Commentationes Mathematicae Universitatis Caroline

František Knoflíček
 On one construction of all quasifields of order 9

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 4, 683--694

Persistent URL: http://dml.cz/dmlcz/106487

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON ONE CONSTRUCTION OF ALL QUASIFIELDS OF ORDER 9 Frantisek KNOFLİĆEK

Abstract

An alternative construction of all quasifields of order 9 is given based on one concept of Dempwolff and . Reifart ([1]: p. 138).

Key words: Dispersing matrices over GF(3), quasigroups, quasifields.

ANS subject classification (1980): Primary: 51A40, 51E15

An approach to the construction of all quasifields of order 9 is given by M. Hall in [2], reconstructed by H. Lüneburg in [3], § 8. As a main tool, there is used in [3] a convenient representation of a spread (describing a translation plane P) with help of some admissible subset of $G L(X)$ where X is a vector space over the kernel of P. In the sequel we give an alternative construction of all quasifields of order 9 stimulated by some aspects of the article [1] by Dempwolff and Reifart. We shall find both binary operations of the quasifields directly (some matrices over GF(3) are needed in our procedure, too).

As well-known, every quasifield of order p^{n} can be obtained as follows: We take an n-dimensional vector space V over $G F(p)$ and a set $\prod_{0} p^{n}-1$ matrices from $G L(n, p)$ auch that $A B^{-1}$ is fixed - point - free on V for $A, B \in \mathbb{R}, A \neq B$. Then there is a bijection $\mu: \mathbb{M} \rightarrow \nabla \backslash\{0\}$ auch that ∇ together with binary operations + (vector addition on V) and $\cdot\left(v \cdot w=N^{-1} .(v) w\right.$ for
all $\nabla, w \in V$ and $\nabla \neq 0, \underline{O} \cdot \boldsymbol{w}=\underline{0}$) is a quasifield (cr. [1], p. 138).
0. Denote elements of $\operatorname{GF}(3)$ by $0,1,2$ and investigate the 2-dimensional vector space $V_{2}(3)$ of ordered couples

$$
\begin{aligned}
& (0,0)=: \frac{0}{3},(1,0)=(1,1)=: \frac{1}{4},(2,0)=:(2,1)=: \frac{2}{5} \\
& (0,1)=: \frac{3}{7},(2,2)=:(1,2)=\frac{\operatorname{cover} \operatorname{GF}(3)}{(0,2)=(2,(2)}
\end{aligned}
$$

The set of these vectors $\underline{0}, 1, \ldots, 8$ will be designated by S and the chosen ordering of vectors will be called natural. For the component - wise addition of vectors in $V_{2}(3)$ we can write the corresponding Cayley table (Table 1, without heading).

012	345	678
120	453	786
201	534	867
345	678	012
453	786	120
534	867	201
678	012	345
786	120	453
867	201	534

Tab. 1.

So ($S,+, 0$) is an elementary abelian 3-group of order 9.
Further consiđer the set of all non-singular 2×2 matrices over $G F(3): \mathbb{T}=\left\{\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right): \alpha, \beta, \gamma_{n} \delta \in \operatorname{GF}(3), \operatorname{det}\left(\begin{array}{cc}\alpha & \beta \\ \gamma^{\prime} & \delta\end{array}\right) \neq 0\right\}$. Obviously \# $M=48$ as there are eight possibilities for the first (non - zero) row of our matrix and six possibilities for the second row: $(\gamma, \delta) \neq \lambda \cdot(\alpha, \beta), \lambda \neq 1,2$. The set \mathbb{T} with respect to matrix multiplication forms eroup of order 48 sometimes denoted by $\mathrm{CL}(2,3)$ or by $\mathrm{GL}_{2}(3)$.

If x is a non - sero vector fron $V_{2}(3)$ and $M \in \mathbb{T}$, then H. $x^{T}=y^{T}$ (T denetes transposing) and J is also a non - zero
vector from $\nabla_{2}(3)$.
How let $M=\left(\begin{array}{l}\alpha \\ \gamma \\ \gamma\end{array}\right)$ be a matrix and $(1,0),(0,1)$ vectors of the canonic basis. Then $\binom{\alpha \beta}{\gamma}\binom{1}{0}=\binom{\alpha}{j}$ and $\left(\begin{array}{l}\alpha \beta \\ \gamma \\ \delta\end{array}\right)\binom{0}{1}=\binom{\beta}{\delta}$. For $(\alpha, \gamma)=i$ and $(\beta, \delta)=j$ we shall introduce a convenient denotation $\left(\begin{array}{ll}\alpha \\ \delta & \beta \\ \delta\end{array}\right)=: \mathbf{u}_{i, j}$. So $\mathbf{u}_{1,3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is a unit matrix.

