(x) for some t<0}. Then

(1) the set E is either empty or the union of nontrivial

components, each of which is a continuous image of a subinterval
of (-e,01.

In addition, if F is any component of E, then .
(i1) it t,< 0 and t 6 E;, then the set 6 = ix&F:tx e T(x)
for some teEFr\[to,O)} is bounded; and

(iii) it tox, € T(x,) with t,— t<0 (t,<0) and -fxnlcF,,

then X, is a Cauchy sequence.

Proof. (i) 1is an immediate consequence of Lemma 4.

(ii) Suppose X, € F with toxoc'r(xo), and choose & >0 such
that T is globally strongly accretive on the closed ball B(xo;s)c
cD. Let tx e T(x,), where x, ¢ B(x ; 8)nF and t <t<0. Then by
selecting A= 1 - t in (1) we have

(1=t - Kby - x Rebat(xng - x ) + tx, - toxou
= (t - to)ﬂxoﬂ

which implies
(1 -1t - k)lxtﬁé (1 -t -k - x M+ th“J

el -t -kt -t/ -t-k +Dixt=0Q-t -k hx b,
Therefore thﬂéﬂxoﬂ(l -ty - K/ - k) for all xp€G.

(111) Suppose t <t . Then by Lemma 4 the segment [ti'th

can be covered by 8 finite number of overlapping subintervals
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_ui} ::1 which have the property that for each i and t, seli, the

correspondent x;,Xxg € F satisfy
(11) xy - stéMIt - s]/(1 - k),
where M = sup §hx, b:x,6 Fity€t<0} with t = inf 4t 3.

We may now select si€Iin Ii+1 such that tm = 8,<8;<...

= t_. Then by (11),

r+l n
ﬂxsi - xsiﬂlléMlssi - 51+1|/(1 -k),i=0,1,...,r,
and thus

n
WM 5 |s; -s;,,1/(0 - k) =

' be S0
T R T YO Q%o

= Mty -t |71 - K.

Therefore {xn} is a Cauchy sequence.

Proof of Theorem 4. Without loss of generality, we may as-

sume z = 0 in (9). As it was shown before (see the proof of Theo-
rem 1), there exists s €(0,1) and a ball B centered at 0 such that
the mapping (1 - t)I + tT has a zero in B for each t «(0,s). The-
refore, if we define the set E as in Lemma 5, there exists a com-

ponent F_ of E for which 0;?-"0.

Let hy:D —> B(X) be defined by h,(x) = (1 - t)x + tT(x) for
each t € (0,1}, and.let
M ={tc(0,11:0eht(x) for some xeFo}.

We tirst note that M is a nonempty set (by the argument men-
tioned above) having sup M >0. We shall show successively that

sup M =1 and 1eM.

Suppose t, =sup M<1l. Let -itn} be a sequence of M with

tn-—> to 88 n—» oo , and let X, € Fa be such that Oshtn(xn).

Then by Lemma 5(iii), the sequence -fxni is Cauchy and since Fo is

- 466 -



a closed set in E, {xn} converges to X, € Fo' It follows, from Lem-

ma 3, that Oe hto(xo)’ proving t & M.

Since by assumption t°< 1, we may choose a sequence {tn} in
the open interval (t ,1) such that t — t;. Since x €D ( by (9))
and tn¢ M for each n, we may carry out the proof of Proposition
1, concluding that to = 1eM. This means there exists x «D for

which 0e€ T(x).

Our next theorem involves an apparently wider class of strong-
ly accretive mappings. Let c:[0,00) —> [0,00) be a continuous
function having c(t)>0 for each t €10,o0), and let D be a subset
of a Banach space X. A mapping T:0 — ZX is said to be locslly c-

strongly accretive if for each point zeD there is a neighborhood

N such that for each x,yeN there exists j ¢J(x - y) satisfying
(12) Cu-v,3> z c(max {0x M hy U3 )lx - yi?
for u €T(x) and v eT(y).

Theorem 5. Ltet X be a Banach space, D an open subset of X

and T:0 —> B(X) a continuous locally c-strongly accretive mapping.

Then T(D) is open.

Proof. Let yosT(n). Then there exists x eD such that y e
& T(xo). Since T is locally c-strongly accretive, we may choose
an open ball B centered at L for which (12) holds for all x,yeB.

Then the assumptions on c imply
¥ = inf {c(lub):ueB}>0.
Now if ue T(x) and v € T(y) for x,y eB, then
{u=v,3> zylix - yﬂz

for some j & J(x - y). This means T is strongly accretive on B,

and thus Theorem K implies T(B) is an open subset of X, completing
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the proof.

We remark that Theorem 5 extends Theorem 4.1 of Ray and Wal-
ker [15]) and Theorem 2 of Torrejon [16]. Acutally they show the
single-vealued version of Theorem 5 under a more restrictive as-
sumptions on the function c (defined above). We should also ment-
ion that our proof for single-valued mappings can be obtained via

using Theorem 3 of Deimling [4].

Our final theorem is a combination of Theorem 4 with the fol-

lowing coercive condition imposed on the opbrator T:

(13) 771(K) is bounded whenever K is compact.

Theorem 6. Let X be a Banach space and let T:X-—> B(X) be
continuous and c-strongly accretive, satisfying condition (13).

Then T(X) = X.

Proof. Since by Theorem 5 T(X) is open, it remains to show
that T(X) is closed. To see this, let {un} be a sequence in T(X)
such that u, — u. We choose x € X such that u e T(xn) for each

n. By (12) there exists jeJ(x - xm) such that

Cuy - ug, 3>z clmax £0x I, b 1) Ix - x 12,

Since (13) implies that ix_ } is bounded, there is a number x>0
(as in the proof of Theorem 5) for which

dup - w30 22 hxg - xmu2

for all n,m ¢ N. Hence the sequence {xn} is a Cauchy sequence
which must converge to some x e X. Since T is continuous, Lemma 3

(with t = 1) implies that ueT(x).

The author wishes to thank Professor D.J. Downing for pro-

viding him with a copy of (51,
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