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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
27,3 (1966) 

FULL EMBEDDINGS'INTO THE CATEGORIES 
OF BOOLEAN ALGEBRAS 

Vera TRNKOVA 

Abstract: We prove that every small thin category can be 
fully embedded in the category of Boolean algebras and all one-
one homomorphisms and also in the category of Boolean algebras 
and all surjective homomorphisms. 

Key words: Boolean algebra, full embeddings of categories. 

Classification: 18B15, 06E99 

A category is called s-universal if every small category can 

be fully embedded in it. If X is s-universal, then every monoid 

can be represented as the monoid of all endomorphisms of an ob

ject of % (this is the result of a full embedding of a one-ob

ject category with the morphism part formed by the given monoid). 

Many current categories are known to be s -un i ve rsa l . This field 

of problems is extensively investigated in the monograph CPT3. 

If 3C is an s-universal category, then also every group can 

be represented as the group of all automorphisms of an object of 

% . This fact implies that neither the category 

&(1-1) of all Boolean algebras and all one-one homomorph

isms 

nor the category 

3(onto) of all Boolean algebras and all surjective homo

morphisms 

is s -un i ve rsa l . In fact, there are groups not representable as 
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the groups of all automorphisms of a Boolean aigeora, e.g. £,, 

see [MMj. On the other hand, there are large Boolean algebras 

with the trivial group of automorphisms,£ KV By CM], there are 

arbitrarily large Boolean algebras such that the identities are 

their unique one-one endomorphisms. By CLR], for every uncountab

le cardinal ^ , there is a Boolean algebra of the cardinality A 

such that the identity is its unique surjective endomorphism. In 

the final remark of CLR], the existence of a full embedding of e-

very small discrete category (i.e. having only the unit morphisms) 

into :T5(onto) is stated. Here, we investigate full embeddings of 

small thin categories into the above categories of Boolean algeb

ras (let us recall that a category k is thin if, for every couple 

of dbjects A, B of k, there is at most one morphism from A into 

B). Let us state explicitly that in the proof of the theorem sta

ted below, the constructions of LLR3 and IM3 are essential and 

only a small reasoning is added to them. However, the embedding 

theorem seems to be of some interest in connection with the field 

of problems investigated in CPT]. 

Theorem. Every small thin category can be fully embedded 

into 55(1-1) and into 35(onto). 

Proof. 

A) Full embeddings into .13(1-1). 

1. Let Jt be a cardinal. Following LS3 and CM], let us say 

that a Boolean algebra B is ge-complicated if, for every collec

tion 4(b a ) | oc < ae\ of pairs of non-zero elements of B such 

that 

a) b, A b . - 0 and a_, A a , = 0 whenever c*v -^ oC' a°d 
«*• oC « . oC 

b) a_ 4= b̂ , f o r a l l oc «< at « 
OC OC 

there exists S £ at such that 
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oC) there exists no w 6 B with a, £ w for all oC £ S 
— ot 

a^ A w = 0 for all oc e ae\s, 

fo) but there exists u € B with b^^u for all oC c S 

b A u = 0 for all ©o e ae \ s . 

By tM3, if ae is an infinite cardinal such that 2 = t& °, then 

there exists an atomless ae-complicated Boolean algebra C (of the 

cardinality 2 ) such that for any non-zero a € C there is a system 

{btC\ cC < 9t] of non-zero pairwise disjoint elements of C such that 

b , j£ a for all oC <- *e • 
CO 

2. Let C be as above. Let us verify the following asserti

on: if c,deC and there is a one-one homomorphism h of C r c onto 

CI* d, then c = d and h is the i d e n t i t y . In fact, suppose that h 

is not the i d e n t i t y . Then there is a non-zero aeC, a :4c, such 

that aAh(a) = 0 . Let *Cb, | oC <ael be a system of non-zero pair-

wise disjoint elements of C with b^ «fi a for all cc <: ae . Then 

\ (b ,h(b^)) | oo <. >e I fulfils the above a) b), hence there 

exists S £ ae and u e C such that the above oC), !3) are fulfilled 

(with a^ replaced by h(boC)). However, w = h(uAa) fulfils 

h(boC)£w for all oc € S and 

h(bot)Aw = 0 for all oc 6 3e\S, 

which is a contradiction (this verification is analogous to the 

proof of Theorem 10 in tMj). 

3. The conclusion of 1 and 2: For every cardinal ae there 

exists a Boolean space (= compact Hausdorff 0-dim) X such that 

(i) every nonvoid clopen (= closed-and-open) subset D of X 

contains a pairwise disjoint collection -CD-* I °C < aeJ of nonvoid 

clopen subsets of X; 

(ii) if D, E are clopen subsets of X and f is a continuous 

map of D onto E, then D = E and f is the i d e n t i t y . 

4 . Let a small thin category k be aiven. We may suppose 
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that it is skeletical ( i . e . no two distinct objects of k are iso

morphic). First, we fully embed k into the thin category of all 

infinite subsets of a set T, i.e. "!f:k—>• exp T is such that each 

Y(A) is infinite and k(A,B)4-0 iff Y(A) £ ^ ( 8 ) . Choose ae z 

> card T, let X be a Boolean space which fulfils (i) and (ii) in 

3. Choose ^D t|teT} a pairwise disjoint collection of nonvoid 

clopen subsets of X. For every object A of k, denote by $(A) 

a one-point compactification of the subset ^-Lr(A)®t of X* tne 

added point is denoted by | A . If 1f(B) 2 Y ( A ) , let us define 

<?B. $>(B) — > $ ( A ) by 

9>*(x) = x for all x * t U^ 

?B ( x ) = fA else' 
5 . Let A, B be objects of k, let f: $(B) —*- $(A) be a sur-

jective continuous mapping. We want to prove that "yf(B) a Y(A) 
A 

and f = cpo. For every clopen subset D of X such that 

D£G = U , D + \ Ш g R ) î , 

put E = f~1(D). Then, by (ii), E = D and f(x) = x for all x e E . 

