Commentationes Mathematicae Universitatis Caroline

Pavol Quittner
 Spectral analysis of variational inequalities

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 3, 605--629

Persistent URL: http://dml.cz/dmlcz/106479

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SPECTRAL ANALYSIS OF VARIATIONAL INEQUALITIES Pavol QUITTNER

```
Abstract: We investigate solvability of variational inequality
(1) \(u \in K:\langle\lambda u-A u-g(u, \lambda)-f, v-u\rangle \geq 0 \quad \forall v \in K\), where \(K\) is a closed convex cone in a Hilbert space; A, g are completely continuous mappings, A linear, and \(\lambda\) is a real parameter. As a consequence we get some assertions on the existence of bifurcation points and eigenvalues for corresponding problems. These assertions are very close to the results of M. Kučera \([1,2]\).
Key words: Variational inequality, bifurcation point, eigenvalue.
Classification: 49H05, 73 H 10
```

1. Introduction. In this paper we study solvability of variational inequalities of the following type:
(1) $u \in K:\langle\boldsymbol{\lambda} u-A u-g(u, \lambda)-f, v-u\rangle \geq 0 \quad \forall v \in K$, where K is a closed convex cone in a real separable Hilbert space H with the scalar product $\langle\cdot, \cdot\rangle, \lambda$ is a real parameter, $A: H \longrightarrow H$ is a completely continuous linear mapping, $g: H \times R \longrightarrow H$ is a completely continuous (nonlinear) map and feH is a righthand side. As a corollary of our considerations we get some assertions on the existence of higher eigenvalues and bifurcation points for corresponding problems.

We remind that $\lambda_{0} \in \mathbb{R}$ is a bifurcation point of the variational inequality
(2) $u \in K:\langle\lambda u-A u-g(u, \lambda), v-u\rangle \geqq 0 \quad \forall v \in K$, if there exists a sequence (u_{n}, λ_{n}) of solutions of (2) such that $0 \neq u_{n} \longrightarrow 0, \lambda_{n} \longrightarrow \lambda_{0}$. An element $\lambda_{0} \in \mathbb{R}$ is an eigenvalue of the operator A on the cone K, if the problem
(3) $u \in K:\left\langle\lambda_{0} u-A u, v-u\right\rangle \geqq 0 \quad \forall v \in K$
has a non-trivial solution $u_{0} \neq 0$. The vector u_{0} is called eigenvector corresponding to λ_{0}.

We shall denote by $\sigma_{K}(A)$ the set of all eigenvalues of the inequality (3) (i.e. the set of all eigenvalues of the operator A on the cone K) and we put $\sigma_{K}^{+}(A)=\sigma_{K}(A) \cap \mathbb{R}^{+}$, where $\mathbb{R}^{+}=$ $=\{t \in \mathbb{R} ; t>0\}$.

There are known (to the author) two methods concerning higher eigenvalues or bifurcation points for variational inequalities - the method of E. Miersemann (see e.g. [3, 4, 5]) which consists in a generalization of Krasnoselskij sup-min principle and can be used only for symmetric operator A, and the method of M. Kučera which is based on Dancer's global bifurcation theorem (see e.g. [1, 2]). In our paper, the problem (1) is reformulated (for $\lambda>0$) to the operator equation $T u=0$, where the operator T : $: H \longrightarrow H$ depends on λ, A, g, f and K, and solvability of this equation is investigated using the Leray-Schauder degree. As a corollary we get some results on bifurcation points which are very close to the results of M. Kučera.

Main results are formulated in Section 2; in Section 3 we show that for special cones we obtain more information . Finally, let us mention that our method can be used also in another situation (see [7]).
2. General theory. In the whole section we assume that H is a real separable Hilbert space, $K \in H$ a closed convex cone with its vertex at the origin, $A: H \longrightarrow H$ a completely continuous linear operator, $g: H \times \mathbb{R} \longrightarrow H$ a completely continuous operator and $\lambda \in \mathbb{R}$.

First we remind some properties of the set $\boldsymbol{\sigma}_{K}(A)$: The set $\boldsymbol{\sigma}_{K}(A)$ is bounded by $\neq A \|$. It can be easily shown that the set $\sigma_{K}^{+}(A)$ is closed in \mathbb{R}^{+}, nevertheless the set $\sigma_{K}^{-}(A)$ need not be closed in \mathbb{R}^{-}(see Example 1). Each positive bifurcation point of (2) belongs to $\sigma_{K}(A)$, if $\frac{g(u, \lambda)}{\|u\|} \rightarrow 0$ for $u \rightarrow 0$ (locally uniformly in λ). The set $\sigma_{K}(A)$ may contain an interval (see Example 3). If the operator A is symmetric and positive, the set $\sigma_{K}(A)$ is non-empty, it may contain a non-zero accumulation point (see [6]) and it may also consist of only one point, even for dim $H=+\infty$ (see [6]).

In what follows we shall deal only with $\boldsymbol{\lambda}>0$; this restriction is substantial in our method. The problem (1) can be rewritten as
$u \in K:\left\langle\frac{1}{\lambda}(A u+g(u, \lambda)+f)-u, v-u\right\rangle \leqslant 0 \quad \forall v \in K$. Using characterization of the projection P_{K} on the set K we get that our problem is equivalent to the problem
(4) $T u=0$,
where $T u=T(\lambda, f, g, A, K) u=u-P_{K}\left(\frac{1}{\lambda}(A u+g(u, \lambda)+f)\right)$.
Note that this rewriting can be made also for a general closed convex set K. If K is a cone with its vertex at 0 , then
$T u=u-\frac{1}{\lambda} P_{K}\left(A u+g(u, \lambda)+f_{m}\right)$.
We want to use Leray-Schauder degree in (4), so that we need some apriori estimates for solutions of the equation (4). Before we prove such estimates, let us introduce the following

Definition. Let $K, \tilde{K} \subset H$. We shall write $\Delta(K, \tilde{K}) \leqq \varepsilon$, if the following two conditions are fulfilled:
(5) $(\forall x \in K) \quad \operatorname{dist}(x, K) \leqslant \varepsilon \max (1,\|x\|)$
(6) $(\forall \tilde{x} \in \tilde{K}) \quad \operatorname{dist}(\tilde{x}, K) \leqslant \varepsilon \max (1, \mid \tilde{x} \|)$.

Lemma 1. Let $K C H$ be a closed convex cone with its vertex at 0 , let $\widetilde{K} \subset H$ be a closed convex set, $\Delta(K, \widetilde{K}) \leqslant \varepsilon$. Then $\left\|P_{K} u-P_{K} \tilde{u}\right\| \leqslant\left(\varepsilon+2 \sqrt{\varepsilon+\varepsilon^{2}}\right) \cdot \max (1,\|u\|+\varepsilon)$ for any $u \in H$.
(See [11].)
Lemma 2 (Apriori estimates). Let $I c \mathbb{R}^{+}-\sigma_{K}(A)$ be a compact interval, $\frac{g(u, \lambda)}{\|u\|} \rightarrow 0$ for $\|u\| \rightarrow \infty$ uniformly for $\lambda \in I$. Then for every $M>0$ there exist $\varepsilon, R>0$ such that for each $\lambda \in I$, $s, t \in\langle 0,1\rangle, f \in H,\|f\|<M$, and arbitrary closed convex set $\tilde{K} \subset H$ with $\Delta(K, \tilde{K}) \leq \varepsilon$ the following estimate is true:

$$
[(1-s) T(\lambda, f, t f, A, K)+s T(\lambda, f, t g, A, \tilde{K})] u=0 \Longrightarrow\|u\|<R .
$$

Proof. By a contradiction: suppose there exist $u_{n} \in H,\left\|u_{n}\right\| \rightarrow$ $\rightarrow \infty, \lambda_{n} \in I, s_{n}, t_{n} \in\langle 0,1\rangle,\left\|f_{n}\right\| M$, closed convex sets \widetilde{K}_{n}. with $\Delta\left(K, \tilde{K}_{n}\right) \leqslant \frac{1}{n}$ such that

$$
\left[\left(1-s_{n}\right) T\left(\lambda_{n}, f_{n}, t_{n} g, A, K\right)+s_{n} T\left(\lambda_{n}, f_{n}, t_{n} g, A, \tilde{K}_{n}\right)\right] u_{n}=0
$$

Using Lemma 1 we get
(7) $u_{n}=\frac{1}{\lambda_{n}} P_{K}\left(A u_{n}+t_{n} g\left(u_{n}, \lambda_{n}\right)+f_{n}\right)+r_{n}$, where $r_{n}=o\left(\left\|u_{n}\right\|\right)(n \rightarrow \infty)$.
We may suppose $w_{n}=\frac{u_{n}}{\| u_{n}} \rightarrow w, \quad \lambda_{n} \rightarrow \lambda \in I$. Dividing (7) by $\left\|u_{n}\right\|$ we get
(8) $\quad w_{n}=\frac{1}{\lambda_{n}} P_{K}\left(A w_{n}+\frac{t_{n} g\left(u_{n}, \lambda_{n}\right)}{\left\|u_{n}\right\|}+\frac{f_{n}}{\| u_{n} \pi}\right)+\frac{r_{n}}{\left\|u_{n}\right\|}$.

