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COMMENTATIONES MATHEMATICgAé)UNNERSH’ATIS CAROLINAE
1

MODEL-THEORETICAL CONSTRUCTIONS IN AST |
Karel CUDA, Blanka VOJSTASKOVA

Abstract: In this paper two classical model constructi-
ons are adapted for the needs of the alternative set theory (AST).
The first one is the construction 0f an isomorphism among satu-
rated and elementary equivalent structures,: in the other, the
limit of the elementary chain of structures is constructed.

Key words: Alternative set theory, structure for a language,
interpretation, saturation, elementary embedding. '

Classification: Primary 03E70 )
Secondary 03C30, 03C50

Endomorphic universes (see [V]) play an important role in
AST. In the paper [{-Vo] there is constructed an increasing se-
guence of endomorphic universes with standard extension nf the
length @3 . There is a question whether it is possible to const-
ruct a similar sequence of the length fL . The answer is positi-
ve; such a construction will be given in the second part of this
paper. The construction lies on a modification of classical model
constructions for needs of AST. In AST we have namely only two
infinite cardinalities and therefore it is not at all evident how
to adapt classical methods, using higher cardinalities, to the
spirit of AST. In the paper [52], several modifications are pre-
sented; for our needs they are not, however, general enough.

In this work it is shown how to create - in a quite general

form - some model constructions in AST. These constructions will
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be used for interpretations of a set-theoretical language, given
by a structure. The generality lies in the fact that we admit a
system of class constants in our language, too. We do not presu-
me such a system to be codable. Thus, when investigating e.g. the
ultrapower, we can understand the system of all subclasses of the
original structure as a system of constants; using then the above
mentioned techniques we obtain a description (by normal formulas)
of interpretations of these constants in the ultrapower (ultra-
product constructions will be examined in the second part of our
article).

Since we do not presuppose that all readers are able to make
a direct transfer from model theory to AST, we proceed in § 1 ra-
ther slowly. We prove here the theorem on an isomorphism among
saturated and elementary equivalent structures (for the language
FE ) and show, among others, when an arbitrary formula of the lan-
guage FHf is transmitted by means of an isomorphism.

In the second paragraph we deal with a construction of the
limit structure for an elementary chain of structures. It is
proved here that this structure is an elementary extension of
"preceding" structures and that, if suitable obstacles are ful-
filled, it is saturated. This construction will be substantially
used in the second part of this paper since it is exceptionally
convenient for chains of the length £ .

For the readers, who are familiar with a classical form of
the studied model constructions, it could be interesting to take
notice of the strength of applied axioms, esp. those of the type
of axiom of choice, and of the "largeness" of used cardinalities

(e.g. when applying these results in higher-order arithmetics).
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§ 1. Let & be a system of classes. Writing X ¢ ¥ we mean
(when taking a formal point of view) that X is of a sort of vari-
ablesY which is subordinate to a sort of class variables. A
special case is when this sort is determined by a formula X e ¥=
= @(X). Only such a case will be used later.

The alphabet of the language L consists of the following

14
systems of signs:
1) Xl’x2""‘X1’X2"" - variables for sets and classes
2) & ,v,1,= ,=,V,3
3) =,e
4) C,D,... (event. with indexes) - special constants for:

classes from <.

Formulas of the language FH? are such formulas (of a finite
length) which arise from formulas of the language FL (see LVI1) by
an incidental replaciny of some free occurrences of variables for
classes by constants for classes from ¥ . The language which we
obtain from FLLf by a restriction to its normal formulas (i.e.
formulas in which we admit only the quantification of set varia-
bles)'will be called the language NFH¥ . If we limit ourselves
in NFLq only on such formulas which have no variables for clas-
ses (we admit, of course, constants for classes from ¢ ), we
speak about the language SFLy

Further we shall introduce the notions of a structure for
the language FH? and of an interpretation of formulas of FLY
determined by a given structure. For the language FL, both the
notions are introduced in [S1].

A structure ! for the language FL_, (briefly only a struc-

[
ture) is a triplet {A,E,I}, where (EvI)c A2, together with such

a system of classes g‘l that to each Ce < there is just one
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class D e ‘fa' such that Dc A and the following holds (i.e. satu-
ration of classes w.r.t. identity):
(Vx,yeA)(xeD &<x,y>el)=> yeD,
we denote the class D by Ca’.. We say that A is a support of ¥r.
Sometimes, it will be useful to write instead of Y more
precisely 4% ={A,E,I,9%3or even ¥ = {A,Ea',Ia,‘-fo‘S .
Let ¥ be a structure. The symbol d denotes the interpre-
tation of formulas of the language FLy determined by <L . We de-

fine it as follows:

1) cls™X)=(XcA & X is saturated w.r.t. I); writing X&
we mean that X% is a class and Cls4(x%)

2) x%e® y@ = (3x e Y2 (X% - E"{x})

3) x% B ybx 2. (a4

4) For Ce¥ let C% denote the class which corresponds to
C in Efa' , then c? is the interpretation of C.

