Commentationes Mathematicae Universitatis Carolinae

Mieczysłav Mastyło

Interpolation spaces $\bar{X}_{\phi(\bar{E})}$

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 4, 713--721
Persistent URL: http://dml.cz/dmlcz/106490

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
 27.4 (1986)

INTERPOLATION SPACES $\bar{X}_{\boldsymbol{\varphi}}(\bar{E})$
 Miecrystav MASTYEO

Abstract: There are given necessary and sufficient conditions unider some assumptions on the couples of Banach lattices E and \vec{F}, that for some couples of Banach lattices \bar{X}, the spaces $\bar{X}_{\varphi(\bar{E})}$ and $\bar{X}_{\psi(\bar{F})}$ intermediate with respect to $\left(\bar{X}_{\varphi_{0}}(\bar{E}), \bar{X}_{\varphi_{1}}(\bar{E})\right.$) and ${ }^{\left(\bar{X}_{\Psi_{0}}\right.}(\bar{F}), \bar{X}_{Y_{1}}(\bar{F})$), respectively are (positive) interpolation spaces with respect to $\left(\bar{X}_{\varphi_{0}}(\bar{E}), \bar{X}_{\varphi_{1}}(\bar{E})\right.$) and $\left(\bar{X}_{\psi_{0}}(\bar{F}), \bar{X}_{\psi_{1}}(\bar{F})\right.$).

Key words: Peetre's K-functional, Calderón-Lozanovskii spaces, interpolation spaces.

Classification: 46E30, 46E35

1. Introduction. Let A_{0} and A_{1} be two Banach spaces. We say that $\bar{A}=\left(A_{0}, A_{1}\right)$ is a Banach souple if both A_{0} and A_{1} are continuously embedded in some Háusdorff topological vector space.

A Banach space is called intermediate with respect to \bar{A} if $A_{0} \cap A_{1} \subset A \subset A_{0}+A_{1}$ with continuous embeddings. Let \bar{A} and \bar{B} be two Banach couples and let T be a linear operator mapping $A_{0}+A_{1}$ into $B_{0}+B_{1}$. We write $T: \bar{A} \rightarrow \bar{B}$ if the restriction of T to A_{i} defines a bounded linear operator from A_{i} into $B_{i}, i=0,1$.

Let A and B be two intermediate spaces with respect to \bar{A} and \bar{B}, respectively. We say that A and B are interpolation spaces with respect to \bar{A} and \bar{B} if every linear operator T such that $T: \bar{A} \rightarrow$ $\rightarrow \bar{B}$ maps A into B. If $\bar{A}=\bar{B}$ and $A=B$ we say simply that A is an interpolation space with respect to \bar{A}.

The closed graph theorem implies that if A and B are interpolation spaces with respect to \bar{A} and \bar{B}, then there exists a positive constant C such that

$$
\begin{equation*}
|T|_{A \rightarrow B} \leqslant C \quad \max \left\{|T|_{A_{0} \rightarrow B_{0}},|T|_{A_{1} \rightarrow B_{1}}\right\} \tag{1}
\end{equation*}
$$

- 713 -
for any $\overline{\mathrm{T}}: \overline{\mathrm{A}} \rightarrow \overline{\mathrm{B}}$ (see [4], p.34).
Let ($\Omega, \Sigma, \Sigma, \mu$) be a complete δ-finite measure space and let us denote by $L^{0}=L^{\circ}(\Omega, \Sigma, \mu)$ the space of all equivalence classes of μ-measurable, real valued functions finite μ-a.e. on Ω equipped with the topology of convergence in measure. A Banach space $x \in L^{0}$ is called a Banach lattice (on (Ω, Σ, μ)) if $|x(t)| \leqslant$ $\leqslant|y(t)|$ a.e. and $y \in X$ implies that $x \in X$ and $\|x\|_{x} \leq\|y\|_{x}$.

A Banach lattice $X \in L^{0}$ has the ratou property if for every a.e. pointwise increasing sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of non-negative funcion in X with $\sup _{m \geq 1}\left\|x_{n}\right\|_{x}<\infty$, the function $x, x=\lim _{m \rightarrow \infty} x_{n}$, is in X with $\|x\|_{x}=\lim _{m \rightarrow \infty}\left\|x_{n}\right\|_{x}$.

