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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,3 (1986)

ITERATED COUNTABLE PRODUCTS AND SUMS
OF THE INFINITE CYCLIC GROUP

igor KRI2

Abstract: We prove a general non-isomorphism of iterated
countable sums and products of the infinite cyclic group.

Key words: Infinite abelian groups, reduced groups, Specker
group.

Classification: 20K25, 20K20

In this note we investigate the groups obtained from the

eN, ¢

group Z by repeated application of the functors . Tl - :%N -.
1t e Ny

We come to an infinite sequence of groups like

S Z Z o Zuew TL»{,Z S, 3 N, GeN, ’L%N,ENOE&Z"“ ’

Our motivation for studying this sequence was the question of V.

Bartik (closely connected with a fact from [1]1) as to whether
Fw g 2 Fdw, Fn 2

In this note we prove more than this inequality; namely, we will

show that any two members of the sequence (+) are non-isomorphic.

1. Conventions and notation. Throughout this note, “% de-

signates the set of all nonnegative integers, while Z stands
for the group of all integers. As usual, Hom(-,-) in abelian
groups designates the hom-functor equipped with the obvious group
structure. The symbols TT , = mean a direct product (resp. a di-

rect sum) of abelian groups.
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2. Special symbols. ODefine groups E ,F. (n e N ) inductive-
ly by

Eo = Fo = g
Enel =;ﬁ Fro Fael ’,-,’;’u. Ens
Let for n21}

nu no
oo —> En-l' Pi'En“’ Fn_r
be projections onto the i-th component, and let
n. n-
‘i‘En-i'—* Foo *1'Fn-1""5n

be the corresponding injections.

3. Theorem: Let nZ1. Then for each homomorphism
h:Fn—-rZ
there is some m e No with the property that for any anFn satis-
fying
n _ N N _ N -
ot (u) = ary(u) =23 (u) = 0
we have
h(u) = 0.
Proof: We first prove the fact for n = 1 by contradiction.
Suppose there were a homomorphism
h:Fl —> 2 e
not satisfying our conclusién. Then we can construct a sequence

of elements u,e F4 and an increasing sequence of natural numbers

kn such that
ar}(un) = 0 for i<k,
1 .
nkn(un)+0
h(u")#o

for any nonnegative integer n. Put a_ = |h(u)|. (| | means the




1 n =1 1
(3.1)  ar (u) =m§"°3 . ( o0, 8g).ar,(u)
for each m e ‘h. (Realize that the right hand side contains only

finitely many nonzero elements.) Thus, for each n ¢ No we have an

xneF1 with
N LN W CAN
u=E, 3. J;To a5/.uy + FLL ay)eXn,

which implies

_ m-1 i <1 n m-4
(3.2) h(u) ’;%% 3%( 5{5 aj).h(ui) + tn.(3 iru aj)
for some integer tn’ We compute
m-1 -1 -4 4+
i i =
P MPLLA °j'h(u1)“§o 3400 8y =
m-1 n-2 n-3 o
= 0, a,(3" 43 + 3 ..+ 3 £
™07) 8.1 %,.1°%,.2 an-;“"o
"_ﬁ,‘ m1 m-4 }n-l 1,.n ™1
é 30 ajo( a,?o 3%) = .’1_10 ay —>5—< -2-(3 i-Uo aJ).
Comparing this computation with (3.2) we conclude that
1 .n m~4
(3.3) |h(w) | 2 53 ;[5 “j

whenever t 40. Since (3.3) obviously does not hold for n grea-

ter than certain L (the right hand side increases arbitrarily),

we have
tn = 0 for n>n,
and hence
E1 <=1
(3.4) h(u) =5 3 "\:To ajh(ui) for n>n,.

In (3,4), the right hand side formally varies with n, while the

left hand one does not. Thus, we must have

n M4 _
3 '3130 ajh(un) = 0 for n>n,,

contradicting our assumptions.
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Assume now n>1. Let heHom(Fn,z) not satisfy the conclusi-
on. Then we have a sequence u, (k € N)) of elements of Fo with
the property that

stolu) = arflu) =...= ari(u) = o,
while h(uk)*(].