The right-hand side in (8) converges strongly to $\frac{1}{\lambda} P_{K} A W$, thus $w_{n} \longrightarrow w, w=\frac{1}{\lambda} P_{K} A w$ (i.e. $w \in K,\langle\lambda w-A w, v-w\rangle \geqslant 0 \quad \forall v \in K$). Since $\left\|w_{n}\right\|=1$, we have $w \neq 0$, thus $\lambda \in \sigma_{K}(A)$, which gives us a contra-

Corollary. Put $B_{R}=\{u \in H ;\|u\| R\}$. If $\lambda \in \mathbb{R}^{+}-\sigma_{K}(A)$, $\frac{g(u, \lambda)}{\|u\|} \rightarrow 0 \quad(\|u\| \rightarrow \infty), f \in H$ and $\Delta(K, \tilde{K}) \leqslant \varepsilon$, where ε is sufficiently small, then the Leray-Schauder degree $\operatorname{deg}\left(T(\lambda, f, g, A, \tilde{K}), 0, B_{R}\right)$ is well defined for R sufficiently large and this degree does not depend on λ, f, g, \tilde{K} in the following way: Let λ_{1}, λ_{2} belong to the same component of $R^{+}-\sigma_{K}(A), f \in H$, $\frac{g\left(u, \lambda_{1}\right)}{\|u\|} \rightarrow 0$ (for $\forall u \| \rightarrow \infty$) and $\Delta(K, \tilde{K}) \leq \varepsilon$, where ε is sufficiently small. Then (for sufficiently large R) we have $\operatorname{deg}\left(T\left(\lambda_{1}, f, g, A, \tilde{K}\right), 0, B_{R}\right)=\operatorname{deg}\left(T\left(\lambda_{2}, 0,0, A, K\right), 0, B_{R}\right)$.

Proof. The assertion is a consequence of homotopy-invariance property of Leray-Schauder degree.

Remark 1. If $\lambda \in \mathbb{R}^{+}-\sigma_{K}(A)$, then $d(\lambda)=\operatorname{deg}\left(T(\lambda, 0,0, A, K), 0, B_{R}\right)$ is well defined for any $R>0$ and does not depend on R.

Remark 2. In the sequel we shall deal only with the cone K, nevertheless, using Corollary of Lemma 2, many of our results can be proved for convex sets which are "close" to the cone K (e.g. if $d(\lambda) \neq 0$, then the problem (1) will have a solution also when we shift or turn the cone K a little bit). We shall write briefly $T(\lambda, f, g)$ instead of $T(\lambda, f, g, A, K)$.

Lemma 3 (On bifurcations). Let $\lambda^{1}, \lambda^{2} \in \mathbb{R}^{+}-\sigma_{K}(A), \lambda^{1}<\lambda^{2}$, $\frac{g\left(u, \lambda^{i}\right)}{\| u} \rightarrow 0($ for $u \rightarrow 0, i=1,2), g(0, \lambda)=0$ for $\lambda \in\left\langle\lambda^{1}, \lambda^{2}\right\rangle$, $d\left(\lambda^{2}\right) \neq d\left(\lambda^{2}\right)$. Then there exists a bifurcation point $\lambda_{0} \in\left\langle\lambda^{1}, \lambda^{2}\right\rangle$ of the variational inequality (2).

Proof. First we prove (by a contradiction) that the equation $T\left(\lambda^{j}, 0, t g\right) u=0$ does not have solution for $0 \neq u \in B_{\varepsilon}$ (ε suffi-
ciently small), $t \in\langle 0,1\rangle$ and $i=1,2$.
Suppose e.g. there exist $0 \neq u_{n} \longrightarrow 0$ and $t_{n} \in\langle 0,1\rangle$ such that $T\left(\lambda^{1}, 0, t_{n} g\right) u_{n}=0$, i.e. $u_{n}=\frac{1}{\lambda^{I}} P_{K}\left(A u_{n}+t_{n} g\left(u_{n}, \lambda^{l}\right)\right)$. Dividing this equation by $\left\|u_{n}\right\|$ and passing to the limit'(we may suppose $\frac{u_{n}}{\left\|u_{n}\right\|} \rightarrow w$) we get $\frac{u_{n}}{\left\|u_{n}\right\|} \rightarrow w=\frac{1}{\lambda^{I}} P_{K} A w$, which gives us a contradiction, since $\lambda^{1} \notin \sigma_{K}(A)$.

Now suppose that there is no bifurcation point $\lambda_{0} \in\left\langle\lambda^{1}, \lambda^{2}\right\rangle$. Then the equation $T(\lambda, 0, g)=0$ is not solvable for $\lambda \in\left\langle\lambda^{1}, \lambda^{2}\right\rangle$ in $B_{\varepsilon}-\{0\}$ for sufficiently small ε and using the homotopy-invariance property of Leray-Schauder degree we get

$$
\begin{aligned}
d\left(\lambda^{1}\right) & =\operatorname{deg}\left(T\left(\lambda^{1}, 0,0\right), 0, B_{\varepsilon}\right)=\operatorname{deg}\left(T\left(\lambda^{1}, 0, g\right), 0, B_{\varepsilon}\right)= \\
& =\operatorname{deg}\left(T\left(\lambda^{2}, 0, g\right), 0, B_{\varepsilon}\right)=\operatorname{deg}\left(T\left(\lambda^{2}, 0,0\right), 0, B_{\varepsilon}\right)=d\left(\lambda^{2}\right)
\end{aligned}
$$

a contradiction.

Theorem 1. Let $\lambda>\max \left(\sigma_{K}(A) \cup\{0\}\right)$. Then $d(\lambda)=1$.
Proof. Choose $\Lambda>\|A\|$. By Corollary of Lemma 2 we get $d(\lambda)=d(\Lambda)$. Using the homotopy-invariance property of LeraySchauder degree for the homotopy

$$
H(t, u)=u-\frac{t}{\Lambda} P_{K} A u
$$

we get
$d(\Lambda)=\operatorname{deg}\left(T(\Lambda, 0,0), 0, B_{R}\right)=\operatorname{deg}\left(I-\frac{1}{\Lambda} P_{K} A, 0, B_{R}\right)=\operatorname{deg}\left(I, 0, B_{R}\right)=1$ (we have $H(t, u) \neq 0$ for $u \in \partial B_{R}$, since $\left\|\frac{t}{\Lambda} P_{K} A u\right\|<\|u\|$ for $u \neq 0$).

Lemma 4. Let K be not a subspace of H (i.e. the linear hull span $K \neq K$) and let $\lambda<\inf _{\|\mu\|=1}\langle A u, u\rangle$. Then the variational inequality
(9) $u \in K:\langle\lambda u-A u-f, v-u\rangle \geqslant 0 \quad \forall v \in K$
does not have solution for suitable f.
Proof. First we shall prove that there exists $0 \neq u_{0} \in K$
such that $\left\langle u, u_{0}\right\rangle \geqq 0$ for any $u \in K$.

Choose $v_{0} \in \operatorname{span} K-K$. Using Hahn-Banach theorem for the convex sets K and $\left\{v_{0}\right\}$ in $\overline{\operatorname{span} K}$, we obtain an element $u_{1} \in \overline{\operatorname{span} K}, u_{1} \neq 0$, such that $\left\langle u, u_{1}\right\rangle \geqq 0$ for each $u \in K$. Using the characterization of the projection P_{K} we get that it is sufficient to put $u_{0}=P_{K} u_{1}$.

Now we shall prove that the inequality (9) does no.t have solution for $f=u_{0}$. Suppose there exists $u \in K$ such that
(10) $\left\langle\lambda u-A u-u_{0}, v-u\right\rangle \geqq 0 \quad \forall v \in K$.

Putting $v=0$ and $v=2 u$ we get $\left\langle\lambda u-A u-u_{0}, u\right\rangle=0$, so that
$\lambda\|u\|^{2}-\langle A u, u\rangle=\left\langle u_{0}, u\right\rangle \geqq 0$.
*Since $\lambda<\inf _{\|\mu\|=1}\langle A u, u\rangle$, we have $u=0$.
Putting $v=u_{0}$ in (10), we get now $-\left\langle u_{0}, u_{0}\right\rangle \geq 0$, which gives us a contradiction.

Corollary. Let $\operatorname{dim} H<\infty$, span $K \neq K, g(0, \lambda) \equiv 0, \frac{g(u, \lambda)}{\|u\|} \rightarrow$ $\rightarrow 0$ (for $u \longrightarrow 0$). Then there exists a bifurcation point of (2). Particularly, $\quad \sigma_{K}(A) \neq \emptyset$.

Proof. We may suppose $\inf _{\mu \|=\{ }\langle A u, u\rangle>0$ (instead of the mapping A we may consider the mapping $A+t I$, where $t>0$ is sufficiently large). Choose $\lambda^{1} \in\left(0, \|_{\| \| \|=1}^{\inf }\langle A u, u\rangle\right), \lambda^{2}>\|A\|$. By Lemma 4 we have $d\left(\lambda^{1}\right)=0$, by Theorem $1 \quad d\left(\lambda^{2}\right)=1$. Now it is sufficient to use Lemma 3 and notice that for dim $H<\infty$ each bifurcation point belongs to the set $\sigma_{K}(A)$.