For a Banach lattice X on (Ω, Σ, μ) and a weight function w (a.e. positive measurable function on Ω) by X_{w} we shall denote the space of all functions x such that $X W \in X$ with the norm $\|x\|_{X_{w}}:=\|x w\|_{x}$:

Notation: The equivalence $f \sim g$ means that $c_{1} f(t) \leq g(t) \leq$ $\leqslant c_{2} f(t)$ for some positive constants c_{1} and c_{2} and all $t \in \mathbb{R}_{+}:=$ $:=(0, \infty)$.
2. The Calderón-Lozanovskii space $\varphi(\overline{\mathrm{X}})$. A real function $\varphi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ belongs to the class U if it satisfies the following conditions:'
(i) $\varphi(\lambda s, \lambda t)=\lambda \varphi(s, t)$ for each $\lambda \geq 0$ and $s, t \in \mathbb{R}_{+}$, (ii) $0<\varphi(s, t) \leqslant \max \left\{\frac{s}{u}, \frac{t}{v}\right\} \varphi(u, v)$ for each $s, t, u, v \in \mathbb{R}_{+}$.
\overparen{U} denotes the class of functions $\varphi:[0, \infty) \times[0, \infty) \longrightarrow$ $\rightarrow[0, \infty)$ concave on \mathbb{R}_{+}^{2}, positive homogeneous. We observe that $\bar{u} \subset u$.

Let \bar{X} be a couple of Banach lattices on (Ω, Σ, μ) and let $\varphi \in \widetilde{u}$. We denote by $\dot{\varphi}(\bar{x})=\varphi\left(x_{0}, x_{1}\right)$ the Calderón-Lozanovskii space of all $x \in L^{\delta}$ such that for some $x_{i} \in X_{i},\left\|x_{i}\right\|_{x_{i}} \leqslant 1, i=0,1$ and for some $\lambda \in \mathbb{R}_{+}$holds $|x| \leqslant \lambda \varphi\left(\left|x_{0}\right|,\left|x_{1}\right|\right) \quad \mu-a . e$. We put $\|x\|_{\varphi(x)}=\inf \lambda$.

Note that $\varphi(\bar{X})$ is a Banach lattice intermediate with respect to \bar{X}. If in particular we take $\varphi(s, t)=s^{1-\alpha} t^{\alpha}, 0<\alpha<1$, we obtain the space $x_{0}^{1-\alpha} x_{1}^{\infty}$ introduced by Calderon [2]. The
space $\varphi(\bar{X})$ was investigated by Lozanovskii in [5].
Proposition 1. Let $\bar{\chi}$ be a couple of Banach lattices and let $\varphi_{0}, \varphi_{1}, \varphi \in \widehat{u}$, then

$$
\begin{equation*}
\psi(\bar{x})=\varphi\left(\varphi_{0}(\bar{x}), \varphi_{1}(\bar{x})\right) \tag{2}
\end{equation*}
$$

with equivalent norms, where $\psi(s, t)=\varphi\left(\varphi_{0}(s, t), \varphi_{1}(s, t)\right)$.
Proof. We observe that $\psi \in \widehat{\mathcal{U}}$. If $x \in \psi(\bar{x})$, then $|x| \leq$ $\leq \lambda \psi\left(\left|x_{0}\right|,\left|x_{1}\right|\right)$ a.e., for some $\lambda>0$ and for some $x_{i} \in X_{i}$, $\left\|x_{i}\right\| x_{i} \leq 1, i=0,1$. Hence $|x| \leq \lambda \varphi\left(y_{0}, y_{1}\right)$ a.e., where $y_{i}=$ $=\varphi_{i}\left(\dagger x_{0}\left|,\left|x_{1}\right|\right),\left\|y_{i}\right\|_{\varphi_{i}}(\bar{x}) \leq 1, i=0,1\right.$. This implies that $x \in \varphi\left(\varphi_{0}(\bar{x}), \varphi_{1}(\bar{x})\right)$ and $\left.\|x\|_{\varphi_{1}\left(\varphi_{0}\right.}(\bar{x}), \varphi_{1}(\bar{x})\right) \leqslant\|x\|_{\psi(\bar{x})}$, whence $\psi(\bar{x}) \subset \varphi\left(\varphi_{0}(\bar{x}), \varphi_{1}(\bar{x})\right)$ with continuous embedding.

On the other hand, let $x \in \varphi\left(\varphi_{0}(\bar{x}), \varphi_{1}(\bar{x})\right)$, then $|x| \leq \lambda \varphi\left(\left|x_{0}\right|,\left|x_{1}\right| ;\right.$ a.e., for some $\lambda>0$ and for some $x_{i} \in \varphi_{i}(\bar{x}), \quad\left\|x_{i}\right\|_{\varphi_{i}}(\bar{x}) \leq 1, i=0,1$.