5) The symbol % denotes the formula which is the inter-

pretation of ¢ , i.e. qa is such a formula in which & and =

are substituted in the above mentioned way, (VX) ... is replaced
by (YX)(C1s¥X) = ...) and C;,C,,... by C¥,c%,.... Let us note

that the symbol O. was used before, namely for the interpretation
of constants from <.

Evidently, ClsX @), c1s%(A), c1sXcD . Notice that Cls%(X)
is described by a normal formula with parameters A, E, I.

Let Y, £&r be structures for the language FL‘,, (a,B cor-
responding interpretations). ¢ , & are called ?f—elementarz

equivalent structures iff

B
(Ves SFL,) q:q’-z @
Let.‘(/l = {A,Ea',Ia',‘:fa’}be a structure for the language Flg, .
We say that a structure & = {'B,E‘n,IB,S"n} (for the same language)
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B_ g% 02, 1B 1% B2 ang

is a substructure of ‘0 iff BeA, E
9P 1c%8; ce ¥}

A structure ¥ is an elementary substructure of ¥ iftf &

is a substructure of Y4 and ‘L, & are ‘:f—elementary equivalent
structures.

Let X be a structure. Remind that a class x is a set in the
sense of (L iff x is a class in the sense of A and if there ex-
ists te A such that x = E"4t}.

Denote

Ay = {titen s c1sME" 1t}

The class Am is described by a normal formula with parameters
A, E, I. Realize that Am is in fact the system of all codes for
sets (A has not to be a class in the sense of 4 ).

For the sake of typing we take the following agreement (which
will not be, however, kept in principle):

Let Seta(x), then the code of x (more precisely, some from
the codes of x) will be denoted tx' If x belongs to an indexed
system, e.g. x = x, , then instead of t&‘ we shall write only E‘-
On the contrary, if we use for a code the notation t, then the
set to which this code corresponds will be denoted Xy When wor-
king with an indexed system of codes t , we write briefly x_  in-
stead of xt«:

Further we show that if in a structure Y the axiom of ex-
tensionality holds, we can limit ourselves, when working with the

support A, to Am.

a

Lemma 1. Let (Ext) “hold in 4 . Then

Q@
(oxdyd - vy = xFan = v,
Proof. The implication =y is obvious. For proving &= use

(Ext)w.
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Lenma 2. Let ge Fl, and Cls™X;), i = 1,...,m. Then
(1) ((3x) ¢(x,Cq,...,C0, %y, %)) =
=(3ten)(QhE T 14,00, ...,00,X,, .., X)),
Proof. Obviously
(30 ¢0,Cp, X, )Y = (30 T(Atenx = E" (11 &
& C1s%X) & GP(x,Cp,...,C0 Xy, X)) = (3teh ) (gh(E" 13,

Cpree s CnXpse e X)),

Theorem 1. let ¢ e NFH! . Then it is possible to express
Q¢“(xff...,xﬁ) by a normal formula with parameters A, E, I, in-
terpretations of constants from N4 , which occur in &, and clas-

ses X;x (i =1,...,n).

Proof can be done by induction. Its individual steps - ex-
cept (I x)y which was investigated in Lemma 2 - follow directly

from the definition of the interpretation.

The fact that model constructions can be expressed by normal
formulas (with given parameters) is important. It is used e.g.
when making iterations of those constructions. The mere existence
(i.e. a description by not-normal formulas) could namely claim a

strong form of an axiom of the type of choice.

Now we shall examine some properties of structures (for the
language FL, ).
b e,
Let ¢ ¢ ‘:l)l. We say that a structure “711 ={A,E,I, ‘;fl ¢

is an expansion of the structure U = {A,E,I,§“1 for the langu-

age Fle , which we call an egpansioa of the language FLy iff
for each C ¢ ¥ the condition C¥ = ¢ 1 holds a 7“1 are the in-
terpretatfons determined by Y, le, respectively).

When we interpret sets in an expanded language, it is conve-

nient to use their codes instead of corresponding constants. So
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if we have e.g. Z¢ Am and te Z then, in the language FH!uZ' we
shall ihterpret t as E" { t3.

Let {9n;ne.FN} be a sequence of formulas (of one free vari-

able) of the language SFHV . We say that this sequence is consis-
tent in YL iff (VneFN) [ (300 g (x) &g ()& ... &g N%

A structure €% is called an J-saturated structure iff for

each consistent sequence §@yn;ne FN} of the language SFL&UA it
m
is true:

(3ter)(¥nern) gbix)

( Q. denotes here the interpretation of formulas of the language

Y

SFLyuAm)'

The reader may be here in doubt about the correctness of our
considerations. It looks like we need the relation of satisfacti-
on. But as the formulas in question are normal and contain only
at most countably many class parameters (they can be coded in one
class), we are able to construct to them (due to the Morse s sche-
me) the required relation of satisfaction. We can also understand
the above definition as follows: If we fix (in AST) constants for
9L , then assuming formulas describing the consistency of a sequ-
ence of formulas, we must be able to deduce the existence of
teh, (see the definition).