We say the matrix $M \in \mathbb{M}$ is dispersing if $M x^{T} \neq x^{T}$
$\forall x \in \nabla_{2}(3) \backslash\{(0,0)\}$. If a matrix $\mathbf{x} \in \mathbb{Z}$ is not dispersing and not unit it preserves two non-zero vectors. The unit matrix $H_{1,3}$ fixes the whole $\mathrm{V}_{2}(3)$. As usual we shall call the set of all eigenvalues of a matrix its spectrum. It may be shown that there are 27 dispersing matrices. Their spectrum is either void (for 18 matrices) or consists just of $2 \in \operatorname{GF}(3)$. If a matrix is not dispersing then its spectrum is either $\{1\}$ or $\{1,2\}$, where $1,2 \in \operatorname{GF}(3)$. Under the group order of a matrix we shall understand its order as of an element in $\mathrm{of}_{2}(3)$. The set M can be decomposed onto the following subsets
' m_{I} - the set of all matrices with the group order $8, \# \pi_{I_{I}}=12$;
π_{1} - the set of all matrices with the group order 6 , $\# \pi_{\text {II }}=8$; $m_{\text {I }}$ - the set of all matrices with the group order 4 , $\# \pi_{\text {II }}=6$; $M_{I_{I}}$ - the set of all matrices with the group order 3, $\# M_{\text {II }}=8$; m_{I} - the set of all matrices with the group order 2, $\# \pi_{T}=13$; $m_{M_{\text {I }}}$ - the set consisting just of the unit matrix.

$$
\begin{aligned}
& m_{I}=\left\{\mu_{3,7}, \mu_{4,1} ; \mu_{3,4}, \mu_{5,1} ; \mu_{4,5} ; \mu_{5,8} ; \mu_{6,5}, \mu_{8,2} ; \mu_{6,8},\right. \\
& \left.M_{7,2} ; \boldsymbol{K}_{7,4}, \boldsymbol{x}_{8}, 7\right\} \text { containe only dispersing matrices all }
\end{aligned}
$$ with void spectrum (nelghbouring matrices are mutually inverse and similarly in what follows).

 only dispersing matrices with spectrum $\{2\}$.

$$
\pi_{\text {m }}=\left\{x_{3,2}, x_{6,1} ; m_{4,7}, x_{8,5} ; \mu_{5,4}, M_{7,8}\right\} \text {. Here the matrices }
$$ are dispersing and all have void spectrum.

these matrices have spectrua $\{1\}$.

$$
\begin{aligned}
& m_{\text {ri }}=\left\{\mu_{1,6} ; \mu_{1,7} ; \mu_{1,8} ; \dot{m}_{2,3} ; \mu_{2,4} ; \mu_{2,5} ; \mu_{3,1} ; \mu_{4,6} ; \mu_{5,3} ;\right. \\
& \left.\boldsymbol{n}_{6,2} ; \boldsymbol{M}_{7,6} ; \boldsymbol{n}_{8,3}\right\} \cup\left\{\boldsymbol{M}_{2,6}\right\} \text {. }
\end{aligned}
$$

All the matrices are involutory. The matrices of the first subset have spectrum $\{1,2\}$ whereas $m_{2,6}$ is a dispersing matrix with spectrum $\{2\}$. How we shall construct such sets π_{x} consisting of eight matrices of $\mathrm{GL}_{2}(3)$ that Π_{x} operates minimally transitively on the set of all non - zero vectors of $V_{2}(3)$. This means that to every couple x, y of nan - zero vectors of $\mathbf{V}_{2}(3)$ there is just one matrix $M_{i}, j \in M_{D}$ such that $M_{i}, j x^{T}=y^{T}$. The last equation can be re-written in the form $U(x, y)=1$ where U is a quasigroup operation on the set
$S,\{0\}$. By our convention concerning the matrix denotation we have $X_{i, j}(1,0)^{\mathbf{T}}=\mathrm{i}$ so that $U(1, y)=y$ for all $y \in S,\{0\}$. Thus the quasigroup $(S \backslash\{0\}, U)$ has a left unit. For $U\left(x_{n} y\right)=$ $=c$ we write $u^{-1}(x, c)=x \cdot c=y$. If $m_{1,3} \in m_{\mathcal{L}}$, then $M_{1}, 3 x^{T}=x^{T}, \forall x \in \nabla_{2}(3)$ so that $U(x, x)=1$ and $U^{-1}(x, 1)=$ $x \mathbf{x} \cdot 1=x$. Thus the operatiom ($\cdot)_{n}$ inverse from right to U, possesses a both - side unit and consequently is a loop operation. Thus (S, \{0\}, ${ }^{\circ}, 1$) is a loop.