Note that the condition $\frac{g(u, \lambda)}{\|u\|} \rightarrow 0$ (for $u \rightarrow 0$) is sufficient to be supposed for $\lambda=\lambda^{1}, \lambda^{2}$.

Lemma 5. Let $0 \neq u_{0} \in K, A^{*} u_{0}=\lambda_{0} u_{0}, \lambda_{0}>0$ (where A^{*} is the adjoint of A). Then the variational inequality
(11) $u \in K:\left\langle\lambda_{0} u-A u-u_{0}, v-u\right\rangle \geqq 0 \quad \forall v \in K$
does not have solution.
Proof (by a contradictinn) Putting $v=u+u o$ in (11), we get

$$
0 \leqq\left\langle\lambda_{0} u-A u-u_{0}, u_{0}\right\rangle=\left\langle u, \lambda_{0} u_{0}-A^{*} u_{0}\right\rangle=\left\|u_{0}\right\|^{2}=-\left\|u_{0}\right\|^{2},
$$

a contradiction.

Corollary. Let $0 \neq u_{0} \in K, A^{*} u_{0}=\lambda_{0} u_{0}, \lambda_{0} \in \mathbb{R}^{+}-\sigma_{K}(A)$, $\underbrace{}_{\| u h}(u, \lambda) \rightarrow 0$ for $u \rightarrow 0$. Then there exists a bifurcation point λ of (2) with $\lambda>\lambda_{0}$.

Proof. It is sufficient to use Lemma 5, Theorem 1 and Lemma 3 as in Corollary of Lemma 4.

Exarcise 1. Let $K \subset\left\{u \in H ;\left\langle u, u_{K}\right\rangle \geqq \varepsilon\|u\|\right\}$, where $\varepsilon>0$, $0 \neq u_{K} \subset H$, and let $\langle A u, u\rangle>0$ for $u \neq 0$. Prove that $\sigma_{K}(A) \neq 0$. Hint: Put $C=\left\{u \in K ;\left\langle u, u_{K}\right\rangle=1\right\}$ and

$$
S u=\frac{P_{K} A u}{\left\langle P_{K} A u, u_{K}\right\rangle} \text { for } u \in C .
$$

Then use Schauder fixed point theorem.

Main results of this section are the following two theorems and their corollaries.

Theorem 2. Let $\boldsymbol{\lambda}_{k}>0$ be a simple eigenvalue of the operator A, let the corresponding eigenvector $u_{k} \in K^{0}$, let $K \neq H$. The eigenspace $\operatorname{Ker}\left(\lambda_{k} I-A^{*}\right)$ is generated by a vector v_{k} and we assume $v_{k} \in K^{0}$, $\left\langle v_{k}, u_{k}\right\rangle>0$ (for A symmetric we put $v_{k}=u_{k}$). Then the following assertions hold:
(a) The eigenvalue $\boldsymbol{\lambda}_{k}$ is an isolated point of $\boldsymbol{\sigma}_{K}(A)$.
(b) Put $\lambda_{k}^{+}=\inf \left\{\lambda \in \operatorname{\beta }_{k}(A) ; \lambda>\lambda_{k}\right\}$. If $\lambda \in\left(\lambda_{k}, \lambda_{k}^{+}\right)$, then $d(\lambda)=(-1)^{\beta_{k}}$, where $\beta_{k}=\lambda \sum_{\lambda \rightarrow \lambda_{h}} \operatorname{dim}\left(\bigcup_{h=1}^{\infty} \operatorname{Ker}(\lambda I-A)^{p}\right)$.
(c) Put $\lambda_{k}^{-}=\sup \left(\left\{\lambda \in \sigma_{K}(A) ; \lambda<\lambda_{k}\right\} \cup\{0\}\right.$.

If $\lambda \in\left(\lambda_{k}^{-}, \lambda_{k}\right)$, then $d(\lambda)=0$.
For $\lambda<\lambda_{k}$ sufficiently close to λ_{k}, the inequality
(12) $u \in K:\left\langle\lambda u-A u-v_{k}, v-u\right\rangle \geqq 0 \quad \forall v \in K$ does not have solution.

Proof. (a) Suppose there exist $\lambda^{n} \in \sigma_{k}^{+}(A)-\left\{\lambda_{k}\right\}, \lambda^{n} \rightarrow$ $\rightarrow \lambda_{k}$. Then there exist $u^{n} \in K,\left\|u^{n}\right\|=1$, such that
$\left\langle\lambda^{n} u^{n}-A u^{n}, v-u^{n}\right\rangle \geqq 0 \quad \forall v \in K$, or equivalently
(13) $u^{n}=\frac{1}{\lambda^{n}} P_{K} A u^{n}$.

Since λ_{k} is an isolated point of $\sigma(A)$ (the spectrum of the operator A), we have $\lambda^{n} u^{n} \neq A u^{n}$ for $n \geqq n_{0}$; thus $u^{n} \in \partial K$ for $n \geqq n_{0}$. We may suppose $u^{n} \rightarrow w$. Passing to the limit in (13) we get

$$
w=\frac{1}{\lambda_{k}} P_{K} A w, \quad u^{n} \rightarrow w \in \partial K
$$

Thus
(14) $0 \neq w \in \partial K,\left\langle\lambda_{k} w-A w, v-w\right\rangle \geqq 0 \quad \forall v \in K$.

Choose $z \in H$. Then $v_{k}+t z \in K$ for sufficiently small $t>0$ and puttin $v=w+v_{k}+t z$ in (14) we get
$0 \leqslant t\left\langle\lambda_{k} w-A w, z\right\rangle+\left\langle w, \lambda_{k} v_{k}-A^{*} v_{k}\right\rangle=t\left\langle\lambda_{k} w-A w, z\right\rangle$,
thus $\lambda_{k} w=A w$, which gives us a contradiction, since $u_{k} \in K^{0}$ and $\boldsymbol{\lambda}_{k}$ is a simple eigenvalue of A.
(b) Let $\lambda>\lambda_{k}, \lambda \notin \sigma_{K}(\dot{A}) \cup \sigma(A)$. Then u_{k} is a regular solution of the equation $T u \equiv T\left(\lambda,\left(\lambda-\lambda_{k}\right) u_{k}, 0\right) u=0$, i, e. the mapping T is of the class C^{1} in the neighbourhood of u_{k} and the Frechet derivative $T^{\prime}\left(U_{k}\right)=I-\frac{1}{\lambda} A$ is an isomorphism. Thus for sufficiently large $R>0$ and sufficiently small $\varepsilon>0$ we get (using Leray-Schauder index of isolated solution)

$$
\begin{aligned}
d(\lambda) & =\operatorname{deg}\left(T, 0, B_{R}-\overline{B_{\varepsilon}\left(u_{k}\right)}\right)+\operatorname{deg}\left(T, 0, B_{\varepsilon}\left(u_{k}\right)\right)= \\
& =\operatorname{deg}\left(T, 0, B_{R}-\overline{B_{\varepsilon}\left(u_{k}\right)}\right)+(-1)^{\beta_{k}} .
\end{aligned}
$$

Since $d(\boldsymbol{\lambda})$ is constant on $\left(\lambda_{k}, \lambda_{k}^{+}\right)$, it is sufficient to prove that $\operatorname{deg}\left(T, 0, B_{R}-\overline{B_{\varepsilon}\left(U_{k}\right)}\right)=0$ for λ sufficiently close to λ_{k} ($\lambda>\lambda_{k}$). We shall prove (by contradiction) that for λ suf-
ficiently close to $\lambda_{k}\left(\boldsymbol{\lambda}>\boldsymbol{\lambda}_{k}\right)$, the equation $T u=0$ does not have solution different from u_{k}.
Suppose that for $\lambda^{n} \searrow \lambda_{k}\left(\lambda^{n} \neq \lambda_{k}\right)$ there exist $u^{n} \neq u_{k}$ such that
(15) $T\left(\lambda^{n},\left(\lambda^{n}-\lambda_{k}\right) u_{k}, 0\right) u^{n}=0$,
i.e.
(16) $u_{k} \neq u^{n} \in K,\left\langle\lambda^{n} u^{n}-A u^{n}-\left(\lambda^{n}-\lambda_{k}\right) u_{k}, v-u^{n}\right\rangle \geqq 0 \quad \forall v \in K$.

Since ($\lambda^{n} I-A$) is an isomorphism for $n \geqq n_{0}$ and $u=u_{k}$ is the
solution of the equation $\left(\lambda^{n} I-A\right) u=\left(\lambda^{n}-\lambda_{k}\right) u_{k}$, the vector $u^{\bar{n}}$ cannot solve this equation and thus $u^{n} \in \partial K$ (each solution $u \in K^{0}$ of the inequality (9) is also a solution of the corresponding equation $\lambda_{u-A u}=f$).
Putting $v=u^{n}+v_{k}$ in (16) we get

$$
\begin{aligned}
0 & \leqq\left\langle\lambda^{n} u^{n}-A u^{n}, v_{k}\right\rangle-\left(\lambda^{n}-\lambda_{k}\right)\left\langle u_{k}, v_{k}\right\rangle= \\
& =\left\langle u^{n}, \lambda^{n} v_{k}-A^{*} v_{k}\right\rangle-\left(\lambda^{n}-\lambda_{k}\right)\left\langle u_{k}, v_{k}\right\rangle= \\
& =\left(\lambda^{n}-\lambda_{k}\right)\left(\left\langle u^{n}, v_{k}\right\rangle-\left\langle u_{k}, v_{k}\right\rangle\right) .
\end{aligned}
$$

Hence
(17) $\left\langle u^{n}, v_{k}\right\rangle \geqq\left\langle u_{k}, v_{k}\right\rangle>0$.