Let Dk designate the subgroup of En_1 generated by all the

"elements ar:(ul), i nonnegative. Then the groups D, are finitely

generated and hence free abelian. Thus, the group
_ n
D={uef |[(Vke NG (u)eD )}
satisfies
= =
D = \Tn, Ok Zaldm, Z
while the homomorphism h|D clearly contradicts our theorem for

n=1. 0

4. Corollary: For each n e No we have

Hom(En,Z) =4 Fro Hom(Fn,Z) =E..

Proof: We have

Hom(E_,Z) & iT;TN"ﬁO'“(Fn_l,Z)-

On the other hand, Theorem } yields

Hom(Fn, 2) = ‘!e‘! °Hom(En_l,Z),

ieN
since the left hand group is generated by the homomorphisms
h a:r{:, where heHom(En_l, Z) and k ¢ No' The proof is concluded

by an obvious induction. [J
5. Theorem: For n>0, we have
(i) F, is not isomorphic to any direct component of E_,

(ii) En is not isomorphic to any direct component of Fn.
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Proof: First of all, note that the functor Hom(-,Z) pre-
serves direct components and hence, for each n, (i) and (ii) are
equivalent by Corollary 4. Another observation is that for n = 1,
(i) follows from an easy cardinality argument.

Thus, it suffices to prove (ii) for n>1. This will be done
by induction on n. Choose the least n for which (ii) does not hold

and let r:F — E_, i:E —> F_ satisfy rei = Id. Put

Ga = '!UBFnlp:(U) =...=so:(u) = 0%
He = fueF [arp(u) =...=arg(u) = 0}
F{: ={usef [(Yit>K)i.
Define projections
Pr:Fn — AR, tR:E — G
by
prw) = (arg(2), af(u), ..., orR(u),0,0,...)

B = (0, Pre1(U)s @R, (W), ).

Now let r, = (tzo t)IH{('. Our first aim is to show that at least
one of the homomorphisms rk:Ha——> GE is trivial.
Suppose the contrary. Then one can choose a e HL‘ with

rk(ak)dso for each k ¢ No. Put

m, = max {jlgag-r(ak)dw}.
Note that since obviously m k and rk(u)*o implies rl(u):f:D for
all £ &€ k, we may assume

m, < m _ whenever £ < k.
Now fix homomorphisms ek:Fn-l—’ Z with the property that

(5.1) eko;a;ko r(ak)¢0.

Define e:En——> El by

1
e(u) =1§N° 1 ° € °§°|?1k(“)-
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Since the slements er(nk) form s triangle matrix (see (5.1)), we
cen construct a homomorphism f:El——b £ with
fer(a, ) =0
for any k € RL. Comparing this conclusion with the assumption of
LI H., we obtain a contradiction to Theorem 3 by putting ih:=fer.
Thus, at least oné of the homomorphisms T is trivial. Tﬁko

the restriction

n

Py » 116 — Fy

and the restrictlion
= _ (4D on n
T, = (tkor).Hk-—* G-
For any ueE_ we have p: oi(u) = i(u) + v with some v cH:. Thus,

for any u GG: we can compute

;k' p: ej(u) = t:- r opﬂ ei(u) = t:- r(i(u) + v) =

tRer oi(u) + tger(v) = tferei(u) + 1 (v) = tgeroi(u) =

n =

t (u) = u.

Thus, the group GL‘# En is isomorphic to a direct component of
Pz = En-l' Taking into account that‘Fn_1 is a direct component
of En we come to a contradiction with the induction hypothesis. (J

6. Corollary: The only two isomorphic groups of the type
E..F, with different symbols are E = F = Z.

Proof: Since for each k both Ek,Fk are isomorphic to direct
components of E ,F  with any n>% the fact follows easily from

Theorem 5. O
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