1. Let us take the matrix $M_{4,5}$ and form the group $\left\langle\mathrm{M}_{4}{ }_{5}\right\rangle$ generated by this matrix. We get the set of eight matrices $m_{1}=\left\{m_{1,3} ; m_{2,6} ; m_{3,2} ; m_{4,5} ; m_{5,8} ; m_{6,1} ; m_{7,4} ; m_{8,7}\right\}$ 。 Each of them maps $\nabla_{2}(3)$ onto $\nabla_{2}(3)$ and in Table 2 we have the graph of all of these mappings and subsequently also the multiplication table for U.

Tab. 2

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 2 | 1 | 6 | 8 | 7 | 3 | 5 | 4 |
| 3 | 6 | 2 | 5 | 8 | 1 | 4 | 7 |
| 4 | 8 | 5 | 6 | 1 | 7 | 2 | 3 |
| 5 | 7 | 8 | 1 | 3 | 4 | 6 | 2 |
| 6 | 3 | 1 | 7 | 4 | 2 | 8 | 5 |
| 7 | 5 | 4 | 2 | 6 | 8 | 3 | 1 |
| 8 | 4 | 7 | 3 | 2 | 5 | 1 | 6 |

Talu. 3
From U we get easily over to the operation $U^{-1}=\cdot$ described in Table 3. ($S,\{0\}, \cdot, 1$) is a cyclic group of order 8. If.we enlarge the operation onto the whole S by setting $0 \cdot x=x \cdot 0=$ $=0$, then ($S,+, \cdot$) is a Galois field GF(9) deduced from CF (3) with help of the irreducible polynomial $\xi^{2}+1$, if we denote linear polynomials $\xi, \xi+1, \xi+2,2 \xi, 2 \xi+1,2 \xi+2$, respectively, by symbols $3,4,5,6,7,8$, respectively.
2. An analogous situation occurs if we generate the cyclic group of order a by the matrix $M_{3}, 7^{\circ}$. We obtain the set $\pi_{2}=$ $=\left\{M_{1,3} ; M_{2,6} ; M_{3,7} ; M_{4,1} ; M_{5,4} ; M_{6,5} ; M_{7,8} ; M_{8,2}\right\}$. The graph of the eight mappings is described in Table 4 and the corresponđing multiplication - in Table 5.

8	4	7	2	6	5	3	1
7	5	3	8	2	6	1	4
6	3	2	5	4	1	8	7
5	7	6	4	1	3	2	8
4	8	5	1	3	7	6	2
3	6	1	7	8	2	4	5
2	1	8	6	5	4	7	3
	1	2	4	3	7	8	5
0							

Tab. 4

- | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 6 | 8 | 7 | 3 | 5 | 4 |
| 3 | 6 | 7 | 1 | 4 | 5 | 8 | 2 |
| 4 | 8 | 1 | 5 | 6 | 2 | 3 | 7 |
| 5 | 7 | 4 | 6 | 2 | 8 | 1 | 3 |
| 6 | 3 | 5 | 2 | 8 | 7 | 4 | 1 |
| 7 | 5 | 8 | 3 | 1 | 4 | 2 | 6 |
| 8 | 4 | 2 | 7 | 3 | 1 | 6 | 5 |

Tab. 5
($S,+, \cdot$) is a Galois field GF(9) deduced from GF (3) using the irreducible polynomial $\xi^{2}+\xi+2$ by denotations of $\S 1$.
3. Also in the third case we have a situation similar to both preceding ones. The cyclic group of order 8 can be generated by the matrix $u_{3,4}$. We get the set $\mu_{3}=\left\{\mu_{1,3} ; \boldsymbol{m}_{2,6} ; \mu_{3,4} ;\right.$ $\left.\mathbf{M}_{4,7} ; \dot{K}_{5,1} ; \mathbf{M}_{6,8} ; \mathbf{M}_{7,2} ; \mathbf{M}_{8,5}\right\}$. The corresponding tables of mappings and of the multiplication are presented in Tables 6-7.