Dividing (15) by $\left\|u^{n}\right\|$ we get

$$
\begin{equation*}
\frac{u^{n}}{\| u^{n} \dot{H}}=\frac{1}{\lambda^{n}} P_{k}\left(A \frac{u^{n}}{\|_{u^{n} \|}}+\frac{\lambda^{n}-\lambda_{k}}{\left\|u^{n}\right\|} u_{k}\right) . \tag{18}
\end{equation*}
$$

We may suppose $\frac{u^{n}}{\left\|u^{n}\right\|} \rightarrow w$, from (17) it follows $\frac{\lambda^{n}-\lambda_{k}}{\left\|u^{n}\right\|} \rightarrow 0$.
Passing to the limit in (18) we get
$w=\frac{1}{\lambda_{k}} P_{K} A w, \quad 0 \neq w \in \partial K$,
which gives us a contradiction as in the proof of (a).
(c) It is sufficient to prove that for $\lambda_{<} \lambda_{k}$, close to λ_{k}, the inequality (12) does not have solution.
Suppose the contrary. Then there exist $\lambda^{n} \nrightarrow \lambda_{k}\left(\lambda^{n} \neq \lambda_{k}\right)$ and
u^{n} such that
(19) $\quad u^{n}=\frac{1}{\lambda^{n}} P_{K}\left(A u^{n}+v_{k}\right)$,
or, equivalently,
(20) $u^{n} \in K,\left\langle\lambda^{n} u^{n}-A u^{n}-v_{k}, v-u^{n}\right\rangle \geqslant 0 \quad \forall v \in K$.

Putting $v=u^{n}+v_{k}$ in (20) we get

$$
\begin{aligned}
0 & \leqq\left\langle\lambda^{n} u^{n}-A u^{n}-v_{k}, v_{k}\right\rangle=\left\langle u^{n}, \lambda^{n} v_{k}-A^{*} v_{k}\right\rangle-\left\langle v_{k}, v_{k}\right\rangle= \\
& =\left(\lambda^{n}-\lambda_{k}\right)\left\langle u^{n}, v_{k}\right\rangle-\left\langle v_{k}, v_{k}\right\rangle
\end{aligned}
$$

Thus
(21) $\left\langle u^{n}, v_{k}\right\rangle=-\frac{1}{\lambda_{k}-\lambda^{n}}\left\|v_{k}\right\| 2 \rightarrow-\infty$.

Hence $\left\|u^{n}\right\| \rightarrow \infty$ and we may suppose $\frac{u^{n}}{\left\|u^{n}\right\|} \rightarrow w$. Passing to the limit in (19) we get $w=\frac{1}{\lambda_{k}} P_{K} A w,\|w\|=1$; using (21) we get $\left\langle w, v_{k}\right\rangle \leqq 0$.
Since u_{k} is the only (normalized) solution of the equation $\lambda_{k} u=$ $=A u$ lying in K and $\left\langle u_{k}, v_{k}\right\rangle>0$, we have $w \in \partial K$. This gives us a contradiction as in the proof of (a).

In the following theorem we shall use notation from theorem 2. The proof of Theorem 3 is very similar to the proof of theorem 2, so that we shall just sketch it.

Theorem 3. Let $K \neq H$, let $\lambda_{k}>0$ be a simple eigenvalue of the operators A, A^{*}, let the corresponding eigenvectors $u_{k}, v_{k} \in K^{0}$ and $\left\langle u_{k}, v_{k}\right\rangle<0$. Then the following assertions hold:
(a) The eigenvalue λ_{k} is an isolated point of $\sigma_{K}(A)$.
(b) If $\lambda \in\left(\lambda_{k}, \lambda_{k}\right)$, then $d(\lambda)=0$.

For $\lambda>\lambda_{k}$ sufficiently close to λ_{k} the inequality (12) does not have solution.
(c) If $\lambda \in\left(\lambda_{k}^{-}, \lambda_{k}\right)$, then $d(\lambda)=(-1)^{\gamma_{k}}$,
where $\gamma_{k}=\sum_{\lambda \leq \lambda_{k}} \operatorname{dim}\left(\bigcup_{p=1}^{\infty} \operatorname{Ker}(\lambda I-A)^{p}\right)$.
Sketch of the proof.
(a) The proof is the same as in theorem 2.
(b) Suppose there exist $\lambda^{n} \searrow \lambda_{k}\left(\lambda^{n} \neq \lambda_{k}\right)$ and $u^{n} \in K$ such that
(22) $u^{n}=\frac{1}{\lambda^{n}} P_{k}\left(A u^{n}+v_{k}\right)$.

Putting $v=u^{n}+v_{k}$ in the variational inequality corresponding to (22) we get $\left(\lambda^{n}-\lambda_{k}\right)\left\langle u^{n}, v_{k}\right\rangle \geqq\left\|v_{k}\right\|^{2}$, hence $\left\|u^{n}\right\| \rightarrow \infty$ and $\left\langle w, v_{k}\right\rangle \geqq 0$ (where we suppose $\frac{u^{n}}{\left\|u^{n}\right\|}-w$).
Passing to the limit in (22) we get $\|w\|=1, w=\frac{1}{\lambda_{k}} P_{K} A_{w}$, which gives us a contradiction as in the proof of Theorem 2(c).
(c) For $\lambda<\lambda_{k}$ (close to λ_{k}) we have $d(\lambda)=\operatorname{deg}\left(T\left(\lambda,\left(\lambda-\lambda_{k}\right) u_{k}, 0\right), 0, B_{R}-\overline{\theta_{\varepsilon}\left(u_{k}\right)}\right)+(-1)^{\gamma_{k}}$.

Suppose there exist $\lambda^{n} \not \lambda_{k}\left(\lambda^{n} \neq \lambda_{k}\right)$ and $u^{n} \in \partial K$ such that
(23) $u^{n}=\frac{1}{\lambda^{n}} P_{k}\left(A u^{n}+\left(\lambda^{n}-\lambda_{k}\right) u_{k}\right)$.

Putting $v=u^{n}+v_{k}$ in the corresponding variational inequality we get $\left\langle u^{n}, v_{k}\right\rangle \leqslant\left\langle u_{k}, v_{k}\right\rangle\langle 0$. Passing to the limit in (23) we obtain $w=\frac{1}{\lambda_{k}} P_{K} A^{w}$, where $0+w \in \partial K\left(w=\lim \frac{u^{n}}{\left\|u^{n}\right\|}\right)$, which gives us a contradiction.

Corollary. Let λ_{i}, λ_{j} be simple positive eigenvalues of
the operators. $A, A^{*}\left(\lambda_{i}<\lambda_{j}\right)$, let the corresponding eigenvectors $\left.u_{i}, v_{i}, u_{j}, v_{j} \in K^{0},\left\langle u_{i}, v_{i}\right\rangle \cdot\left\langle u_{j}, v_{j}\right\rangle\right\rangle 0$. Let $g(0, \lambda)=0$, $\frac{g(u, \lambda)}{\|u\|} \rightarrow 0\left(\right.$ for $\left.u \rightarrow 0, \lambda \in\left(\lambda_{i}, \lambda_{j}\right)\right)$. Then there exists a bifurcation point $\lambda \in\left(\lambda_{i}, \lambda_{j}\right)$ for the variational equality (2).

Proof. Using Theorems 2, 3, we get $d\left(\lambda^{1}\right) \neq d\left(\lambda^{2}\right)$ for
suitable $\lambda_{i}<\lambda^{1}<\lambda^{2}<\lambda_{j}$. Now it is sufficient to use Lemma 3 .
Remark 3. Some of the assertions of Theorems 2, 3 can be proved (in the same way) also under weaker assumptions, e.g. the following assertion is true:

Proposition 1. Let $\lambda_{k}>0$ be an eigenvalue of the operator A, let $v_{k} \in \operatorname{Ker}\left(\lambda_{k} I-A^{*}\right) \cap K^{0}$. Suppose $\left\langle v_{k}, u\right\rangle>0$ for any $u \in \operatorname{Ker}\left(\lambda_{k} I-A\right) \cap K, u \neq 0$. Then $\lambda_{k}^{-}<\lambda_{k}, d(\lambda)=0$ for $\lambda \in\left(\lambda_{k}^{-}, \lambda_{k}\right)$ and for $\lambda<\lambda_{k}$ close to λ_{k}, the inequality (12) does not have solution.

Open problem 1. Let $\lambda \in \mathbb{R}^{+}-\sigma_{K}(A), d(\lambda)=0$. Find some general assumptions under which there necessarily exists $f \in H$ such that the inequality (9) is not solvable. Very special assumptions of this type are given in Exercise 2.

The connection between the Leray-Schauder degree and the number of solutions of a similar problem is studied e.g. in $[8,9,10]$.

