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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ON A CLASS OF CONVEX SETS
Constantin ZALINESCU

Abstract: Let X be a real linear space, XX and Cc X be a
conveXx set such that X = C + RX. We give a characterization for
this relation when C is a cone, and necessary conditions for the
general case.

Key words: Convex sets, cone, separation theo}em, natural
topology. .

Classification: 52A05

Gerstewitz and Iwanow [2) used the notion of directed line-
ar spaces with respect to some convex subset ("... X sei bezig-
lich C gerichtet, d.h. X = C + RX fur ein X ...") in order to
construct some concave function defined on the whole space. In
this short note we give a characterization of this notion when
the convex subset is a cone, and necessary conditions in the gene-
ral case.

Throughout the paper, X is a real linear space and X 1is its
algebraical dual. For the nonempty convex set Ac X we denote by

s 1

A, 1a, Ia, A', cone A, A, , & the linear hull, the affine hull,

the intrinsic core, the core, the conic hull, the asymptotic cone

and the closure in the natural topology, respectively (see |1]

and [3]). We recall that for the convex set AcX
(1) RelA=VxeA 3A>0:(1 +A)% - AxeA,
(2) xeAleVxeX IA>0:% + AxeA,
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(3) Aleg =7t -7, 7oAl

1o = A-Aand

while for a convex cone A,
() oeales = x.

We also use the notations R+ and Rf for the sets of nonnega-
tive reals and positive reals, respectively. The Greek letters

denote always real numbers.

Proposition 1. Let Kc X be a convex cone and Xe X. Then X =
= K + RX if and only if
a) K is a linear subspace of codimension 1 and X ¢K, or

b) 4%, -xinkixg.

Proof. "¢==": 1If a) holds, then, obviously, X = K + RX.
If b) holds, let us take the case veki. 11 x € X, then, by (2),
there exists A > 0 such that X + Axe¢K, and so x6 K + RX.

"=3": If K = X, then b) holds. Let us consider K=%X in
the sequel. We have

X = K+ RRc (K - K) + RX = %k + RX.

There are two possibilities: (i) S°K=+X and (ii) %K = X. In the
case (i) 5K is a linear subspace of codimension 1 and i'¢SK. Let
ueSKcX; then u = y + AX for some yeK and Ae R, and so AX =
=u-Yye SK. Therefore A= 0, whence ue K. Hence K = 5k and a)
holds. ' )

(ii) As K - K = X, X = X; - X, with X|,K,eK. Let ¥ = X+
+ YZSK. If A, >0, then

K+AX = K + 2A%) -AycK - Ry, K - X = K + 2%, - 4JcK -R,¥.

Therefore X = K - R y. Let us show that Ve.Ki. Consider Y ¢ X; then
y +yeX = K - Ry, and so there exists A 20 such that (1 +3)y +
+ ye K. Hence, by (2), yekl. Let us show now that §X,-®3n ki&g.
Suppose, by way of contradiction, that {X, -X¥ N ki - p. Then the-

re exist xi,xz'e X'\{0} such that
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(s) (X,x2£024x,x;{> VxeK,

(6) (—?,xé)éoé(y,x2'> VyeK.

1f (Y,xi) = 0, then, by (5), 04 ¢AX + x, xi) for every A e R
<0<

1
<<)‘(,x2'). Therefore there are o, (3 > 0 such that <Y,o¢x1' +/3x2'>=

and xe K, and so xi = 0, a contradiction. Hence, {¥,x

= 0. From (5) and (6) we obtain that 0£<x,x; +[3x,> for every
xe K, so that, as above, we obtain cﬂxi + ﬁxé = 0. We may take
== (3 =1, whence x, = -x;. From (5) and (6) we obtain that 0 =
£ {x - y,xi) for all x,yeK. As K - K = X, we obtain once again

X = 0, a contradiction.

Corollary 2. Let Kc X be a convex cone and X € K\ {0%. Then
K+ RX = X if and only if Xe Ki.

Proof. The sufficiency is proved in the preceding proposi-
tion. If Xe K\N{0%t and X = K + RX, then the statement a) or b) of
Proposition 1 holds. As a) is impossible in our ;ypotheses, we
have {%,-x30Kki+ . It -x e k!, as x e K\10}c K, we obtain 0 =
i

=% - %ek + k! = k!, so that K = X. Hence xekl.

Proposition 3. Let Cc X, C#X, be a convex set and XeX. If
X = C + RX, then one and only one of the following assertions
holds:
a) there exists a linear subspace Xoc X of codimension 1 such
that C = ¢ + Xy and X ¢ XO;
b) there exists a linear subspace Xoc X of codimension 1 and
«,@cR, <, such that X¢™  and C' = 1, BIX + X;
c) T+ R:T(CCI;

- < i

d) C - RixcC™.

Proof. It is clear that in our hypothesis, at most one of

the conditions a) - d) can take place. Let us show that at least
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one of them holds. We may suppose, without loss of generality
(w.l.g.), that 0€C. For this aim, let K = cone C. Then X = K +
+ RX, so that, by Proposition 1, we have

(i) K is a linear subspace of codimension 1 and X¢ K and,
therefore X4 C, or

(i1) {%,-Xinki+4.

If (i) holds, as above, we obtain that C is a linear subspa-
ce. Indeed, if xe5C = K, then xeC +/RX, i.e. x = y + AX for so-
me yeC and A € R. Therefore AX = x - ye K. Hence A= 0 and x =

= yeC.