8	4	6	2	5	3	7	1
7	5	4	3	2	8	1	6
6	3	2	7	8	1	4	5
5	7	8	6	1	4	2	3
4	8	3	1	7	6	5	2
3	6	1	5	4	2	8	7
2	1	7	4	6	5	3	8
1	2	5	8	3	7	6	4
0							

- | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 6 | 8 | 7 | 3 | 5 | 4 |
| 3 | 6 | 4 | 7 | 1 | 8 | 2 | 5 |
| 4 | 8 | 7 | 2 | 3 | 5 | 6 | 1 |
| 5 | 7 | 1 | 3 | 8 | 2 | 4 | 6 |
| 6 | 3 | 8 | 5 | 2 | 4 | 1 | 7 |
| 7 | 5 | 2 | 6 | 4 | 1 | 8 | 3 |
| 8 | 4 | 5 | 1 | 6 | 7 | 3 | 2 |

Taß. 6
Tab. 7
($S,+, \cdot$) is a Galois field GF (9) derived from GF (3) using the irreducible quadratic polynomial $\left.\xi^{2}+2\right\}+2$ by denotations from § 1 . The fields from §§ $1-3$ are mutually isomorphic. If we write the isomorphism as product of cycles, we have $\sigma=$ (354) (678), $\sigma^{2}=(345)(687)$ as it can be easily verified. If we want to work with GF (9)_it is convenient to use concrete tables for Both field operations. We shall prefer Tables 1 and 3.

Remark that the natural oxdering of the set $\prod_{k} \quad(k=1,2,3)$ by first indices of matrices of π_{k} the second indices becone the ordering given by the third row of the multiplication table. This is a consequence of our convention and of operating the matrix on the vector $(0,1)=3$.
4. If we take the matrices $\mathbf{K}_{1,3}, \mathbf{M}_{2,6}$ together with all the matrices of \prod_{1}, we can see that they form a group with respect to matrix multiplication that is isomorphic to the
quaternion group. The corresponding mappings and operations are described in Tables 8 - 9.

8	4	7	2	3	5	6	1
7	5	4	6	2	8	1	3
6	3	2	5	8	1	4	7
5	7	8	3	1	4	2	6
4	8	5	1	6	7	3	2
3	6	1	7	4	2	8	5
2	1	3	4	5	6	7	8
1	2	6	8	7	3	5	4

o

Tab. 8

- $|$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 6 | 8 | 7 | 3 | 5 | 4 |
| 3 | 6 | 2 | 7 | 4 | 1 | 8 | 5 |
| 4 | 8 | 5 | 2 | 6 | 7 | 3 | 1 |
| 5 | 7 | 8 | 3 | 2 | 4 | 1 | 6 |
| 6 | 3 | 1 | 5 | 8 | 2 | 4 | 7 |
| 7 | 5 | 4 | 6 | 1 | 8 | 2 | 3 |
| 8 | 4 | 7 | 1 | 3 | 5 | 6 | 2 |

Tab. 9
$(S,+, \cdot)$ is a nearfield of order 9 atisfying only the right distributivity law

