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COMM6NTATIONES MATHIMATICAI UNWfKSITATIS CAWXWAE 
Z7,3<1986) 

ITERATED COUNTABLE PRODUCTS AND SUMS 
OF THE INFINITE CYCLIC GROUP 

Igor Kftf2 

Abstract: We prove a general non-isomorphism of iterated 
countable sums and products of the infinite cyclic group. 

Key words: Infinite abelian groups, reduced groups, Specker 
group. 

Classification: 20K25, 20K20 

In this note we investigate the groups obtained from the 

group .2? by repeated application of the functors .TT. -, I, -. 
*t c W0 i eU4e 

We come to an infinite sequence of groups like 

Our motivation for studying this sequence was the question of V. 

Bartik (closely connected with a fact from [1 } ) as to whether 

In this note we prove more than this inequality; namely, we will 

show that any two members of the sequence (+ ) are non-isomorphic. 

1. Conventions and notation. Throughout this note, H> de

signates the set of all nonnegative integers, while ^L stands 

for the group of all integers. As usual, Hom(-,-) in abelian 

groups designates the horn-functor equipped with the obvious group 

structure. The symbols IT , 2L mean a direct product (resp. a di

rect sum) of abelian groups. 

491 -



2. Special symbols. Define groups *
n
»P

n
 (n « N

Q
) inductive

ly by 

E
ft
 * F„ • Ж o o 

E
n+1 ' . i ř ц / n ' F

n+1
 S
4,7w

#

E
n» 

Let for nľl 

i' rn~^ tn-l» Pi^n""-^* rn-l-

be projections onto the i-th component., and let 

VS-i *V tei^n-i^tn 
be the corresponding injections. 

3. Theorem: Let n21. Then for each homomorphism 

h:F n_2 

there is some m * II with the property that for any u*F satis

fying 

#[J(u) « *r£(u) ..... jrJJ(u) * 0 

we have 

h(u) • 0. 

Proof: He first prove the fact for n - 1 by contradiction. 

Suppose there were a homomorphism 

h:Fx — > 2 

not satisfying our conclusion. Then we can construct a sequence 

of elements u fe F^ and an increasing sequence of natural numbers 

k such that 

.irj(un) * O for i<k n, 

*kn<
un> + ° 

h(un) + 0 

for any nonnegative integer n. Put a » |h(u )|. ( | | means the 

absolute value.) There is en element u e F 1 with 
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(3.1) »*(u) . 21 3n.(.¥r a 4).^i(u n) 
m m* ftlHe %>«0 1 m n 

for each m • 1^. (Realize that the right hand side contains only 

finitely many nonzero elements.) Thus, for each n c N we have an 
xn a ̂ 1 *itn 

u " & 3 l- (^e -3)-ui + °n- J. V-V 
which implies 

(3 .2 ) h(u) - .1?' 3*( J \ a , ) . h ( u . ) + t f ( 3 n TT* a , ) 
«v»o i>* ° j * n •$.* 0 J 

for some integer t . Me compute 

«*-4 ., -, ..n-2 -»n-3 .»o 
" * y » V * iTT* •„ , .an + ••• + an ' . . -„ * J n-l n-l n-2 n-1 o 

«*-* M.-4 - *,-< , n - l . *»-* 
* .TV a,,( .X 31) « .TV a, V - < T<3n.TL aJ-

Comparing this computation with (3.2) we conclude that 

(3.3) |h(u)|2 \ 3 n
iffja j 

whenever t i O , Since (3.3) obviously does not hold for n grea

ter than certain n (the right hand side increases arbitrarily), 

we have 

t„ « 0 for n > n n n o 

and hence 

(3.4) h(u) « J-E 3i.TT a.h(u,) for n>nrt. 
t * o £# 0 j 1 o 

In ( 3 , 4 ) , the r ight hand side formally varies with n , while the 

l e f t hand one does not. Thus, we must have 

n Afc-4 
3 ,TT a.h(u„) =- 0 for n > n . 

ft m 0 J n ° 

contradicting our assumptions. 
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Assume now n>l. Let h € Hom(Fn, J. ) not satisfy the conclusi

on. Then we have a sequence uk (k e WQ) of elements of Fn with 

the property that 

« r > k > • ^ ( u k ) ..... * > k > = o, 

while h(uk)^0. 