Now we show that if <94 is an F-saturated structure then its

support can be ordered by the type £ «

Lemma 3. Let ¥, be an Y-saturated structure. Let K be such
a class that

(V*I:eAm)(.S‘I:eK)(x.t = X{)S\(Ytl,tze K)xtl* xt2
Then K is either finite or uncountable’

Proof. Suppose K is countable. Let us enumerate all its ele-

ments - t.,t t ,... .. Denote g _(x) v x+t_ . Then {gqsne FN}-

12522t

- 587 -



is a countable system of fomu}l’s of the language srLﬁqum' It fol-
lows, from Y-saturation of YL , that there is teAm such that
for each n€FN the formula 9?‘,()(1:) is valid - which is in contra-
diction to the definition of K.

In further considerations, the notion of isomorphism among
structures is important. Let us remind firstly its definition (of
course, formulated in our terminology).

Let U= {A,Ea’,la’, g%z , &= {B,Eﬁ,Ig,?3§ be structures
for the language SFLg (a,B currespondiné interpretations). A one-
one mapping F is called a partial isomorphism iff dom(F)SAm,

rng(F) g 8, and the following holds:
q ]
(2) (Vg e SFLH)(? (xtl,...,xtn)zy (yF(tl)"“’yF(tn)))’
where yF(t1)= 3 F(ti)}, i=1,...,n.
A partial isomorphism F will be called a total isomorphism

iff
(3) [(VYte Am)(BT cdom(F)) x; = t;EJ &

&[(VYueB )(3Terng(F)) vy, = yg)

Structures ¢, dr are isomorphic (denotation Nt ) ift

there is a total isomorphism F between them (we denote F: €L~ 3).
From these definitions it follows that if F is a partial (or
a total) isomorphism then Fol is a partial (or a total) isomorph-

ism.
Lemma 4. Let F: YL ~ & . Then
(Y tec¥=Ft) ec®
Proof. Realize that from the definition of isomorphism it

follows:
‘ 0 )
(xe C)" = (yF(t)e c)

When investigating substructures of given structures we need
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the following notion.

Let <4, be structures of the language SFL‘, . Let '“1
be such an elementary substructure of ¢4 that F: & =~ ﬁl:
Then we call F an elementary embedding % into YL (in symbols

F: & "3' ¢L). We say then that & is elementarily embedded into
L (denotation & = ).

Lemma 4 asserts that "isomorphism transmits constants". Now

we prove that the same is true also for the relation E. As to
identity, the situation is more complicated and will be investi-
gated later.

Lemma 5. Let 4= 4{AE% 1% 2%, & - 18,61 ¢%7 be
such structures that F: 94 2 X . Then
(Ytuea) t e = Fet) E®FCu).

Proof. Let t,u&Am and "t Ea'u. Then (xtc xu)a' and therefo-~

re (see the definition of isomorphism) (F(xt)e F(xu))ﬁ; hence
F(t)EaF(u). The converse implication follows from the fact that

Flis an isomorphism, too.

Theorem 2. Let & be a countable system of classes. Let ¥,
#r be J-saturated and S-elementary equivalent classes. Then
un = &.

At first we remind a notion and prove two auxiliary asserti-
ons.

Let £ be such a partial ordering of X that

(Vx,yeX)(AzeX)(x€z &y<z).
Then X is called directed by = -

Lemma 6. Let <YL, ¥ be structures of the language SFLg
and let J be a directed class (by £ ).Suppose QFj}je} is such a
system of partial isomorphisms that
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(Vipd, €3)(3,23, =2 Fle sz

= U R . i i i i
Denote F iFJ 3o Then F is a partial isomorphism

).

Proof. Obviously F is a one-one mapping. Suppose that J has
not the largest element (otherwise is the assertion trivial).
Let further g@eSFL,, tiaetgE dom(F). Then there is a partial iso-
morphism F. ¢ F such that t,,...,t_e dom(F. ). Ffor completing the

Jk 1’ ’'n Iy

proof it suffices now to apply formula (2), from the definition
of isomorphism, to F. .
Ik

In the previous lemma it was proved that the union of a sys-
stem of partial isomorphisms is a partial isomorphism. We show now
how it is possible to prolong a partial isomorphism "by one step"

(the properties of isomorphism will be, of course, preserved).

Lemma 7. Let F be an at most countable partial isomorph-
ism. Then, under the assumptions of Theorem 2, just one of the
following conditions holds:

(a) F is even a total isomorphism;

(b) for each te Am such that for no tedom(F) the condition
Xy = Xg is valid, there exists such an element ue Bm that Fudu,t>

is a partial isomorphism.

