## Commentationes Mathematicae Universitatis Caroline

Igor Kříž<br>Iterated countable products and sums of the infinite cyclic group

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 3, 491--497

Persistent URL: http://dml.cz/dmlcz/106471

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# COMMENTATIONES MATHEMATICAE UNMERSTTATIS CAROLMAE 27.3 (1986) 

## ITERATED COUNTABLE PRODUCTS AND SUMS OF THE INFINITE CYCLIC GROUP Igor KR/Z

Abstract: We prove a general non-isomorphism of iterated countable sums and products of the infinite cyclic group.

Key words: Infinite abelian groups, reduced groups, Specker group.

Classification: 20K25, 20K20

In this note we investigate the groups obtained from the group $\mathbb{Z}$ by repeated application of the functors $\prod_{i \in \mathbb{N}_{0}}{ }^{-}, \sum_{i \in \mathbb{N}_{0}}-$. We come to an infinite sequence of groups like
$(+) \quad \sum_{i \in \mathbb{N}_{0}} \mathbb{Z}, \prod_{i \in \mathbb{N}_{0}} \mathbb{Z}, \sum_{i \in \mathbb{N}_{0}} \prod_{j \in \mathbb{N}_{0}} \mathbb{Z}, \prod_{i \in \mathbb{N}_{0}} \sum_{j \in \mathbb{N}_{0}} \mathbb{Z}, \sum_{i \in \mathbb{N}_{0}} \prod_{j \in \mathbb{N}_{0}} \sum_{k \in \mathbb{N}_{0}} \mathbb{Z}, \ldots$. Our motivation for studying this sequence was the question of $V$. Bartik (closely connected with a fact from [1]) as to whether

$$
\sum_{i \in N_{0}} \prod_{j \in \mathbb{N}_{0}} \mathbb{Z} \not ⿻_{i} \prod_{\in \mathbb{N}_{0}} \sum_{j \in \mathbb{N}_{0}} \mathbb{Z} .
$$

In this note we prove more than this inequality; namely, we will show that any two members of the sequence (+) are non-isomorphic.

1. Conventions and notation. Throughout this note, $\mathbb{N}_{0}$ designates the set of all nonnegative integers, while $\mathbb{Z}$ stands for the group of all integers. As usual, $\operatorname{Hom}(-,-)$ in abelian groups designates the hom-functor equipped with the obvious group structure. The symbols $\Pi$, $\Sigma$ mean a direct product (resp. a direct sum) of abelian groups.
2. Special symols. Define groups $E_{n}, F_{n}\left(n \in N_{0}\right)$ inductive-
ly by
$E_{0}=F_{0}=\mathbb{Z}$
$E_{n+1}=i \sum_{N_{0}} F_{n}, F_{n+1}=\prod_{i} \in N_{0} E_{n}$,
Let for $n \geq 1$
$\pi_{i}^{n}: F_{n} \rightarrow E_{n-1}, \quad \rho_{i}^{n}: E_{n} \rightarrow F_{n-1}$.
be projections onto the $i-t h$ component, and let

$$
x_{i}^{n}: E_{n-1} \rightarrow F_{n}, \quad x_{i}^{n}: F_{n-1} \rightarrow E_{n}
$$

be the corresponding injections.
3. Theorem: Let $n \geq 1$. Then for each homomorphism

$$
h: F_{n} \rightarrow \mathbb{Z}
$$

there is some $m \in N_{0}$ with the property that for any $u \in F_{n}$ satisfying
$\pi_{0}^{n}(u)=\pi_{i}^{n}(u)=\ldots=\pi_{m}^{n}(u)=0$
we have
$h(u)=0$.
Proof: We first prove the fact for $n=1$ by contradiction.
Suppose there were a homomorphism
$h: F_{1} \rightarrow \mathbb{Z}$
not satisfying our conclusion. Then we can construct a sequence of elements $u_{n} \in F_{1}$ and an increasing sequence of natural numbers $k_{n}$ such that