Open problem 2. Let λ^{1}, λ^{2} belong to the same component of $\mathbb{R}^{+}-\sigma_{K}(A)$, let there exist $f^{1} \in H$ such that the inequality (9) does not have solution for $\lambda=\lambda^{1}, f=f^{1}$. Does there necessarily exist a right-hand side f^{2} such that the inequality (9) does: not have solution for $\lambda=\lambda^{2}, f=f^{2}$? A partial answer to this question is given in the following

Lemma 6. The set

$X=\left\{\lambda \in \mathbb{R}^{+}-\sigma_{K}(A)\right.$; (9) is solvable for any $\left.f \in H\right\}$
is rlosed in $\mathbb{R}^{+}-\sigma_{K}(A)$.
Proof. Let $\lambda^{n} \rightarrow \lambda$ in $\mathbb{R}^{+}-\sigma_{K}(A)$, let $\lambda^{n} \in X, f \in H$. We shall find a solution of (9). Since $\lambda^{n} \in X$, there exist $u^{n} e H$ such that

$$
\begin{equation*}
u^{n}=\frac{1}{\lambda^{n}} P_{K}\left(A u^{n}+f\right) \tag{24}
\end{equation*}
$$

Suppose $\left\|u^{n}\right\| \rightarrow \infty$. Then passing to the limit in (24) divided by $\left\|u^{n}\right\|$ we get $w=\frac{1}{\lambda} P_{K} A w$, where $w=\lim \frac{u^{n}}{\left\|u^{n}\right\|}$, which gives us a contradiction with $\lambda \notin \boldsymbol{\sigma}_{K}(A)$. Thus we may suppose $u^{n} \rightarrow u_{0}$ and passing to the limit in (24) we get $u_{0}=\frac{1}{\lambda} P_{K}\left(A u_{0}+f\right)$, hence u_{0} is the solution of (9).

Remark 4. If $\lambda>\max \left(\sigma_{K}(A) \cup\{0\}\right.$), then $d(\lambda)=1$ (according to Theorem 1)-and thus the inequality (9) is solvable for any $f \in H$. One can easily prove that for $\lambda>\max _{\|u\| j 1}\langle A u, u\rangle$ the solution is unique (the operator $\lambda I-A$ is strictly monotone). Nevertheless, for $\lambda<\max _{\mu \| \leq 1}\langle A u, u\rangle$ we may lose the uniqueness: Suppose e.g. A is symmetric and positive, let λ_{1} be the first eigenvalue of the operator A, let its multiplicity be odd and $\operatorname{Ker}\left(\lambda_{1} I-A\right) \cap K=\{0\}$. Choose $\lambda \in\left(0, \lambda_{1}\right)$ such that $\lambda>\max \sigma_{K}(A)=$ $=\max _{\psi \in K}\langle A u, u\rangle$ and $\lambda>\max \left(\sigma(A)-\left\{\lambda_{1}\right\}\right)$. Choose $u_{0} \in K^{0}$ and put $\|_{\mu \|}^{\boldsymbol{L}} \boldsymbol{6}=1$
$f=(\lambda I-A) u_{0}$. Then

$$
\begin{aligned}
1 & =d(\lambda)=\operatorname{deg}\left(T(\lambda, f, 0), 0, B_{R}\right)= \\
& =\operatorname{deg}\left(T(\lambda, f, 0), 0, B_{\varepsilon}\left(u_{0}\right)\right)+\operatorname{deg}\left(T(\lambda, f, 0), 0, B_{R}-\overline{B_{\varepsilon}\left(u_{0}\right)}\right)= \\
& =-1+\operatorname{deg}\left(T(\lambda, f, 0), 0, B_{R}-\overline{B_{\varepsilon}\left(u_{0}\right)}\right)
\end{aligned}
$$

thus there exists a solution of (9) in $B_{R}-\overline{B_{\delta}\left(u_{0}\right)}$, i.e. the inequality (9) has at least two solutions.

Remark 5. The results of E. Miersemann on higher eigenvalues and bifurcation points are (in the symmetric case) stronger than Corollary of Theorem 2. As a corollary of his results (see [5]) we obtain the following

Proposition 2. Let A be symmetric, let $\lambda_{k}>\lambda_{k+1}>0$ be two consecutive eigenvalues of A, let $\operatorname{Ker}\left(\lambda_{k+1} I-A\right) \cap K^{0} \neq \emptyset$,
$\operatorname{Ker}\left(\lambda_{k} I-A\right) \not \& K$. Then there exists $\lambda \in \sigma_{K}(A) \cap\left(\lambda_{k+1}, \lambda_{k}\right)$. If the assumption $\operatorname{Ker}\left(\lambda_{k} I-A\right) \not \ddagger K$ fails, we can use the following

Lemma 7. Let A be symmetric, let $\lambda_{k-p}>\lambda_{k-p+1} \geqq \ldots$ $\ldots \geqq \lambda_{k}>\lambda_{k+1}>0$ be consecutive eigenvalues of A, let
 $\operatorname{Ker}\left(\lambda_{k-p} I-A\right) \notin K$.
Then there exists an eigenvalue $\lambda \in \sigma_{K}(A) \cap\left(\lambda_{k+1}, \lambda_{k-p}\right)$ with an eigenvector $w \in V^{1}$.

Proof. Put $\tilde{H}=V^{\perp}, \tilde{K}=\tilde{H} \cap K, \tilde{A}=A / \tilde{H}$. Then we can use Proposition 2 for $\tilde{H}, \tilde{K}, \tilde{A}$ to obtain an eigenvalue $\lambda \in \sigma_{\tilde{K}}(\tilde{A})$ with an eigenvector $w \in \widetilde{K}$. Denote $P: H \longrightarrow \tilde{H}$ the orthogonal projection of H onto \tilde{H}. Choose $v \in K$. Then $P v \in \tilde{K}$, hence $\langle\lambda w-A w, v-w\rangle=$ $=\left\langle\lambda_{w}-\tilde{A}_{w}, v-w\right\rangle=\left\langle\lambda_{w}-\tilde{A}_{w}, P v-w\right\rangle \cong 0$.

Note that analogous results to Proposition 2 and Lemma 7 hold also for the existence of bifurcation points of the corresponding non linear problems.
3. Special cones. We shall assume all general assumptions from Section 2 and, moreover, we shall suppose $K=\left\{u \in H ;\left\langle u, w_{i}\right\rangle \geqq\right.$ $\geqq 0, i=1, \ldots, n\}$, where $w_{i} \neq 0(i=1, \ldots, n)$.

Lemma 8. Let $K=\left\{u \in H ;\left\langle u, w_{1}\right\rangle \geqq 0\right\}, w_{1} \neq 0$, let $\lambda \notin \sigma(A)$. Put $F(\lambda)=\left\langle R(\lambda, A) w_{1}, w_{1}\right\rangle$, where $R(\lambda, A)=(\lambda I-A)^{-1}$. Then
(i) the inequality (9) is (uniquely) solvable for any $f \in H$ iff $F(\lambda)>0$;
(ii) $\lambda \in \sigma_{K}(A)$ iff $F(\lambda)=0$.

Proof. Denote $R(\lambda, A) w_{1}=u_{1}$. Obviously, an element $u \in K$ is the solution of (9) iff $\lambda u-A u-f=t w_{1}$, or, equivalently, $u=R(\lambda, A) f+t u_{1}$, where $\left(u \in K^{0}\right.$ and $t=0$) or ($u \in \partial K$ and $t \geqq 0$).

Suppose $F(\lambda)>0$, i.e. $u_{1} \in K^{0}$. Choose $f \in H$. If $R(\lambda, A) f \in K$, it is sufficient (and necessary) to put $u=R(\lambda, A) f$; if $R(\lambda, A) f \notin K$, we put $u=R(\lambda, A) f+t u_{1}$, where $t=-\frac{\left\langle R(\lambda, A) f, w_{1}\right\rangle}{\left\langle u_{1}, W_{1}\right\rangle}$.

Suppose $F(\lambda)=0$. Then $u_{1} \in \partial k, \lambda u_{1}-A u_{1}=w_{1}$, i.e. u_{1} is an eigenvector corresponding to $\lambda \in \sigma_{K}(A)$.
Obviously $\lambda \in \sigma_{K}(A)-\sigma(A)$ implies $F(\lambda)=0$.
If $F(\lambda)<0$, then for $R(\lambda, A) f \in K^{0}$ we have two solutions $\left(u^{1}=R(\lambda, A) f, u^{2}=R(\lambda, A) f+t u_{1}\right.$, where $\left.\left.t=-\frac{\left\langle R(\lambda, A) f, w_{1}\right\rangle}{\left\langle u_{1}, w_{1}\right\rangle}\right\rangle 0\right)$, for $R(\lambda, A) f \in \partial K$ we obtain the unique solution $u=R(\lambda, A) f$ and for $R(\lambda, A) f \notin K$, the inequality (9) is not solvable.

Lemma 9. Let the assumptions of Lemma 8 be fulfilled. Then the function $F(\lambda)$ is real-analytic. If, moreover, A is symmetric, then $F(\lambda)$ is strictly decreasing on each component of the set $\mathbb{R}-\sigma(A)$.

Proof. The analyticity of $F(\lambda)$ is obvious.
Let A be symmetric. Using the resolvent identity we get
$F^{\prime}(\lambda)=-\left\langle R^{2}(\lambda, A) w_{1}, w_{1}\right\rangle=-\left\|R(\lambda, A) w_{1}\right\|^{2}<0$.