This implies that f (G) = G and f(x) = x for all xeG. Consequ

ently, for every t c Y ( A ) , we have f ( { B ) 4 0 r Thus Y(B) 2 Y(A) 

and f(x) = x for all x c. . VJyiXD. = G. The continuity of f imp-
t <s VCA) x 

lies f( %Q) = f . and f sends each Dt with t <£ ̂ A ) on f A be

cause f" (G) = G. Thus f = g>R. Consequently, the map 

A v—>• all clopen subsets of <fe(A) 

defines a full embedding of k into 3 ( 1 - 1 ) . 

B) Full embeddings into 3 ( o n t o ) . 

1. The construction of tLR3 will be used; let us recall so

me facts and n o t a t i o n . If ̂  is an uncountable regular cardinal, 

K ^ ) is the ideal of all subsets of A disjoint from some closed 
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unbounded subset of A and D( A ) = /T( ̂  ) is t n e Boolean al

gebra of all stationary subsets of A . If X is a topological spa

ce, xcX, then Cf(x,X) denotes the set of all regular infinite 

cardinals (^ such that there is a sequence -}x.|i<n5 in X with 

x = lim x., and, for every cc < /a, 
•L < (U * l 

lim x. exists and is distinct from x. 
>v < cc x 

We say that x c X is JX-specj al if A € Cf(x,X) and, for every 

-I xi | i < A } and -iyj.|i< A £ as in the definition of Cf (x,X), 

the set \ 06 |lim x. = lim y.} is closed and unbounded in «A » 
<i< cC - -v < oC --y 

If x is yV-special, then S is the element of D(A ) defined as 
X S'/ 

follows: S = /K \ )* where 

S' = -loo I A e Cf (lim x. ,X)}, 
^ <r oC r 

with -ix. |i < A } as in the definition of Cf(x,X) (since x is A -

special, S is independent of the choice of { x. | i < >A $ ). 

2. Let ^ be an uncountable regular c a r d i n a l . In ELRJ, a 

complete linear ordering I is constructed such that the set of 

all its elements having a successor is dense in it and 

(a) for every xel, either A £ Cf(x,I) or x is A-special; 

(b) the set P of all A-special x <s I with S.=J=0 is dense 

in I; 

(c) if x,y£P, x4=.y, then SjnS = 0. 
x y 

By [LRU, I (with the order topology) is a Boolean space such that 

the identity is the unique one-one continuous map of I into it

self. Since D(A) contains S\ pairwise disjoint non-zero ele

ments, we can obtain, by the same construction, a collection 

41 I y <c 0\\ of linear orderings such that each of them has all 

the above properties and, moreover, 

(d) if x € I , ye I are A -special and oC 4s A , then 
I L * P 

S^nS *= 0. x y 
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Then the following statement is fulfilled: 

{
if cC , A -"-* ̂  i K is a clopen nonvoid subset of 1^ and the

re is a one-one continuous map f:K—*I«, then oc= ft and 

f is the inclusion ( i . e . f(x) = x for all xcK), 

In fact, let us suppose that f is not the i n c l u s i o n . Since P^nK 

is dense in K (where ?& is the subset of 1^ as in (b)), there ex

ists xcP, A K such that f(x)=fcx . By (b), x is ^-special in 1^ 
I 

with S* = S j ^ O . Since fte Cf(x,IoC), A is also in Cf(f(x),^). 
K ti 

By (a), f(x) is A -special in 1^ and, clearly, S -Si/ N. However, 

by (b),(c) and (d), S,/ N is either 0 or disjoint from S , which 

is a contradiction. 

3. Let a small thin skeletical category be given. We embed 

fully its dual category k* into the thin category of all infini

te subsets of a set T; denote by Y:k*—-»exp T the embedding. 

Find a pairwise disjoint collection 41+11 e T ̂  of Boolean spaces 

with the above properties and & = card T (we may suppose that A 

is an uncountable regular cardinal). For every object A of k* , 

put again 

$(A) - <5A* - t £Vc^t-
where L are clopen in $(A) and |. makes a one-point compacti-

fication of 

defined by 

fication of the union. If Y(A) sY(B), then q ||: $(A) —** $ (B), 

*A(?A> • h> *A<*> - x for all x • t ^ ( A ) I t , 

is a one-one continuous map. Now, let A, B be arbitrary objects 

of k* and f: $(A) —*• <$>(B) be a one-one continuous map. We want 

to show that then f(A) s ^(B) and f = <pB. For every a e ^ A ) , 

put 

Ba - *b £ ¥(B)|f(Ia)r.Ib* 0V 

Since f(I ) \ A § Q $ # 0 , the set B is not empty. For every t> e B , 
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put (T fa = I n f ~ (I.). Then (X . is a nonvoid clopen subset of 

I and f defines a one-one continuous map of (T . into Ib. By 

( * ) , b = a and f(x) = x for all x e (/*a fa. Hence Ba =«Ca\and 

(Y is clopen in IQ. Since I has no isolated points (see (b)), 

necessarily 0_ = I . Consequently ^(A) fe Y(B) and f(x) = x • 

for all x € Mrovr^a* By *ne con"tinuity of f» f( $s) ~ fo> con" 

sequently f = <y f t. Thus, $ is a full embedding of k* into the 

category of Boolean spaces and one-one continuous maps, hence it 

determines a full embedding of k into -B (on to ) . 
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