$$
\begin{aligned}
& r_{1}^{1}\left(u_{n}\right)=0 \text { for } i<k_{n}, \\
& \pi_{k_{n}}^{1}\left(u_{n}\right) \neq 0 \\
& h\left(u_{n}\right) \neq 0
\end{aligned}
$$

for any nonnegative integer $n$. Put $a_{n}=\left|h\left(u_{n}\right)\right|$. ( $|\mid$ means the absolute value.) There is an element $u \in F_{1}$ with
(3.1) $\pi_{m}^{1}(u)=\sum_{m \in \mathbb{N}_{0}} 3^{n} \cdot\left(\prod_{i=0}^{m-1} a_{i}\right) \cdot \pi_{m}^{1}\left(u_{n}\right)$
for each $m \in M_{0}$. (Realize that the right hand side contains only finitely many nonzero elements.) Thus, for each $n \in \mathcal{N}_{0}$ we have an $x_{n} \in F_{1}$ with

$$
u=\sum_{i=0}^{m-1} 3^{i} \cdot\left(\sum_{j=0}^{i=1} a_{j}\right) \cdot u_{i}+\left(3^{n} \cdot \sum_{j=0}^{m-1} a_{j}\right) \cdot x_{n},
$$

which implies
(3.2) $h(u)=\sum_{i=0}^{m-1} 3^{i}\left(\prod_{j=0}^{i-1} a_{j}\right) \cdot h\left(u_{i}\right)+t_{n} \cdot\left(3^{n} \prod_{j=0}^{m-1} a_{j}\right)$
for some integer $t_{n}$. We compute

$$
\begin{aligned}
& \left|\sum_{i=0}^{n-1} 3^{i} \prod_{j=0}^{i-1} a_{j} \cdot n\left(u_{i}\right)\right| \leq \sum_{i=0}^{n-1} 3^{i} \prod_{j=0}^{i} a_{j}= \\
& =\prod_{j=0}^{m-1} a_{j}\left(3^{n-1}+\frac{3^{n-2}}{a_{n-1}}+\frac{3^{n-3}}{a_{n-1} \cdot a_{n-2}}+\ldots+\frac{3^{0}}{a_{n-1} \cdots a_{0}} \leq\right. \\
& \leqslant \prod_{j=0}^{n-1} a_{j} \cdot\left(\sum_{i=0}^{m-1} 3^{1}\right)=\prod_{j=0}^{m-1} a_{j} \frac{3^{n-1}}{2}<\frac{1}{2}\left(3^{n} \prod_{j<0}^{n-1} a_{j}\right) .
\end{aligned}
$$

Comparing this computation with (3.2) we conclude that

$$
\begin{equation*}
|h(u)| \geq \frac{1}{2} 3^{n} \prod_{j=0}^{m-1} a_{j} \tag{3.3}
\end{equation*}
$$

whenever $t_{n} \neq 0$. Since (3.3) obviously does not hold for $n$ greater than certain $n_{0}$ (the right hand side increases arbitrarily), we have

$$
t_{n}=0 \text { for } n>n_{0}
$$

and hence
(3.4) $h(u)=\sum_{i=0}^{m-1} 3^{i} \prod_{j=0}^{i-1} a_{j} h\left(u_{i}\right)$ for $n>n_{0}$.

In $(3,4)$, the right hand side formally varies with $n$, while the left hand one does not. Thus, we must have

$$
3^{n} \prod_{j=0}^{m-1} a_{j} h\left(u_{n}\right)=0 \text { for } n>n_{0},
$$

contradicting our assumptions.