Proof. Let te Am, tl,tn,... be all elements of dom(F). Exa-
mine all formulas anxt,xl,...,xn)e SFLg which hold for Xy -
Enumerate them 9%,..., yﬁ,... (there is only a countable amount

of them). Let us investigate formulas
(4) ((Fxen) yi(x,xl,...,xn))a , ieFN.
Since F is an isomorphism, we obtain from the validity of (4)
that .
(5) ((3yeB) g (y,yy ...,y ™, ieFN
hold. It follows from J-saturation of #r that there is y«¢ B such
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that all formulas (5) hold for y. Denote u the code of y. Then
Fu<u,t> (where t is the code of x) is the partial isomorphism

we looked for.

Proof of Theorem 2. Suppose that we have a well-ordering of

the type Q0 on Am and Bm (see Lemma 3). The searched isomorphism
will be constructed by the "zig-zag" method.

Let {Emt;eg ( 3 is an ordinal number) be an increasing sequ-
ence of partial isomorphisms. Suppose, firstly, that 3 is a li-
mit ordinal number. Let us construct lJiﬁi?,;eB ; this mappihg
is, according to Lemma 6, a partial isomorphism. Suppose, furth-
er, that 3 is an isolated ordinal number.

If g is odd ("step zig") then either ﬁ!-l is a total 1somor-
phism and the proof is finished or ﬂ%-l is a partial isomorphism.
In the second case, let t be the smallest element of Am such that
there is no E'cdom(ﬁq_l) that codes the same set as t. Then we
can, in accordance with Lem@a 7; prolong ﬁ%—l "by one step".
Put F = 5$_1\1(u,t7, where ue Bm is such an element that F is a
partial isomorphism.

If A is even ("step zag") nonlimit ordinal, then again eit-
her Fp-l is a total isomorphism, which ends the proof, or F/3_1
is a partial isomorphism. Let then u be the smallest element of
B8, such that there is no ﬁe.rng(ﬂa_l) that codes the same set as
u. Applying Lemma 7 on (ﬂa-l)_l we obtain again a prolongation
"by one step".

Provided the above construction stops on an ordinal, we ob-
tain a total isomorphism. In the opposite case (i.e. if it goes
cofinally to &) we have an increasing chain of partial isomor-
phisms. Their union - denote if F - is, however (see Lemma 6),

a partial isomorphism. We show that F is even a total isomorphism.
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Let e.g. (xe A)a . Suppose that there is no odd isolated or-

dinal @ such that, for each code t_, tx¢ dom( Then all odd

ﬁ!-l)'
isolated ordinals less than tx form a countable sequence which is
cofinal with £ - a contradiction. Thus for each x, such that

(xe M there is t e dom(F); similarly we can verify formula (3),
from the definition of isomorphism, for elements from B. This con-

cludes the proof.

In the last part of this paragraph we show that such an iso-
morphism which "transmits" formulas pf the language SFLg "trans-
mits" - under certain conditions - all formulas of the language
FLg , too. For this we need, however, to accept a demand. Realize
that up to this time we have not used the fact that the relation
I represents an equality on sets (more precisely, on codes for
sets). We used, e.g. in the definition of isomorphism, only an
implicitly introduced equality (defined by means of the relation
E). In further considerations we shall ask for so called identi-
ty of both these equalities, i.e. for the validity of the follow-
ing formula

(%) (VtueA) tTus=E'ft} = E"fu}.

This requirement is in [S1) expressed by the notation <% &= (Ext).
Now we can prove the assertion about "the transmission” of

I by means of isomorphism.
Lemma B. Let in <= {A,E%,1% %% and in & = {B,ES, 1,
933 the condition (k) holds. Let F: ¥t =< % . Then
(vtuen) t 1%us FOIBFQW).

Proof. Let t,ueA such that t 1% u. Then (owing to (x))
we have (x, = xu)a . From the definition of isomorphism it fol-
lows that (F(x,) = F(xu)):a . Thus (again by means of (% )).we ob-
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tain F(£)I® F(u). The converse implication follows from the fact
that F~! {s an isomorphism.

Notice that - under the assumption of the validity of ()
in W%, & - the totality of F: <% =~ & means that from each
class of equivalence ot ((*) implies that relations iad , Ia
are equivalences) at least one element falls into dom(F); analo-
gously for Iﬁ and rng(F). From this consideration it follows di-
rectly

Lemma 9. Let F: ¢t ~ & . Then

(vx® x% = 1% la® fr xh)) .