$$
(x+y) z=x z+y z \quad \forall x, y, z \in S
$$

5. If we choose pairs of matrices of group order 8 from m_{1}, M_{2}, resp. m_{3} we obtain two sets $m_{5}=\left\{\mathbf{u}_{1,3} ; \mathbf{M}_{2,6} ; \mathbf{M}_{3,7}\right.$; $\left.\mathbf{u}_{4,5} ; \mathbf{M}_{5,1} ; \mathbf{M}_{6,8} ; \mathbf{u}_{7,4} ; \mathbf{u}_{8,2}\right\}, \quad M_{6}=\left\{\mathbf{u}_{1,3} ; \mathbf{u}_{2,6} ; \mathbf{u}_{3,4} ; \mathbf{m}_{4,1} ;\right.$ $\left.\mathbf{K}_{5,8} ; \mathbf{M}_{6,5} ; \mathbf{M}_{7,2} ; \mathbf{M}_{8,7}\right\}$. These sets form neither groups nor quasigroups with respect to matrix multiplication because the product of two dispersing matrices need not be a dispersing matrix, e. g. $\mathbf{M}_{3,7} \cdot \mathbf{M}_{5,1}=\mathbf{M}_{4,3}$ and this matrix preserves the vectors $(0,1),(0,2)$. We verify easily that $M_{2,6} \cdot \Pi_{5}=\pi_{6}$. Both sets of matrices operate on the set of all non - zero vectors of $\nabla_{2}(3)$ strictly transitively and the corresponding tables are: Tables $10-11$ for m_{5} and Tables $12-13$ for m_{6}. In both cases ($S,+, \cdot$) is a right quasifield satisfying only the right distributivity law $(x+y) z=x z+y z \quad \forall x, y, z \epsilon$
$\in S$. In the well-known Appendix of the article [1] we find the denotations for multiplication tables R. (our Table 9), T. (our Table 11) and S.(our Table 13). The corresponding quasifields are the "first" examples of Hall quasifields. They can be obtained from GF(3) so that the addition + is defined as
in Table 1 whereas the multiplication - is defined as follows: $(a, b) \circ(c, d)=(a c, b c)$ for $d=0$, $(a, b) \circ(c, d)=\left(a c-b d^{-1} f(c), a d-b c+b r\right)$ for $d \neq 0$.
$f^{f}(\xi)$ is one of three irreducible quadratic polynomials
$\left.\xi^{2}-r\right\}-s$. In $G F(3)$ it holds in addition $d^{-1}=d$ for $d \neq 0$.

8	4	6	2	5	7	3	1
7	5	3	8	2	4	1	6
6	3	2	4	7	1	8	5
5	7	4	6	1	3	2	8
4	8	7	1	3	6	5	2
3	6	1	5	8	2	7	4
2	1	8	7	6	5	4	3
1	2	5	3	4	8	6	7

1	2	3	4	5	6	7	8
2	1	6	8	7	3	5	4
3	6	7	5	1	8	4	2
4	8	1	6	3	5	2	7
5	7	4	1	8	2	6	3
6	3	5	7	2	4	8	1
7	5	8	2	4	1	3	6
8	4	2	3	6	7	1	5

Tab. 10
Tab. 11

8	4	5	2	6	3	7	1
7	5	8	3	2	6	1	4
6	3	2	7	4	1	5	8
5	7	6	4	1	8	2	3
4	8	3	1	7	5	6	2
3	6	1	8	5	2	4	7
2	1	7	6	8	4	3	5
1	2	4	5	3	7	8	6

Tab. 12
Tab. 13
6. Further it is possible to find sets containing besides the unit matrix still seven matrices. The first and second of them are of group order 8, the third has group order 4. These three matrices are taken always from one of the sets Π_{1}, Π_{2}, Π_{3}. The remaining four matrices are from $\Pi_{I I}$; they are dispersing and with group order 6. So we obtain the following six sets:

$$
\begin{aligned}
& \pi_{7}=\left\{\mathbf{u}_{1,3} ; \mathbf{M}_{2,7} ; \mathbf{M}_{3,5} ; \mathbf{M}_{4,2} ; \mathbf{M}_{5,8} ; \mathbf{M}_{6,1} ; \mathbf{u}_{7,4} ; \mathbf{M}_{8,6}\right\} \text {. } \\
& m_{8}=\left\{M_{1,3} ; M_{2,7} ; M_{3,5} ; M_{4,1} ; M_{5,6} ; M_{6,4} ; M_{7,8} ; M_{8,2}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& m_{11}=\left\{\mathbf{M}_{1,3} ; \mathbf{M}_{2,8} ; \mathbf{M}_{3,7} ; \mathbf{M}_{4,2} ; \dot{M}_{5,4} ; \mathbf{M}_{6,5} ; \boldsymbol{M}_{7,1} ; \boldsymbol{M}_{8,6}\right\},
\end{aligned}
$$

The corresponding tables are:
a/ for M_{7} :

8	4	5	3	2	7	6	1
7	5	2	6	4	3	1	8
6	3	8	2	7	1	5	4
5	7	3	8	1	2	4	6
4	8	7	1	6	5	2	3
3	6	1	4	5	8	7	2
2	1	4	7	3	6	8	5
1	2	6	5	8	4	3	7
0							