Lemma 10. Let the assumptions of Lemma 8 be fulfilled, let A be symmetric, $0 \neq \lambda_{k} \in \sigma(A), \operatorname{Ker}\left(\lambda_{k} I-A\right) \subset \partial K$. Then the function $F(\lambda)$ has a removable singularity in $\lambda=\lambda_{k}$.

Proof. Denote P the orthogonal projection of H onto $\tilde{H}=\left(\operatorname{Ker}\left(\lambda_{k} I-A\right)\right)^{\perp}$, put $\tilde{A}=A / \tilde{H}$. Then $w_{1} \in \tilde{H}, A(\tilde{H}) \subset \tilde{H}$, thus $R(\lambda, A) w_{1}=R(\lambda, \tilde{A}) w_{1}$ and $F(\lambda)=\tilde{F}(\lambda)$ for $\lambda \not \sigma(A)$, where $\tilde{F}(\lambda)=$ $=\left\langle R(\lambda, \lambda) w_{1}, w_{1}\right\rangle$ is real-analytic on $\mathbb{R}-\sigma(\tilde{A})$.

Theorem 4. Дet K be a halfspace, $K=\left\{u \in H ;\left\langle u, w_{1}\right\rangle \geqslant 0\right\}$, let A be symmetric.
(i) Let $\lambda_{k-p}>\lambda_{k-p+1} \geqq \ldots \geqq \lambda_{k}>\lambda_{k+1}>0$ be consecutive eigenvalues of the operator $A(0 \leqq p<k)$, let $\operatorname{Ker}\left(\lambda_{i} I-A\right) \subset K$ for $i=k-p+1, \ldots, k$ and $\operatorname{Ker}\left(\lambda_{i} I-A\right) \cap k^{0} \neq 0$ for $i=k-p, k+1$. Then the re exists the unique $\lambda_{0} \in\left(\lambda_{k+1}, \lambda_{k-p}\right) \cap \sigma_{k}(A)$ for which there exists an eigenvector u_{0} (of the variational inequality (3)) such that u_{0} is not solution of the equation $\lambda_{0} u-A u-0$. Moreover, we can choose $u_{0} \perp{ }_{i=k-\uparrow+1}^{\stackrel{k}{\oplus}} \operatorname{Ker}\left(\lambda_{i} I-A\right)$. For $\lambda_{\in}\left(\lambda_{k+1}, \lambda_{0}\right)-\sigma(A)$ the inequality (9) has the unique solution for any $f \in H$; for $\lambda \in\left(\lambda_{0}, \lambda_{k-p}\right)-\sigma(A)$ the inequality (9) has 0,1 or 2 solutions (more precisely see the proof of Lemma 8).
(ii) Let $\lambda_{1} \geqq \ldots \geqq \lambda_{k-1}>\lambda_{k}>0$ be consecutive eigenvalues of the operator $A, \lambda_{1}=\max _{\|\mu\| \leq 1}\langle A u, u\rangle$. Let $\operatorname{Ker}\left(\lambda_{i} I-A\right) \subset K$ for $i=$ $=1, \ldots, k-1$ and $\operatorname{Ker}\left(\lambda_{k} I-A\right) \cap K^{0} \neq \emptyset$. Then $\sigma_{K}(A) \cap\left(\lambda_{k},+\infty\right) \subset \sigma(A)$ and each eigenvector of the inequality (3) with $\lambda_{0}>\lambda_{k}$ is simultaneously the eigenvector of the operator A. For $\lambda>\lambda_{k}, \lambda \notin \sigma(A)$ the inequality (9) has the unique solution for any $f \in H$.

Proof. Theorem 4 is a corollary of Lemmas 7, $8,9,10$ and Theorem 1.

In what follows we shall suppose $K=\left\{u \in H ;\left\langle u, w_{i}\right\rangle \geq 0\right.$ for $i=$ $=1, \ldots, n\}$, where $w_{i} \neq 0(i=1, \ldots, n)$. Denote $N=\{1,2, \ldots, n\}$ and for $M \subset N$ denote

$$
\begin{aligned}
& K_{M}=\left\{u \in K ;\left\langle u, w_{i}\right\rangle=0 \text { for } i \in M,\left\langle u, w_{i}\right\rangle>0 \text { for } i \in N-M\right\}, \\
& H_{M}=\left\{w_{i} ; i \in M\right\}^{\perp}, \\
& P^{M}: H \rightarrow H_{M} \text { the orthogonal projection of } H \text { onto } H_{M}, \\
& A_{M}=P^{M} A / H_{M}, \quad \Sigma=\bigcup_{M \subset N}^{U} \sigma\left(A_{M}\right) .
\end{aligned}
$$

Obviously $K=\bigcup_{M} \subset N K_{M}$, where, the union is disjoint.

Lemma 11. Let $u \in K_{m},\langle\lambda u-w, v-u\rangle \geqq 0 \quad \forall v \in K$. Then $\lambda u=$ $=P^{M_{w}}$. Particularly, if $P_{K} w \in K_{M}$, then $P_{K} w=P^{M_{w}}$.

Proof. Putting $v=u+z$, where $z \in H_{M}$ is arbitrary (but small), we get $P^{M}\left(\lambda_{u-w}\right)=0$, i.e. $\quad \lambda_{u}=P^{M} w$. If $P_{K} w \in K_{M}$, put $u=P_{K} w, \lambda^{\prime}=1$.

Lemma 12. The set $\sigma_{K}(A)-\{0\}$ is isolated in $\mathbb{R}-\{0\}$.
Proof. Suppose $\lambda \in \sigma_{K}(A)$, i.e. there exists $0 \neq u \in K_{M}$ (for suitable $M \subset N$) such that $\langle\lambda u-A u, v-u\rangle \geqq 0 \quad \forall v \in K$. According to Lemma $11, \lambda_{u}=P^{M} A u=A_{M} u$, hence $\lambda \in \sigma\left(A_{M}\right) \subset \Sigma$. Consequently $\sigma_{K}(A) \subset \Sigma$ and now it is sufficient to notice that the set $\Sigma-\{0\}$ is isolated in $\mathbb{R}-\{0\}$.

Lemma 13. Let $\lambda \in \mathbb{R}-\Sigma, f \in H, M \subset N$. Then there exists at most one solution of (9) in K_{M}. Consequently, the number of solutions of (9) is bounded by 2^{n}.

Proof. Let $u^{1}, u^{2} \in K_{M}$ be solutions of (9). Using Lemma 11 we get $\lambda u^{i}=P^{M}\left(A u^{i}+f\right)$, i.e. $\lambda u^{i}-A_{M} u^{i}=P^{M_{f}}(i=1,2)$. Since $\lambda \notin \sigma\left(A_{M}\right)$, we have $u^{1}=u^{2}$.

Definition. Let $\lambda>0, T(\lambda, f, 0) u=0$. We shall say that u is a singular solution of the equation $T u=0$, if either T is not differentiable in any neighbourhood of u or $T^{\prime}(u)$ is not isomorphism.

Lemma 14. Let $\lambda>0$. Then $\{f \in H ;(\exists u) T(\lambda, f, 0) u=0$ and u is singular\}e S, where S is a finite union of subspaces of codim $\geqq 1$ (in H).

Proof. Suppose $T(\lambda, f, 0) u=0$, u singular, $u \in K_{M}$. According to Lemma $11 \quad \lambda u=P_{K}(A u+f)=P^{M}(A u+f)$.
(i) Let there exist $v_{n} \rightarrow u$ such that $P_{K}\left(A v_{n}+f\right) \neq P^{M}\left(A v_{n}+f\right)$.

Then (by Lemma 11), $P_{K}\left(A v_{n}+f\right) \notin K_{M}$ and we may suppose $P_{K}\left(A v_{n}+f\right) \in$ $\in K_{L}$, where $L \subset N$ is fixed, $L \neq M$. Since $P_{K}\left(A v_{n}+f\right) \longrightarrow P_{K}(A u+f)=$ $=\lambda u \in K_{M}$, we get $L \subset M$. Moreover, for any $i \in M-L$ the corresponding vector w_{i} does not belong to the linear hull of the set $\left\{w_{j}\right\}_{j \in L}$ (since $\left.K_{L} \neq \emptyset\right)$. Consequently $H_{M} \not \subset H_{L}$. Since $P L\left(A v_{n}+f\right)=$ $=P_{K}\left(A v_{n}+f\right) \longrightarrow P_{K}(A u+f)=\lambda u$ and $P^{L}\left(A v_{n}+f\right) \longrightarrow P^{L}(A u+f)$, we have $\lambda_{u}=P^{L}(A u+f), P^{L}(\lambda u-A u-f)=0$,

$$
f \in H_{M}^{L} \equiv(\lambda I-A) H_{M}+H_{L}^{\perp},
$$

where H_{M}^{L} is a subspace of codim $\geqq 1$.
(ii) Let the assumption of (i) fail, i.e. $P_{K}(A v+f)=$. $=P^{M}(A v+f)$ for all v sufficiently close to u. Then $T v=v-$ $-\frac{1}{\lambda} P_{K}(A v+f)=v-\frac{1}{\lambda} P^{M}(A v+f)$, thus T is differentiable at u. Since u is singular, the mapping $T^{\prime}(u)=I-\frac{1}{\lambda} P^{M} A$ is not isomorphism, i.e. $\lambda \in \sigma\left(A_{M}\right)$. Thus the range R_{M} of the operator $\lambda I-A_{M}$ has codim $\geqq 1$ in H_{M} and from $P^{M}(\lambda u-A u-f)=0$ it follows