Thus, if we put Y3 = 1%" (F" x%) we obtain a sensible "trans-
mission" of classes. Therefore we can extend the definition of
isomorphism that was formulated above as a mapping between ‘sets,

also on classes. A concrete realization gives the next theorom

Theorem 3. Let A= AEY 1Y w4y | o - {8,ER,1®, 4B}
be structurgs for the language FL“f satisfying CK), (Ext)a and
(Ext)® . Let F: ¢4 ~ & . Let ¥' be an arbitrary system of clas-
ses in the sense of 4 and let <’ ,$’ arise from ¢ , & , res-
pectively, by the following expansion:

we interpret X « ¥’ in €% as X, in % as I®" (F" X) (thus
we put X% = x, xP= 18" (f" x)).
Then F: &' ~ &'.

At first we shall prove the assertion on "the transmission”

of classes for sets and constants.

Lemma 10. Under the assumptions of Theorem 3 we have
(6) (a) (Vte Am)I‘B" (FEX"{43)) = EB"{F(1)Y .
(b) Let C be a constant for a class from & . Then
(1) 2" (F" c%) = cB.

Proof. (a) We have (owing to (X))
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e 1" (FrEA" 443 =(3u,eB) [y, =y, P& (x| exp™.
1 F (ul)
From the definition of interpretation we obtain

we EB"{F ()} =(y,€ VF(t))'ﬁ .

Now it is sufficient to realize that F is an isomorphism.

(b) The proof is easy and can be left to the reader.

Proof of Theorem 3 will be done by induction. At first we

shall examine atomic formulas. Owing to Lemma 10 it suffices to
restrict ourselves to cases (X% = YH% and (x%e YH*.
‘For proving

(x4 = yht = 1 (xS = 13" (Fv y8))B
use the remark behind Lemma 9.
Further we have to verify

(%6 Y& =118 (Fv x8) ¢ 13" (" Y422 .
We know that

P vyH% = (3tevhH(x® = g4" 413 .
From totality of F and from the fact that Y% is a class in the
sense of €. it follows that we can suppose te dom(F). Then (see
Lemma 10) we obtain I®" (F" x%) = ER"{F(1)}. Moreover, F(t) e

Bll

¢ I (F" Y& since even F(t)e F" Y& | The proof of the converse

implication is analogous.

For connectives =1, & 1is the proof obvious. Thus it remains
to verify the theorem for the quantifier 3 (binding séts - cf.
the definition of isomorphism).

Let us consider the formula

a @, € pt
(2 x)? (x’xl""’Xn’cl""'Cm’xl""’xk)’ where X; & S
Denote F(xi) = yF(tx X where txi are codes for x; (i =1,...
i
., N). We have to prove
G w G

. dy 0 _
(8) ( -X):,(x,xl,...,xn,Cl,...,Cm,Xl,...,Xk)] =
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=3P gy, Flx) e Flxy), Crren,Cox P, xD?.

For each x we get (by the induction hypothesis)
a
XX, B e d X L xh =

_ 2 » LR B
= ¢P(F(X),F(xp), o FOx),C oo, C XY, X

k)’
where F(x) = yF(tx)'

We shall prove =3 of (8). Suppose that the left-hand side
of it holds. Then there is such x that <ya(x,x1,...,xn,cl,..
...,Cm,Xl,...,X ) is fulfilled. Let tx be the code of x. Since F
is a total isomorphism and (%) holds in “¢ , we can assume that

tye dom(F). Put F(x) = YE(t ) In this way we have obtained the
X

required element (lying in ¥ and satisfying the right-hand side

of (8)). For proving <= realize that F'l is a total isomorphism.

In the last part of this section we shall deal with the the-

orem on "a transmission” of formulas of the language FLg .

Theorem 4. Let <t1=4A,EL 1% g% | o= 4B,E3 1% 902 be
structures for the language FH! satisfying (x ), (Ext)* and
(Ext)® . Let F: 91 ~ % . Then for each formula g & FlL, it is
true

(9) % Oxp, . x X X = G, Rk,

(F" Xi)'a,...,(F" X% ),

where we put (F" Xi)ﬁ - 1?” (F" X?), i=1,...,m

Proof. Firstly we shall make an expansion of the language
FLg - we add constants for all classes X*. We shall interpret
these constants in ¥ as X%, in % as 12 (F" x%) . Then each

Y? is an interpretation of a constant (since F'1 is a to-

class
tal isomorphism).
The proof will be done by induction. Since for formulas of

the language NFLy is the validity of (9) an immediate consequence
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of Theorem 3, ;t is sufficient to verify tre case (3 X)¥, i.e.:

(10)  T(3X) glxg, . 0yx X, XY, x0)1% =
= L3N QFOx)), ... Flx), Y, (F xB, (P x yPI®,

By the induction hypothesis we know that for each X such that
c1s¥(x) the formula
@y, ax XE X = B (F(xp), . FOx ), 0B
Fr X%, L E X

holds.

For proving = in (10) it suffices to realize that if X is
a class in the sense of Q& , then the class which corresponds to
X, i.e. (F" x)? , is a class in the sense of J3 (as F is a total
isomorphism). The implication <= can be proved similarly by means
of the fact that F'1 is a total isomorphism. This completes the

proof.