Assume now $n>1$. Let $h \in \operatorname{Hom}\left(F_{n}, Z\right)$ not satisfy the conclusion. Then we have a sequence $u_{k}\left(k \in \mathbb{N}_{0}\right)$ of elements of $F_{n}$ with the property that
$\pi_{0}^{n}\left(u_{k}\right)=\pi 1_{1}^{n}\left(u_{k}\right)=\ldots=\pi_{k}^{n}\left(u_{k}\right)=0$,
while $h\left(u_{k}\right) \neq 0$.
Let $D_{k}$ designate the subgroup of $E_{n-1}$ generated by all the elements $\pi_{k}^{n}\left(u_{i}\right)$, i nonnegative. Then the groups $D_{k}$ are finitely generated and hence free abelian. Thus, the group
$D=\left\{u \in F_{n} \mid\left(\forall k \in \mathbb{N}_{0}\right)\left(\pi_{k}^{n}(u) \in D_{k}\right)\right\}$
satisfies
$D \cong \prod_{k \in \mathbb{N}_{0}} D_{k} \cong \prod_{k \in \mathbb{N}_{0}} \mathbb{Z}$,
while the homomorphism $h \mid D$ clearly contradicts our theorem for $n=1$.
4. Corollary: For each $n \in \mathbb{N}_{0}$ we have
$\operatorname{Hom}\left(E_{n}, \mathbb{Z}\right) \cong F_{n}, \operatorname{Hom}\left(F_{n}, \mathbb{Z}\right) \cong E_{n}$.
Proof: We have
$\operatorname{Hom}\left(E_{n}, \mathbb{Z}\right) \cong \prod_{i \in \mathbb{N}_{0}} \operatorname{Hom}\left(F_{n-1}, \mathbb{Z}\right)$.
On the other hand, Theorem 3 yields
$\operatorname{Hom}\left(F_{n}, \mathbb{Z}\right)=\prod_{i \in \mathbb{N}_{0}} \operatorname{Hom}\left(E_{n-1}, \mathbb{Z}\right)$,
since the left hand group is generated by the homomorphisms
$h \circ \pi{ }_{k}^{n}$, where $h \in \operatorname{Hom}\left(E_{n-1}, \mathbb{Z}\right)$ and $k \in \mathbb{N}_{0}$. The proof is concluded by an obvious induction.
5. Theorem: For $n>0$, we have
(i) $F_{n}$ is not isomorphic to any direct component of $E_{n}$,
(ii) $E_{n}$ is not isomorphic to any direct component of $F_{n}$.

Proof: First of all, note that the functor $\operatorname{Hom}(-, \mathbf{Z})$ preserves direct components and hence, for each $n$, (i) and (ii) are equivalent by Corollary 4. Another observation is that for $n=1$, (i) follows from an easy cardinality argument.

Thus, it suffices to prove (ii) for $n>1$. This will be done by induction on $n$. Choose the least $n$ for which (ii) does not hold and let $r: F_{n} \longrightarrow E_{n}, i: E_{n} \longrightarrow F_{n}$ satisfy $r \circ i=I d$. Put

$$
\begin{aligned}
& G_{k}^{n}=\left\{u \in F_{n} \mid \rho_{0}^{n}(u)=\ldots=\rho_{k}^{n}(u)=0\right\} \\
& H_{k}^{n}=\left\{u \in F_{n} \mid \pi_{0}^{n}(u)=\ldots=\pi_{k}^{n}(u)=0\right\} \\
& H_{k}^{n}=\left\{u \in F_{n} \mid(\forall t>k)\right\} .
\end{aligned}
$$

Define projections

$$
p_{k}^{n}: F_{n} \rightarrow \bar{H}_{k}^{n}, t_{k}^{n}: E_{n} \rightarrow G_{k}^{n}
$$

by

$$
\begin{aligned}
& \rho_{k}^{n}(u)=\left(\pi_{0}^{n}(z), \pi_{1}^{n}(u), \ldots, \pi_{k}^{n}(u), 0,0, \ldots\right) \\
& t(u)=\left(\underset{k}{(0, \dot{\text { times }}, 0}, \rho_{k+1}^{n}(u), \rho_{k+2}^{n}(u), \ldots\right) .
\end{aligned}
$$

Now let $r_{k}=\left(t_{k}^{n} \circ r\right) \mid h_{k}^{n}$. Our first aim is to show that at least one of the homomorphisms $r_{k}: H_{k}^{n} \longrightarrow G_{k}^{n}$ is trivial.