$$
f \in R_{M}+H_{M}^{\perp}
$$

Obviously it is sufficient to put $S=\left(\underset{H_{M}}{\bigcup_{\models} H_{L}} H_{M}^{L}\right) \cup\left(\underset{\lambda \in \sigma\left(A_{M i}\right)}{\cup}\left(R_{M}+H_{M}^{1}\right)\right)$.
Theorem 5. Let $\lambda \in \mathbb{R}^{+}-\sigma_{K}(A), f \notin S=S(\lambda)$ (see Lemma 14). Then the number of solutions of the inequality (9) is finite (bounded by 2^{n}), locally constant (with respect to $\lambda \in \mathbb{R}^{+}-\sigma_{K}(A)$ and $f \in H-S(\lambda)$) and odd resp. even if $d(\lambda)$ is odd resp. even. All these solutions depend analytically on f and λ. If $\lambda \in \mathbb{R}-\Sigma$, then the number of solutions of (9) has an upper bound 2^{n} for any $f \in H$.

Proof. For $f \notin S$ each solution u of (9) is regular and is unique in K_{M} for any $M \subseteq N$ (see the proof of Lemma 13 and the definition of the set S). Using well-known properties of LeraySchauder degree one can easilv orove that the parity of the
number of solutions of (9) depends only on the parity of $d(\boldsymbol{\lambda})$. Using implicit function theorem we get analytical dependence of solutions of (9) on f and λ. Moreover, if $T(\lambda, f, 0)^{-1}(0)=$ $=\left\{u^{1}, \ldots, u^{p}\right\}$ and $\varepsilon>0$ is sufficiently small, then $\operatorname{card}\left(T(\tilde{\lambda}, \tilde{f}, 0)^{-1}(0) \cap B_{\varepsilon}\left(u^{i}\right)\right)=1$ for any $i=1, \ldots, p$ and $(\tilde{\lambda}, \tilde{f})$ sufficiently close to (λ, f), so that the function $\operatorname{card}\left(T(\lambda, f, 0)^{-1}(0)\right)$ is lower-semicontinuous. We shall prove that it is also upper-semicontinuous. Suppose the contrary, i.e. there exist $\lambda_{n}, f_{n}, u_{n}$ such that $\lambda_{n} \rightarrow \lambda_{\in} \in \mathbb{R}^{+}-\sigma_{K}(A), f_{n} \rightarrow f \notin S$,

$$
.(25) \quad T\left(\lambda_{n}, f_{n} 0\right) u_{n}=0
$$

and $u_{n} \notin B={ }_{i=1}^{\imath} B_{\varepsilon}\left(u^{i}\right)$.
If $\left\|u_{n}\right\| \rightarrow \infty$, then passing to the limit in (25) divided by $\left\|u_{n}\right\|$ we get $T(\lambda, 0,0) w=0$ for some $w \neq 0$, thus $\lambda \in \sigma_{K}(A)$, a contradiction. Hence we may suppose that $\left\{u_{n}\right\}$ is bounded, $u_{n} \rightarrow u$. Passing to the limit in (25) we get $u_{n} \rightarrow u, T(\lambda, f, 0) u=0$, which gives us a contradiction, since $u_{n} \notin B$.

Exercise 2. Let $K=\left\{u \in H ;\left\langle u, w_{i}\right\rangle \geqq 0\right.$ for $\left.i=1,2\right\}$. Let w_{1}, w_{2} be linearly independent, $\lambda \in \mathbb{R}^{+}-\sigma_{K}(A)$. Prove that there exists $\mathrm{f} \notin \mathrm{S}(\boldsymbol{\lambda})$ such that $\operatorname{card}\left(\mathrm{T}(\lambda, \mathrm{f}, 0)^{-1}(0)\right) \leqq 1$. Consequently, if $d(\lambda)=0$, then the inequality (9) is not solvable for some $f \in H$. Hint: For $M \in\{1,2\}$ put $T_{M}=\left\{f ; T(\lambda, f, 0)^{-1} \cap K_{M} \neq \emptyset\right\}$. If $\lambda \in \sigma\left(A_{M}\right)$, then T_{M} is contained in a subspace of codim $\geqq 1$. If $\lambda \notin \sigma\left(A_{M}\right)$, then \bar{T}_{M} is a closed convex cone which is strictly less than halfspace in H and $\operatorname{card}\left(T(\lambda, f, 0)^{-1} \cap K_{M}\right)=1$ for $f \in T_{M}$. Now observe that $\operatorname{card}(\exp N)=4$.

4. Examples

Example 1. In this example we shall show that the set

$\sigma_{K}^{-}(A)$ need not be closed in $\mathbb{R}^{-}=\{t \in \mathbb{R} ; t<0\}$ and, consequently, a negative bifurcation point of (2) need not be the eigenvalue of (3).

Let $A: H \rightarrow H$ be a symmetric, completely continuous, linear operator with simple eigenvalues $\lambda_{1}=-2, \quad \lambda_{k}=\frac{2}{k}(k=2,3, \ldots)$ and corresponding eigenvectors $u_{1}, u_{k}(k \geqq 2)$. We suppose that $\left\{u_{k}\right\}_{k=1}^{0}$ form an orthonormal basis in H. Put $k=\left\{u \in H,\left\langle u, u_{1}-u_{k}\right\rangle \geqq\right.$ $\geqq 0$ for $k=2,3, \ldots\}$. Then $\lambda^{k}=-1+\frac{1}{k}$ is an eigenvalue of (3) with an eigenvector $u^{k}=u_{1}+u_{k}$, since $\lambda^{k} u^{k}-A u^{k}=\left(1+\frac{1}{k}\right)\left(u_{1}-u_{k}\right)$, $\left\langle\lambda^{k} u^{k}-A u^{k}, u^{k}\right\rangle=0$ and $\left\langle\lambda^{k} u^{k}-A u^{k}, v\right\rangle \geqq 0 \quad \forall v \in K$. Suppose $-1=$ $=\lim \lambda^{k} \in \sigma_{K}(A)$. Then there exists $w \in K$, $\|w\|=1$, such that .
(26) $\langle-w-A w, v-w\rangle \geq 0 \quad \forall v \in K$.

We can write $w=\sum_{k=1}^{\infty} c_{k} u_{k}$, where $\sum_{k=1}^{\infty} c_{k}^{2}=1$.
From (26) it follows $\langle-w-A w, w\rangle=0$, hence $\langle A w, w\rangle=-\|w\|^{2}=-1$, so that

$$
-2 \cdot c_{1}^{2}+2 \sum_{k=2}^{\infty} \frac{c_{k}^{2}}{k}=-1, \quad c_{1}^{2}=\frac{1}{2}+\sum_{k=2}^{\infty} \frac{c_{k}^{2}}{k} .
$$

Suppose $c_{j} \neq 0$ for some fixed $j \geqq 2$. Then $c_{1}^{2} \geqq \frac{1}{2}+\frac{c_{j}^{2}}{j}>\frac{1}{2}$,
$c_{k}^{2} \leqslant 1-c_{1}^{2} \leqslant \frac{1}{2}-\frac{c_{j}^{2}}{3}<\frac{1}{2}$ for any $k \geqq 2$. Thus $c_{1}^{2}>c_{k}^{2}$ and since
$0 \leqq\left\langle w, u_{1}-u_{k}\right\rangle=c_{1}-c_{k}$, we have $\left.c_{1}\right\rangle 0$ and
$\left\langle w, u_{1}-u_{k}\right\rangle=c_{1}-c_{k} \geqq \sqrt{\frac{1}{2}+\frac{c_{j}^{2}}{j}}-\sqrt{\frac{1}{2}-\frac{c_{j}^{2}}{j}}>0$ for any $k \geqq 2$.
Hence $w \in K^{0},-w-A w=0$, a contradiction.
Thus $c_{j}=0$ for $j \geqq 2, w=u_{1}$, which gives us again a contradiction.
In [6] there is given an abstract example of a symmetric operator A and a cone K in an infinite dimensional Hilbert space H such that the set $\sigma_{K}(A)$ has exactly n elements, where n is an arbitrary natural number (this example is a direct generalization of an example of M. Čadek, where $\sigma_{V}(A)$ is a one-point
set). The following example shows that such example can be constructed also for operators and cones which have a physical interpretation.