Suppose now that (ii) holds and, w.l.g., 'ieKic K. It fol-
lows that there exist A >0 and T such that 2GeC and X = A T.
We intend to show that GeCi =iC, as 5¢ = 1C = X. Let xeC; as
2x €K and UsKi, there exists w >0 with (1 + )T - 2uxeK, and
so there exist 1 > 1, veC such that (1 +«)d - 2ux = % v. Let
us take = 7 /27n+ v - 1)e10,1f and A= 2 /7 . Then
(1 +A)T -Ax = ecv + (1 -o)20eC, so that GecCl, by (1).

Assume now that c¢) and d) do not hold. Then I = {A e R: AXeC?¢
is a bounded interval with nonempty interior. We have only to show
that I is bounded above. Suppose that R XcC. As T+ R‘;7¢ Ci, the-
re exist €¢C and & >0 such that € « [Li¢Ci. By a separation
theorem we get x & X \{0} such that
(n (B + @X,x><£<x,x> ¥xeC.

Taking x = T in (7) we get {X,x > £0. If <X,x >=0 then, as in
the proof of Proposition 1, we obt#n x = 0. Thus <{X,x > <0.
Taking now AX instead of x, with arbitrary A e RT, in (7) we
get that ('i\,x'}l‘(), a contradiction. Hence there are &, B e R,

X £0<f (since GeC! and 06C) such that 1&,BlcIclx,R).
Moreover 1« , 3L zcch and a—ci,ﬁ7¢ci. Once again, by a separa-

tion theorem, we get xi,xz' € X'\ {0} such that
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(8) (RX,x > = (xxp> vxet,
<

(9

P

sl

x

i,xé,‘: <'x,xé,\ ¥xeC.

If <i.xi? = 0 or <i,xé> = 0, from (8) or (9), as above, we get

xi = 0 or xz' = 0, a contradiction. As 0 C and Eeci. we may con-
sider that

(10) (X

,xl"= (i,xz',‘ = 1.

Let us assume that xi and xé are linearly .independent. Then the-
re exists Vv € X such that

(11) KU x{> =& =1, {¥,xp7 = T+ 1.

As VeC + RX, we 'have V = V + AX for some VaC and .\ &R. There-

fore, by (8) - (11), we have

2!
'

-
'

~ . . - .
Vix = <V - AX,x =

/~

e

A,

A
Iy
/~

)

V,x2'>=\V-Ax,xé?= +1-Aa,

which yield a contradiction. Hence xi and xé are linearly depen-
dent, i.e. x, = yx; for some y & R. We have » = 1 by (10). Thus
(8), (9) and (10) can be written together as

(12) X &<x,x P23 vxsl; {(X,x = 1.

Let now X ¢ X be such that <~ < <X,x > < 3. Suppose that 7¢Ci;
then there is some »x¥¢ X'\i0} such that .¥X,x*>=<{x,x“for every

x € C. Once again {X,x*> #0; one may take <X,x* e{-1,11. Assume
that x~ and x* are linearly independeét and take <x,x*> = 1.
There exists Ve X such that

CVLX™ =X, x*>, (V,x = 3+ 1.

W)

~

As V = ¥V +Ax for some VeC and .\ ¢ R, we have, by (12),

B+ 1 =4V, x> =V 4 AR, x> = (V,x7e X F T

[0
>

X, x™ 2= VX" = UV 40 KxTT = LV XTN e ANK,xT 2 LK, x T e

which yield a contradiction. We obtain similarly a contradicti-

. -—

on if (X, x*>=-1. Therefore x* = ¥x  with ¥ ={-1,1}. If ¥ =1

then <X,x > = {x,x’> for every x <C, so that <X,x - =~ , a contra-

N
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diction. If 7# = -1 we obtain the contradiction <¥X,x > 2 B . The-
refore %e . Hence .

ixeX:x <<x,x><BtcClcCeixex:a « <x,x> =3¢,
which shows that b) holds with X = {xeX: <x,x> = 0%.

Remark. I.f ‘the statement a) or b) of Proposition 3 holds, we
obtain easily X = C + RX. Simple examples show that this is not
true if c) or d) holds.

Indeed, take A = {(x,y):x¢ J-1,1[, y>1/(1 - xz)}c RZ, A is
a closed convex set and A + R:icAi for X = (0,1)e Rz, but A + RX =
= 1-1,10xR*RZ.

Concerning the condition c) of Proposition 3 we have the fol-

lowing

Proposition 4. Let CcX be a nonempty convex set and Xe¢ X.
(1) T+ R%cc! if and only if XeC,, Cl+ @ and T + R¥ =
= (F + RO,

(ii) If X<TL and C'+@ then C + R% = X.

Proof. (i) "= ": It is evident that XeT_, and cle 8.
Let xe AX + T for some A e R. Then x e (A - 1)X + X + Tc (A - 1)%X+
+clec? + RR = (T + RO). Therefore T + RXc (€ + R,

" &=": Suppose that € + Ki('&Ci for some €& and A > 0.
Then there exists x e X \ 40} such that

(E + AX,x>=2<c,x"> Vcel.

As i’eﬁm , we obtain that <X,x7= 0. Therefore <&,x >«<x,x " for
every x6C + RX. As T + RX is algebraically open, it follows that
x" =0, a contradiction. Hence T+ R:i'cgci (in fact we have equa-
lity).

(i1) l‘Suppose that X&C + RX for some Y€ X. Then there is
somg x & X'\ $0% such that

{¥,x >4 <c +@X,x 7 Vc&C, meR.
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It follows that {%X,x > = 0 and {%X,x >£<c,x’> for every ccT,
whence 0 £{x,x’) for any xe€C, , and so 0£<{x +uX,x > for all
x€C, and M &R. As Ty + RX = X, by Proposition 1, we get the

contradiction x* = 0. Therefore C + RX = X.
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