§ 2. In this section we shall construct, from a given system
of structures, a new structure - namely such a one that each star-
ting structure will be immersed inside by means of a suitable em-
bedding. At the same time we shall suppose that in each initial
structure the axiom of extensionality and (* ) are valid (then
relations of identity will be equivalences).

For a more simple notation we shall write further instead of -

a, a
g o
U, = 18,8, 1%, %3 only O ={ALE 1,43

A coded system of structures ‘¢4 = {Ac'ﬁi'gx' g, 3 of the
language FLg (with interpretations &Ec ) - let us denote it

{‘0’&41 ;¢ € K}, where K is a coding class - consists of coded
systems of supports {ﬁ‘;ct ¢ K1, extensions (g‘;ecs K%, identities
{I_L;oceKE and for each C € ¥ of a coded system (for the same co-

Ao

ding class K) of interpretations C of C.

- 596 -



A coded system of structures {¥ ;€ K3 will be called

elementary iff

1) K is a directed class

2) (Ve,BeK)(ot B = (IIF)(F: A 2 cﬂzp));

this F we shall denote F,
L

3) (Yo, p,yeKi(ec £ B2y =F, 5°F, = F,g ) -

Let us note that 2) ensures the existence of a coded system
of embeddings. Note, moreover, that 3) can be formulated (apart
from identity) more generally in this way:

(Vtedom(ﬁx'ﬁ))(s t,€ Aoc)(iueAﬂ)(t I, tl&u I,3 l;‘,/; (t) & .
S By (1Iy fp (WD)

Let £t ;xeK3be an elementary system of structures. The
symbol lim { ¥f, ;<€ K3 (briefly 1im ¢4 ) will denote a struc-
ture £A1in:E1in I1ime lin
is such a relation that d°m(A11m) = K and for each

¥, where
1 Ain

o« € K the condition A’l'im{oc} = A, holds.
2) xet? I YR =LAy Mg zx,p) &

8 (3 <xy, ey, <yl, p>)(x; 1 x &yllﬂy&i;_r ("1)17 !-}5’7 (yl)J
3) <xy°6>E1jm<Y1F>5[(31)(Tz°c’ﬁ)&

& 3<xy, 2, <y, pY)(x I "&V1I{sy&F«,r("1)Er F/;,T(Y1)3~
4) For C e Y we define C 1™ 45 such a relation that

a " aQ
dom(C 1™ = K and (Ve € K 3 . € %) holds.

The interpretation determined by lim %@‘ will be denoted
alim' al

Realize that Alimielimillim and C 1™ are relations and that
they are described from {%@‘ ;i € K% by normal formulas.

Before investigating the structure lim TW‘ , we shall prove

several auxiliary assertions.

Lemma 1. Denote ?N(?edom(&',x )&76 dom(FﬂJ)&i‘ I x &

- 59717



Xy I y). Then

a) the following are equivalent:

(1) <x,x> Iiim SYs 3>

(2) (Y Za, AIAXTP&E L () T, o (7))

(3) (Vy zx, 3 NVX,y)(g = Fe,y (¥ I, By )

b) the following are eqguivalent:

(4) <x,«? Enm<y,(3)

(5) (Vy 2,3 )(Ri,i)(g’&ﬁ*ﬂ (R)Ed. F/s,a' y))

(6) (Vg zo,3 NVYX§N g = e, g (E, For .

Proof. We shall prove the statement a). The implication
(3) = (1) is obvious. For proving (1) => (2) assume (1). Then
there are ¢z« ,f3, xledom(F“";) and yIEdom(Fpld.) such that
x1Ie x,y,Igy and Fx,d‘(xl)IJ Fﬂ"__,~ (yp)- lf'ut ¥ Zo, 3 (an arbitrary
fixed element). Since Fd'x is an embedding, it follows from tota-
lity of F":’Z‘ that to x there is X such that x I X and analogou-
sly to y there is y for which y Ip y. We show that X, vV are the
required elements. Denote

Fe(,d‘ (xl) = "dl"F/s_d' (yl) = y{,ﬁx'f(i) = ir, Fﬂ.?(y) = 78“.
Let ¢ =d,% . Then (owing to the embedding of structures) we have
: J J
i (7) e (xl)Ig Ef,a (yl) .

We would like to prove

(8) Fre (RDIg Fypp (539
It follows from symmetry of I_, Irs that x I_ x and y I(J y and
from commutativity of embeddings, we receive

- _ J

(9 Fre GOL Frg GD & Fye DI 6 G))-
From (7),(9) end transitivity of I, we obtain then (8).