Tab. 14
b/ for π_{8} :

$$
\begin{array}{llllllll}
8 & 4 & 7 & 3 & 2 & 6 & 5 & 1 \\
7 & 5 & 2 & 8 & 6 & 3 & 1 & 4 \\
6 & 3 & 5 & 2 & 4 & 1 & 8 & 7 \\
5 & 7 & 3 & 4 & 1 & 2 & 6 & 8 \\
4 & 8 & 6 & 1 & 5 & 7 & 2 & 3 \\
3 & 6 & 1 & 7 & 8 & 5 & 4 & 2 \\
2 & 1 & 8 & 5 & 3 & 4 & 7 & 6 \\
1 & 2 & 4 & 6 & 7 & 8 & 3 & 5 \\
0 & & & & & & &
\end{array}
$$

Tab. 16

- | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 6 | 8 | 7 | 3 | 5 | 4 |
| 3 | 7 | 5 | 2 | 8 | 1 | 4 | 6 |
| 4 | 6 | 8 | 3 | 1 | 7 | 2 | 5 |
| 5 | 8 | 2 | 7 | 3 | 4 | 6 | 1 |
| 6 | 5 | 7 | 1 | 4 | 2 | 8 | 3 |
| 7 | 4 | 1 | 5 | 6 | 8 | 3 | 2 |
| 8 | 3 | 4 | 6 | 2 | 5 | 1 | 7 |

Tab. 15

$$
\begin{array}{llllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 8 \\
2 & 1 & 6 & 8 & 7 & 3 & 5 & 4 \\
3 & 7 & 5 & 1 & 6 & 4 & 8 & 2 \\
4 & 6 & 8 & 5 & 2 & 1 & 3 & 7 \\
5 & 8 & 2 & 6 & 4 & 7 & 1 & 3 \\
6 & 5 & 7 & 2 & 3 & 8 & 4 & 1 \\
7 & 4 & 1 & 3 & 8 & 5 & 2 & 6 \\
8 & 3 & 4 & 7 & 1 & 2 & 6 & 5
\end{array}
$$

c/ for m_{g} :

8	4	6	7	2	3	5	1
7	5	2	3	4	8	1	6
6	3	5	2	8	1	7	4
5	7	8	6	1	2	4	3
4	8	3	1	5	6	2	7
3	6	1	4	7	5	8	2
2	1	4	5	6	7	3	8
1	2	7	8	3	4	6	5

Tab. 18
d/ for m_{10} :

$$
\begin{array}{llllllll}
8 & 4 & 2 & 7 & 3 & 6 & 5 & 1 \\
7 & 5 & 8 & 2 & 6 & 4 & 1 & 3 \\
6 & 3 & 5 & 4 & 2 & 1 & 7 & 8 \\
5 & 7 & 4 & 3 & 1 & 8 & 6 & 2 \\
4 & 8 & 6 & 1 & 5 & 2 & 3 & 7 \\
3 & 6 & 1 & 8 & 7 & 5 & 2 & 4 \\
2 & 1 & 3 & 5 & 8 & 7 & 4 & 6 \\
1 & 2 & 7 & 6 & 4 & 3 & 8 & 5 \\
0 & & & & & & &
\end{array}
$$

Tab. 20
e/ for m_{11} :

$$
\begin{array}{llllllll}
8 & 4 & 2 & 7 & 6 & 5 & 3 & 1 \\
7 & 5 & 3 & 2 & 4 & 6 & 1 & 8 \\
6 & 3 & 8 & 5 & 2 & 1 & 7 & 4 \\
5 & 7 & 6 & 8 & 1 & 3 & 4 & 2 \\
4 & 8 & 5 & 1 & 3 & 2 & 6 & 7 \\
3 & 6 & 1 & 4 & 7 & 8 & 2 & 5 \\
2 & 1 & 4 & 6 & 5 & 7 & 8 & 3 \\
1 & 2 & 7 & 3 & 8 & 4 & 5 & 6 \\
0 & & & & & & &
\end{array}
$$

$\cdot |$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 6 | 8 | 7 | 3 | 5 | 4 |
| 3 | 7 | 4 | 2 | 6 | 8 | 1 | 5 |
| 4 | 6 | 7 | 3 | 2 | 5 | 8 | 1 |
| 5 | 8 | 1 | 7 | 4 | 2 | 3 | 6 |
| 6 | 5 | 8 | 1 | 3 | 4 | 2 | 7 |
| 7 | 4 | 2 | 5 | 8 | 1 | 6 | 3 |
| 8 | 3 | 5 | 6 | 1 | 7 | 4 | 2 |