Suppose the contrary. Then one can choose $a_{k} \in H_{k}^{n}$ with $r_{k}\left(a_{k}\right) \neq 0$ for each $k \in \mathbb{N}_{0}$. Put

$$
m_{k}=\max \left\{j \mid \rho{ }_{j}^{n} \cdot r\left(a_{k}\right) \neq 0\right\}
$$

Note that since obviously $m_{k} \geq k$ and $r_{k}(u) \neq 0$ implies $r_{\ell}(u) \neq 0$ for all $\ell \leqslant k$, we may assume

$$
m_{l}<m_{k} \text { whenever } \ell<k .
$$

Now fix homomorphisms $e_{k}: F_{n-1} \longrightarrow \mathbb{Z}$ with the property that

$$
\begin{equation*}
e_{k} \circ \rho_{m_{k}}^{n} \circ r\left(a_{k}\right) \neq 0 \tag{5.1}
\end{equation*}
$$

Define $e: E_{n} \longrightarrow E_{1}$ by

$$
e(u)=\sum_{n \in N_{0}} \tau_{k}^{1} \cdot e_{k} \circ \rho_{m_{k}}^{n}(u) .
$$

Since the elements er ( $\mathbf{a}_{\mathbf{k}}$ ) form triangle matrix (see (5.1)), we cen construct a homomorphism $f: E_{1} \rightarrow \mathbb{Z}$ with
$\operatorname{fer}\left(\mathrm{a}_{\mathrm{k}}\right) \neq 0$
for any $k \in \mathbb{N}_{0}$. Comparing this conclusion with the assumption of $a_{k} \in H_{k}$, we obtain a contradiction to Theorem 3 by putting lih: $=$ for.

Thus, at least one of the homomorphisms $r_{k}$ is trivial. Take the restriction

$$
p_{k}^{n} \cdot i \mid G_{k}^{n} \rightarrow \bar{H}_{k}^{n}
$$

and the restriction

$$
\bar{r}_{k}=\left(t_{k}^{n} \circ r\right): \bar{H}_{k}^{n} \rightarrow G_{k}^{n}
$$

For any $u \in E_{n}$ we have $p_{k}^{n} \cdot i(u)=i(u)+v$ with some $v \in H_{k}^{n}$. Thus, for any $u \in G_{k}^{n}$ we can compute

$$
\begin{aligned}
& \bar{r}_{k} \bullet p_{k}^{n} \circ i(u)=t_{k}^{n} \bullet r \bullet p_{k}^{n} \bullet i(u)=t_{k}^{n} \bullet r(i(u)+v)= \\
= & t_{k}^{n} \bullet r \bullet i(u)+t_{k}^{n} \bullet r(v)=t_{k}^{n} \circ r \bullet i(u)+r_{k}(v)=t_{k}^{n} \bullet r \bullet i(u)= \\
= & t_{k}^{n}(u)=
\end{aligned}
$$

Thus, the group $G_{k}^{n} \cong E_{n}$ is isomorphic to a direct component of $\bar{H}_{k}^{n}=E_{n-1}$. Taking into account that $F_{n-1}$ is a direct component of $E_{n}$ we come to a contradiction with the induction hypothesis.
6. Corollary: The only two isomorphic groups of the type $E_{n}, F_{m}$ with different symbols are $E_{0}=F_{0}=\mathbb{Z}$.

Proof: Since for each $k$ both $E_{k}, F_{k}$ are isomorphic to direct components of $E_{n}, F_{n}$ with any $n>k$, the fact follows easily from Theorem 5.

## References

[1] BARTfK V.: Alexandrov-Čech cohomology and mapping into Eilenberg-Mac Lane polyhedra (Russian), Mat.Sb. (N.S.) 7b(118)(1968), 231-238.
[2] FUCWS, L.: Inifinite Abelian Groups,, Volume I,II, Acadenic Press 1970.

Matematicko-fyzikánf fakulta, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia
(Oblatum 28.1. 1986)