Substituting now in (8) Fe y (%), Fp o\ (¥) for 37,57 we
get Fy o (Fy, 5 (R0 Fy . (F, 5 (¥)) which implies

Foy (OLF L ().
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For proving (2) == (3) let us suppose (2). Then to x, y the-
re exist x;, y,, respectively, such that XILK X, VIIF y, Xy €
< dom(F“‘,(), 1€ dnm(F@‘T) and Ex,y (xl)Izr Ffi’a’ (yp). Let further
X, ¥ be arbitrary chosen elements for which the assumption of (3)
hoids. Sinc® 1., IF are equivalences, we have x11¢ X and yIIB y.
But F°‘~Z’ and F{LT are embeddings; therefore
F».t,'r(;)l;r Ferx (x Iy E:L,‘a’(yl)la' F/B * .

This implies (when using transitivity of I.r) that
Fami(x)l'r Ffé.r(y)' This concludes the proof of a).

The statement b) can be proved similarly (only instead of

transitivity of identities, we have to use (X )).

The following statement is an immediate corollary of Lemma 1.

(10) xe dom(Fd’,a;) =5 {X, 7 Ilim<Fel.a' x), x> -
Lemma 2.

a) Kt,«> Iy <u,e> =t

b) <t,w? By Cu,el> =t E u

¢) <t> MMy

Proof. a) The implication &= is obvious (see the defini-
tion of I,,.). Suppose the left-hand side of a) is valid. Then
(33> 2)0At),u) 0T, ¢ & T, Uk B (DT E ().
Hence (owing to (X ) and Lemma 8, § 1) we have <t1,ul> €1,
and since I, 1is an equivalence, we receive t I, u.
/ The statement b) can be proved - using (X&) and Lemma 5, §1
- similarly. For proving c) remind the definition of Cali'“_

Lemma 3. Ilim is an equivalence

Proof. The assertion follows directly from Lemma
Lemma 4.

a) [x,a 7 Ty <y, B> & <xya? By oosz,y 71 =7 <y, 82 Elim <2,y
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b) [<z,y? Ilim(y,ﬂ)&<x,oc) Elim<z,'r>J=#<x,oc>Elim <y,B>-

Proof. a) Let the assumptions of a) hold. Let Tz B, %
Choose iedom(F“,d-), Vedom(Fﬂ’d-), Ze dom(Fy,g) in such a way that
XI o x, ¥ Iy and Z I, z. Then (see Lemma 1 a),b)) B o (Y)IJF;;};@)
and £ g (R)Eg Fypeg (). Since Gy satisfies (x), we Botain
FB,‘Y (Y)Ed— F{,d’ (Z). Now apply the definition of Elim‘ The proof of

b) is analogous.

Theorem 1.
1) 1lim ‘%,L is a structure of the language FL,_f
2) 1lim @, satisfies (%) a
3) lim €, satisfies (Ext) '™,

Proof. For proving 1) it suffices to verify

a. . a .
(11) [<x,x? I, <y,3> &<x,&>€C limy 5 ¢y,p>ec 1M

lim
(i.e. saturation of interpretations of constants w:r.t. Ilin;)’
Suppose the assumptions of (11) hold. Then there is 3 =z «, 3.
Without loss of generality we can call for xe¢ dom(Fd)’.), y €
< dom(Fp,,a.,). Then Fe . (X)e Cn"’r. It follows from the definition
of lim €4 that <F-(.1(x)'FB,3'(V)>€I’b‘ . Since ClsaT(Ca/T) we

have also Fﬂt(y)‘ C“”b". But F is an isomorphism, hence (see

P
Lemma 4, § 1) yeC P . Now it is sufficient to realize the defi-
nition of ¢ 1im -

As to the statement 2), the implication

<x,oc71nm <y, B> = Ejin x, ¥y = iim_ <y, B3

is exactly the assertion b) from Lemma 4. Let us prove now the
converse implication. Supﬁose Elim €%, 7} = Elim i<y, B>3% -
Let o Zo,(3 . Due to Lemma 4, (k) and in accordance with the
definition of isomorphism we may suppose xedom(Fn(lT) and ye

3 dom(Fp',r). As <ﬁ('7(x),7) I“n<x,uc> and
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{F ,;r(y)’?’) I,in <y,BY we obtain (see Lemma 8)

EYim 8 <P (y),r>Y = ] 4CE, . (x), 9>} and hence, according to
Lemma 2, E"'r{Fo(,'z'(x); = E;"{Ffzq'(y)}‘ In €y is, however, (x)
valid; therefore E:c.a'(")lzr FB.z*(Y)' Lemma 2 and transitivity of
Ii{p imply then <x,a” Liin <Y B>

To prove 3) we have to verify
Q..
(12) L(YX,VX(X = Y=(V2)(zeX=zeY)] MM

Let X, Y be chosen in such a way that they are classes in the
sense of (), - denote them X 1M YHim oo (see the gefini-

.

tion of interpretation) we can reformulate (12):

alim

@ [} a, . a, .
(13) (Xa‘lim -y lim) lim = [(V2)(ze X = zeY 11"‘)] lim

As = is absolute, it suffices to prove only
alim
"
(Vueh;;,)Cls (EYim 1ud),
but this is the consequence of Lemma 4. This completes the proof.