Tab. 19

- | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 6 | 8 | 7 | 3 | 5 | 4 |
| 3 | 8 | 2 | 5 | 6 | 4 | 1 | 7 |
| 4 | 7 | 5 | 6 | 2 | 1 | 8 | 3 |
| 5 | 6 | 8 | 1 | 4 | 7 | 3 | 2 |
| 6 | 4 | 1 | 7 | 3 | 8 | 2 | 5 |
| 7 | 3 | 4 | 2 | 8 | 5 | 6 | 1 |
| 8 | 5 | 7 | 3 | 1 | 2 | 4 | 6 |

Tab. 21

	1			3	4	5	6

Tab. 23
e/ for m_{12} :

8	4	2	3	5	6	7	1
7	5	4	2	6	3	1	8
6	3	8	7	2	1	4	5
5	7	3	8	1	4	6	2
4	8	6	1	7	2	5	3
3	6	1	5	4	8	2	7
2	1	7	4	3	5	8	6
1	2	5	6	8	7	3	4
0							

Tab. 24

- | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 6 | 8 | 7 | 3 | 5 | 4 |
| 3 | 8 | 5 | 7 | 1 | 4 | 2 | 6 |
| 4 | 7 | 8 | 2 | 3 | 1 | 6 | 5 |
| 5 | 6 | 2 | 3 | 8 | 7 | 4 | 1 |
| 6 | 4 | 7 | 5 | 2 | 8 | 1 | 3 |
| 7 | 3 | 1 | 6 | 4 | 5 | 8 | 2 |
| 8 | 5 | 4 | 1 | 6 | 2 | 3 | 7 |

Tab. 25

We have deduced multiplication tables for six quasifields. These quasifields are mutually isomorphic. If we take as a starting quasifield e. g. that of table 17 (i. e. the Hall's denotation U.) then the corresponding isomorphisms are given by the following permutations of the set $\{3,4,5,6,7,8\}=G \boldsymbol{F}(9)$ $\backslash \operatorname{GF}(3): \tau_{2}=(354)(678), \tau_{3}=(345)(687), \tau_{4}=(36)(47)(58)$, $\tau_{5}=(37)(48)(56)$ and $\tau_{6}=(38)(46)(57)$. All the isomorphisms of these quasifields with kernels different from GF(3) form a group isomorphic with the symmetric group S_{3}.
7. It is possible to find also such sets which contain also mon - dispersing matrices, for instance $\mathbb{M}_{13}=\left\{\mathbf{M}_{1,4} ; \mathbf{M}_{2,7} ;\right.$ $\left.\mathbf{M}_{3,5} ; \mathbf{M}_{4,6} ; \mathbf{M}_{5,2} ; \mathbf{M}_{6,1} ; \mathbf{M}_{7,8} ; \mathbf{M}_{8,3}\right\}$. The corresponding tables are Tables 26-27.

Final remarks: The operation from Table 27 is only a quasigroup one and not a loop one. As it is easily seen ($S,+,{ }^{\bullet}$) is a right quasifield. Table 27 is isotopic with Table $21:(\varphi, \psi, \mathcal{X})=((345)(687)$, id, id). We can verify that the natural ordering of the set \prod_{x} by the first indices of the matrices $M_{i, j} \in T_{\mathscr{B}}$ induces a mispersing ${ }^{m}$ order of second indices given by some of $3^{\text {rd }}$ to $8^{\text {th }}$ rows of multiplication tables $2 k+1^{\prime \prime} ; k=1,2, \ldots ., 12$.

$$
\begin{aligned}
& 0 \\
& \text { Tab. } 27 \\
& \text { References } \\
& \text { [1] U. Dempwolff - A. Reifart, The classification of the } \\
& \text { translation planes of order 16, I., Geometriae } \\
& \text { Dedicata } 15 \text { (1983), 137-153 } \\
& \text { [2] M. Hall, Jr., Projective Planes, Trans. Amer. Math. Soc. } \\
& 54 \text { (1943), 229-277 } \\
& \text { [3] H. Lüneburg, Translation Planes, Berlin - Heidelberg - } \\
& \text { - New York } 1980 \\
& \text { [4] T. G. Room - P. B. Kirkpatrick, Miniquaternion Geometry, } \\
& \text { Cambridge, } 1971
\end{aligned}
$$

```
Mathematics Department
Technical University
60200 Brno, Gorkeho 13
Czechoslovakia
```