Example 2 (V. Šverák). Let $\Omega=(0,1) \times(0,1) \subset \mathbb{R}^{2}, M=$ $=\Omega-\left(0, \frac{1}{2}\right) \times\left(0, \frac{1}{2}\right), H=W_{0}^{1,2}(\Omega)$ (the Sobolev space), $K=\{u \in H ; u \geqq 0$ on $M\}$,
$\langle u, v\rangle=\int_{\Omega}\left(\frac{\partial u}{\partial x_{1}} \frac{\partial v}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}} \frac{\partial v}{\partial x_{2}}\right) d x,\langle A u, v\rangle=\int_{\Omega} u v d x$.
Then $\sigma_{K}(A)=\left\{\frac{1}{2 \pi^{2}}, \frac{1}{8 \pi^{2}}\right\}$.
Idea of the proof. Let $\lambda \in \sigma_{K}(A)$, let u be the corresponding eigenvector. Then $\boldsymbol{\lambda}>0$,

$$
\int_{Q}(-\lambda \Delta u-u) \varphi d x \geqq 0 \quad \forall \varphi \in \mathscr{D}^{+}(\Omega) .
$$

Thus $-\lambda \Delta u-u=\mu$, where μ is a nonnegative measure with its support in M. Further $u=\frac{1}{\lambda} G(u+\mu)$, where G is Green function for Ω. Using potential theory, we get that u is continuous in
Ω (since $\lambda_{u}=P_{K} G u$) and superharmonic in M^{0} (since - $\Delta u \geqq 0$ in M°). From the minimum principle it follows $u \equiv 0$ in M or $u>0$ in M^{0}.

Let $u>0$ in M^{0} and denote $\lambda_{1}\left(M^{0}\right)$ the first eigenvalue of
$-\Delta$ on M^{0} (with the corresponding eigenfunction $w>0$). Then
$-\lambda \Delta u-u=0$ in M^{0}, thus
$0<\int_{M^{0}} u w d x=-\lambda \int_{M^{0}}(\Delta u) w d x=\lambda\left(\int_{\partial M^{0}} u \frac{\partial w}{\partial n} d S-\int_{M^{0}} u(\Delta w) d x\right)=$
$=\lambda \int_{\partial M^{0}} u \frac{\partial w}{\partial n} d S+\frac{\lambda}{\lambda_{1}\left(M^{0}\right)} \int_{M^{0}} u w d x \leqq$
$\leq \frac{\lambda}{\lambda_{1}\left(M^{0}\right)} \int_{M^{0}} u w d x$,
since $\frac{\partial w}{\partial n} \leqq 0$ and $u \geqq 0$ on ∂M^{0}. Hence $\lambda \geqq \lambda_{1}\left(M^{0}\right)$.

If $u(x)<0$ for some $x \in \Omega-M$, then $\lambda \leqslant \lambda_{1}(\Omega-M)$, since λ is the first eigenvalue of $-\Delta$ on a subdomain of $\Omega-M$.

Under our assumptions we have $\lambda_{1}\left(M^{0}\right)>\lambda_{1}(\Omega-M)$, thus either $u \equiv 0$ on M or $u \geqq 0$ on Ω. If $u \equiv 0$ on M, then $\lambda=\lambda_{1}(\Omega-M)$ and u is the first eigenfunction of $-\Delta$ on $\Omega-M$; if $u \geqq 0$ on Ω, then using the minimum principle, we obtain $u>0$ on $\Omega, \lambda=\lambda_{1}(\Omega)$.

Such an example can be constructed also for general domains in R^{n} ($n \leqq 5$). Another possible generalization is given in the following example:

Let $\Omega=\Omega_{0}=(0,4) \times(0,4), M=\Omega-\underbrace{5}_{i=1} \Omega_{i}$, where $\Omega_{1}=(0,2-\varepsilon) \times(0,2-\varepsilon), \Omega_{2}=(2,3-\varepsilon) \times(0,1), \Omega_{3}=(3,4) \times(0,2-\varepsilon)$, $\Omega_{4}=(0,3-\varepsilon) \times(2,4), \Omega_{5}=(3,4) \times(2,4), \quad \varepsilon>0$.
Then card $\sigma_{K}(A)=6$ and each eigenfunction of the variational inequality is the first eigenfunction of the operator - Δ on some $\Omega_{i}(i=0,1, \ldots, 5)$.

Idea of the proof. As before we get $u \equiv 0$ on M or $u>0$ on M^{0}. If $u>0$ on M^{0}, then $u \geqq 0$ on Ω_{2} (since $\lambda_{1}\left(M^{0}\right)>\lambda_{1}\left(\Omega_{2}\right)$), so that $u>0$ on $\left(M \cup \Omega_{2}\right)^{0}$ (since u is superharmonic on this set). Analogously we obtain $u>0$ on $\left(M \cup \Omega_{2} \cup \Omega_{3}\right)^{0}, u>0$ on $\left(M \cup \Omega_{2} \cup \Omega_{3} \cup \Omega_{1}\right)^{0}$ etc.

Example 3. In this example we shall show that the set $\sigma_{K}(A)$ can contain an interval.

Put $H=\mathbb{R}^{3}, A=\left(\begin{array}{l}1,0,0 \\ 1,1,0 \\ 0,0,1\end{array}\right), K=\left\{x ; x_{1}^{2}+x_{3}^{2} \leqq x_{2}^{2}, x_{2} \leqq 0\right\}$.
Choose $t \in\langle 0,1\rangle$ and put $u=\binom{t}{\frac{-1}{1-t^{2}}} \in \partial k, \lambda=1-\frac{t}{2}$.

Then $\lambda_{u-A u}=-\frac{t}{2}\binom{t}{\frac{1}{1-t^{2}}}$, so that $\lambda u-A u \perp u$
and one can easily prove $\langle\lambda u-A u, v\rangle \geqq 0 \quad \forall v \in K$.
Thus $\left\langle\frac{1}{2}, 1\right\rangle \subset \sigma_{K}(A)$.
Example 4. Let $H=\mathbb{R}^{2}, A=\binom{2,1}{0,1}, K=\left\{u \in H ;\left\langle u, w_{1}\right\rangle \geqq 0\right\}$, where $w_{1}=\binom{-1}{2}$.
Then $\sigma(A)=\{1,2\} ; u_{1}=\binom{-1}{0}, u_{2}=\binom{-1}{1}, v_{1}=\binom{1}{1}, v_{2}=\binom{0}{1}$ are the corresponding eigenvectors for A, A^{*} lying in K^{0} (see Theorems 2, 3 and Lemma 8 for notation). Further $\left\langle u_{1}, v_{1}\right\rangle\left\langle 0,\left\langle u_{2}, v_{2}\right\rangle>0\right.$. We are able to compute $F(\lambda)=\left\langle R(\lambda, A) w_{1}, w_{1}\right\rangle=\frac{5 \lambda-11}{(\lambda-1)(\lambda-2)}$. Using the results of Section 3 , we get $\sigma_{K}(A)=\left\{1,2, \frac{11}{5}\right\}$. Moreover, for $\lambda \notin \sigma_{K}(A)$ the inequality (9) is solvable for any $\mathrm{f} \in \mathrm{H}$ iff $\lambda \in(1,2) \cup\left(\frac{11}{5},+\infty\right)$. Some of these results can be derived also using Theorems 2,3 .

Example 5. Let $H=W_{0}^{1,2}(0,1), k=\left\{u \in H ; u\left(\frac{1}{2}\right) \geqq 0\right\},\langle u, v\rangle=$ $=\int_{0}^{1} u^{\prime} v^{\prime} d x,\langle A u, v\rangle=\int_{0}^{1} u v d x$. Using Theorem 4 we get $\sigma_{K}(A)=$ $=\sigma(A)-\{0\}$. For $\lambda \in \mathbb{R}^{+}-\sigma_{K}(A)$ the inequality (9) is solvable for any $f \in H$ iff $\lambda \in\left(\lambda_{2 k+1}, \lambda_{2 k}\right)(k=1,2, \ldots)$ or $\lambda>\lambda_{1}$.

Acknowledgement. The author is deeply indebted to Professors O. John, M. Kučera, J. Nečas and J. Stará for a lot of helpful discussions and for their encouragement.

References

[1] M. KUČERA: Bifurcation points of variational inequalities, Czechoslovak Math. J. 32(107)(1982), 208-226.
[2] M. KUČER 1 new method for obtaining eigenvalues of varia-
tional inequalities based on bifurcation theory, Čas.pěst.mat. 104(1979), 389-411.
[3] E. MIERSEMANN: Uber höhere Verzweigungspunkte nichtlinearer Variationsungleichungen, Math.Nachr. 85(1978), 195-213.
[4] E. MIERSEMANN: Höhere Eigenwerte von Variationsungleichungen, Beiträge zur Analysis 17(1981), 65-68.
[5] E. MIERSEMANN: On higher eigenvalues of variational inequalities, Comment.Math.Univ.Carolinae 24(1983), 657-665.
[6] P. QUITTNER: A note to E. Miersemann's papers on higher eigenvalues of variational inequalities, Comment. Math. Univ.Carolinae 26(1985), 665-674.
[7] P. QUITTNER: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type, to appear.
[8] R. ŠVARC: The solution of a Fučfk' conjecture, Comment.Matb Univ.Carolinae 25(1984), 483-517.
[9] R. SVARC: The operators with jumping nonlinearities and combinatorics, to appear.
[10] R. ŠVARC: Some combinatorial results about the operators with jumping nonlinearities, to appear.
[11] P. QUITTNER: Spectral analysis of variational inequalities, Thesis. Charles University, Prague.

Institute of Physics EPCR, Slovak Academy of Sciences, Dúbravská cesta 9, 84228 Bratislava, Czechoslovakia
(Oblatum 9.4. 1986)