We shall show now that lim ‘ﬂa is an elementary extension

of all "preceding" structures .

Theorem 2. (Ve € K) ¢¢, 2 1lim O -

Proof. Let o« be a fixed, arbitrarily chosen, element of K.

Define a mapping F :A —> Alim as follows:
(YxeA I (x) = {x,a?-

At first we shall prove that F‘ is a total isomorphism ‘ﬂlo‘ onto
ﬂ,c , where ‘_M:‘ = lim ¢ /4, x> xeh t(ie. ‘Et-d is a
structure which arises from lim ‘Ul‘ by the restriction on ele-
ments with index o¢ ).

The validity of formula (2), from the definition of isomor-
phism, for F, 1is, when we bear in mind af:omic formulas with the

predicate € , an obvious consequence of Lemma 2. This lemma also
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implies that aac satisfies (& ) and axiom of extensionality.
Therefore (2) holds also for atomic formulas with the predicate

= . When proving the fact that F, is a one-one mapping and total,
remind that "d" and ‘.t’_l-tw satisfy (%) and use again Lemma 2.
Thus F . : €, =~ ‘¢, .

Further we shall prove that ﬁ“ is an elementary substruc-

ture of lim ¥, . Since it is evident that ‘ﬁd, is a substructu-
re of lim ‘a‘ , it remains to verify for each ¢ e SFLy
a .
(15) @ * = cja’hm .

The validity of (15) for clopen formulas of the language SFL‘JJK

oG
follows from the definition of substructure. Further we shall exa-
mine only the nontrivial step of induction and namely that one

concerning the existential quantifier. We shall show that

Qa,. a
(16) ((3x)¢) MM (3x)g) =«
(the converse implication is obvious). 2
Let (t,> be such a couple that (¢ (x| <t, > )) ™ ang
let (ul,oc> ,...,(uk,oc> be all individuals in ¢ . Put
4 Z «, 3. Since (see formula (10)) for i = 1,...,k
<E(‘?(ui),3~7 Iim<Yj > and <F{3.3“(t)’ ¥> Iin <t,BY
we have (owing to validity of (x ) in lim ¥4, ) that
. a. .
(g (P (8, ¢ 2, (R 0 (Ug), 920 )) Lim po1ds. By induction hypo-
thesis we know (for i = 1,...,k) that
a
(y((Fp’r(t),y} s <.Fo(.3‘(ui)’ > ) ?  is valid. Hence (using

the definition of interpretation) we obtain
, a‘q"
A7) ((3x) g Ox, CB L (uy), 2 ))

Since ‘t’LT and {’il’ are isomorphic structures, we receive

) a
from (17) that it is true (3 x)¢ (x, (F."_r W), 72) ¥ But
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17
o
Fo(,r is an embedding; therefore t_r_l_e formula ((3 x)q(x,ui))
holds .. Recall now that 4, =~ ‘f/Z‘* . This concludes the proof.

The next theorem shows under what assumptions the structure

lim %, is Y-saturated.

Theorem 3. Let ¥ be a countable system of classes. Let the
coding class K satisfy the following condition: for each countab-
le subclass K0 of K it is true

(37n e K)(Vde K ?"é 7
(where K is directed by " < "). Let, moreover, the formula
(18) (Vx e K)(3Be KI(B >« & ‘(/Lp is Y -saturated)

hold. Then lim ‘(/Ld is an ¢-saturated structure.

Proof. Let {?rﬁ" €FN% be a consistent sequence of formulas.
They contain only a countable amount of constants of the form
(ti, di> , where t;e K‘i (more precisely Ty e (ﬁ*i)m). The assump-
tion on KD implies that there is % such that for each aci it
is true o z ;. The formula (18) asserts the existence of
Jd > ¥ for which ‘G'ld- is -saturated.

Since {A ;x & Kt is an elementary system of structures, we
have that ﬁxi,J(ti)e Ay (see point 2) of the definition) for

each di. It follows from the definition of I that

lim
<ti’ ¢i> Ili“‘<ﬁ£i’;(ti),d'>. We can therefore assume that all
(ti, «;> belong to Ay . But ¢, is & -saturated and

f@r 2 lim 1&* . Hence there exists such ye A, that fulfils,
at the same time, all formulas of our cons;stent sequence
{q’n;né FN§ . From elementary embedding it follows that <y,dJ >
is the required element (which fulfils all these formulas in

lim €L ). This completes the proof.

Let us still note that if the relation " 2« " on K is a re-

striction of an Sd-relation, then the assumptions of Theorem 3
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can be reformulated into a weaker form. Then it is namely suffi-
cient to require for K to be directed by " £ " and not to be co-

final with any of its countable subclasses - see LV], ch. I, § &
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