Let Dk designate the subgroup of E , generated by all the 

elements 3fk(u,), i nonnegative. Then the groups Dk are finitely 

generated and hence free abelian. Thus, the group 

D = 4ucF n|(Vk€ N0)(*£(u)6Dk)} 

satisfies 

D ^i t t t -k * • £ * . « • 
while the homomorphism h|D clearly contradicts our theorem for 

n = 1. D 

*• Corollary: For each n e M we have 

Hom(En,2:) £ Fn, Hom(Fn , _2 ) S. ER. 

Proof: We have 

Hom(En,2T) SC ̂ TT^ Hom(Fnl, _£ ) . 

On the other hand, Theorem } yields 

Hom(Fn>2) - t T ^ H o . ( E n _ l l 2 ) , 

since the left hand group is generated by the homomorphisms 

h ©JTP, where h e Hom(E ,, «2:) and kg OL. The proof is concluded 

by an obvious induction . D 

->• Theorem: For n>0, we have 

(i) F is not isomorphic to any direct component of E , 

(ii) E is not isomorphic to any direct component of F . 
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frggf: Fitst of ill, note that th© functor Ho»(-,^) pro-

serves direct components and hence, for each n, (i) and (ii) are 

equivalent by Corollary 4. Another observation is that for n - 1, 

(i) follows from an easy cardinality argument. 

Thus, it suffices to prove (ii) for n>l. This will be done 

by induction on n. Choose the least n for which (ii) does not hold 

and let r:F„—> E„, i:E„—* F„ satisfy r©i - Id. Put n n* n n ' 

G
k • - t - * F

n
l p > > -...-fC(u) - 0} 

HjJ = 4u«.F
n
|,r

n
(u) - . . . - s r j j ( u ) = 0} 

H
k
 = ^u*fn\(Vt>k)l. 

Define projections 

_ n . c _ П n + n r _, г n 

p k : F n - * Hk- V E n ~ * Gk 
Ьy 

p£(u) = ( * r J(z) , 3 rJ(u) , . . . , j r r ^(u) ,0 ,0 , . . . ) 

Now let rk = (tk«> r) |HP. Our first aim is to show that at least 

one of the homomorphisms r k:H k—> Gk is trivial. 

n Suppose the c o n t r a r y . Then one can choose ak€ Hk wi th 

rk(ak)4 0 for each k - iN_. Put 

mk = max -ij | -> " * r(ak) 4-0l. 

Note that since obviously m.£ k and r. (u)4-0 implies r « ( u ) 4 . 0 for 

all ,l4.k, we may assume 

m£ ** mk wnenever i < k' 

Now fix homomorphisms ^ ^ ^ - . i — * % with the property that 

"•^ "k'P^-^V*0-
Oefine e : E — » E, by 

e ( u ) = ^ e
l k ' e k ° ? m k

( u ) -
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Since the elements er(tk) form a triangle matrix (see (5.1)), we 

can construct a homomorphism f.£,•—* 2 with 

fer(ak)40 

for any k c M . Comparing this conclusion with the assumption of 

8.6H,, we obtain a contradiction to Theorem 3 by putting hh:*fer. 

Thus, at least one of the homomorphisms rk is trivial. Take 

the restriction 

PÎ-ilбC-* нП k 

and the restriction 

For any u*E we have p
k
 • i(u) * i(u) + v with some v *H

k
. Thus, 

for any u c G£ we can compute 

r k. p£«i(u) =- t£«r •pjj.i(u) = t£* r(i(u) -> v) -

• t£.r «i(u) -> tk*r(v) « t£*r • i(u) + rk(v) M J T *i(u) * 

« t||<u> = u. 

Thus, the group GH a* En is isomorphic to a direct component of 

Pk = ^n-1* *akln9 in"to account that F , is a direct component 

of E we come to a contradiction with the induction hypothesis. D 

6- Corollary: The only two isomorphic groups of the type 

Er,»Fm with different symbols are En - Fft = Z . 
n ' m J o o 

Proof; Since for each k both Ek ,Fk are isomorphic to d i rect 

components of En ,Fn with any n >K, the fact follows easi ly from 

Theorem 5. D 
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