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ANNOUNCEMENT OF NEW RESULTS 

BASE AND ESSENTIAL BA5E IN PARABOLIC POTENTIAL THEORY 

Miroslav Brzezina (Matematicko~fyzikalni fakulta UK, Sokolovska 
83, 186 00 Praha 8, Ceskoslovensko), received 6.5. 1986 

Let F be the fundamental solution of the heat equation in 

JRn + 1. For zeiRn + 1 and c & IR denote by B(z,c) = 4weiRn + 1; F(z - w)£ 

~ (4JTc)"n ' \o\z I (the heat ball with the "center" z and radius 
c), A(z.c) = B(z,cT\ B(z , c/2 ) . Let b(E) stand for the base of a 

set EciRn+ , i.e. the set of all points at which E is not parabo-

lically thin. For a compact set Kc IRn+ , the thermal capacity of 
K is defined by y(K) = sup iv(K);sptvc K , F * P = H and the con­
tinuous thermal capacity by ac (K) = sup 4>>(K);spt^c K, F * v # l. 
F -t y> continuous! (here y runs over nonnegative Radon measures 

in IRn+ and F * \> denotes the thermal potential defined by the 
convolution of F and v ). The inner continuous thermal capacity 

o-"*(E) and the outer thermal capacity y*(E) of a set EclR + are 
defined in a usual way. 

Theorem 1: For an arbitrary set Ec IRn+ , the following con­
ditions are equivalent: 

(i) zeb(E); 

.n/2+1 (ii) f1 T*(EnB(z,c))/c
n/2 + 1 dc 

2kn/2 T * ( E n B(z,2"
k) 

r,kn/2 _>/C ^ AÍ r, o~^\ 

(iii) f^ 2 k n / 2 /(EnB(z,2"k)) = ao; 

(iv) ^ 2Kn/z
T*(EAA(z,2"

K)) =oo. 

In the proof, the criterion of the regularity established 
in 111 is used in an essential way. 

Let EciRn+ be an arbitrary set. The smallest finely closed 

set Lc)Rn+ such that E\L is semi-polar is called the essential 
base of the set E and denoted by /3(E). 

Theorem 2: For an arbitrary Borel set EdR n + , the follow­
ing conditions are equivalent: 

(i) z * p>(E) 

(ii) fV*(EnB(z,c))/cn/2 + 1 dc = co % 
Jo * 

(iii) 4 f 2kn/2ocit(EnB(z,2"
k)) = oo • 

(iv) ^ 2kn/2oC^(EoA(z,2"k)) = oo . 

Results from [23 are important for the proof of Theorem 2. 

For a bounded open set UclR , the points of the Choquet boun-
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dary CIWJJNU of U with respect to the space K(U) of all functi­
ons continuous on D" and caloric on U can be characterized in 
terms of the continuous capacity. Namely, for z e 3 U, the condi­
tion zeChw/.-NU is equivalent to ( i i ) - ( i v ) from Theorem 2 whe-

"K(U) 
э
n + l re E is replaced by IR \ U and oC* by oo . Geometric conditions 

guaranteeing that z c b ( E ) , or z e (3(E), can be deduced from The­
orems 1 and 2. 
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