For an $\varepsilon>0$ there exist $y_{0}, y_{0}^{\prime} \in X_{0}, y_{1}, y_{1}^{\prime} \in X_{1}$ such that

$$
\begin{aligned}
&\left|x_{0}\right| \leqslant(1+\varepsilon) \varphi_{0}\left(\left|y_{0}\right|,\left|y_{1}\right|\right), \quad\left\|y_{0}\right\|_{x_{0}} \leqslant 1, \quad\left\|y_{1}\right\| x_{1} \leqslant 1, \\
&\left|x_{1}\right| \leqslant(1+\varepsilon) \varphi_{1}\left(\left|y_{0}^{\prime}\right|,\left|y_{1}^{\prime}\right|\right), \quad\left\|y_{0}^{\prime}\right\|_{x_{0}} \leqslant 1, \quad\left\|y_{1}^{\prime}\right\|_{x_{1}} \leqslant 1,
\end{aligned}
$$

so we have

$$
\begin{aligned}
& |x| \leqslant \lambda \varphi\left(\left|x_{0}\right|,\left|x_{1}\right|\right) \leqslant(1+\varepsilon) \lambda \varphi\left(\varphi_{0}\left(\left|y_{0}\right|,\left|y_{1}\right|\right),\right. \\
& \left.\varphi_{1}\left(\left|y_{0}^{\prime}\right|,\left|y_{1}^{\prime}\right|\right)\right) \leqslant 2(1+\varepsilon) \lambda \varphi\left(\varphi_{0}\left(x_{0}^{\prime}, x_{1}^{\prime}\right), \varphi_{1}\left(x_{0}^{\prime}, x_{1}^{\prime}\right)\right)
\end{aligned}
$$

where

$$
x_{i}^{\prime}=\frac{1}{2} \max \left(\left|y_{i}\right|,\left|y_{i}^{\prime}\right|\right) \in x_{i}, \quad\left\|x_{i}^{\prime}\right\|_{x_{i}} \leqslant 1, \quad i=0,1
$$

Hence $x \in \psi(\bar{x})$ and $\left.\|x\|_{\psi(\bar{X})} \leqslant 2(1+\varepsilon)\|x\|_{\varphi\left(\varphi_{0}\right.}(\bar{x}), \varphi_{1}(\bar{x})\right)$. Since is an arbitrary positive number, we obtain $\|x\|_{\psi(\bar{x})} \leq$ $\left.\leq 2\|x\|_{\varphi\left(\varphi_{0}\right.}(\bar{x}), \varphi_{1}(\bar{x})\right)$, this implies $\varphi\left(\varphi_{0}(\bar{x}), \varphi_{1}(\bar{x})\right) \in \psi(\bar{x})$ with continuous embedding and the proof is complete.

Let E and F be two Banach lattices, then we say that a linear operator $T: E \longrightarrow F$ is positive, if $0 \leqslant T x$ a.e. for each $0 \leq x \in E$.

Let X and \bar{Y} be two couples of Banach lattices and let X and Y be two Banach lattices intermediate with respect to \bar{X} and \bar{Y},
respectively. We say that X and Y are positive interpolation spaces with respect to \bar{X} and \bar{Y}, if every positive operator $T: \bar{X} \rightarrow \bar{Y}$ maps X into Y boundedly with ${ }^{\prime}$

$$
\|T\|_{X \rightarrow Y} \leqslant c \max \left\{\|T\|_{X_{0} \rightarrow Y_{0}},\|T\|_{\left.X_{1} \rightarrow Y_{1}\right\}}\right.
$$

for some constant c independent of T. If $\bar{X}=\bar{Y}$ and $X=Y$ we say that X is a positive interpolation space with respect to \bar{X}. We can easily show:

Proposition 2. Let \bar{X} and \bar{Y} be two couples of Banach lattices, then the spaces $\varphi(\bar{X})$ and $\varphi(\bar{Y})$ are positive interpolation spaces with respect to \bar{X} and $\bar{\gamma}$.
By Proposition 1 and 2, we get the following
Corollary 1. Let \bar{X}, \bar{Y} be two couples of Banach lattices and let $\varphi_{i}, \Psi_{i}, \varphi \in \widehat{U}, i=0,1$. Then the spaces $\varphi\left(\varphi_{0}, \varphi_{1}\right)(\bar{x})$ and $\varphi\left(\psi_{0}, \psi_{1}\right)(\bar{Y})$ are positive interpolation spaces with respect to $\left(\varphi_{0}(\bar{X}), \varphi_{1}(\bar{X})\right)$ and ($\left.\psi_{0}(\bar{y}), \psi_{1}(\bar{Y})\right)$.

Proposition 3 (cf. [6]). Let $\varphi_{0}, \varphi_{1}, \varphi \in U, \psi_{0^{\prime}}, \psi_{1}, \psi \in U$ and let c be a positive constant, then the following inequality

$$
\begin{equation*}
\frac{\varphi(u, v)}{\psi(s, t)} \leq c \max \left\{\frac{\varphi_{0}(u, v)}{\psi_{0}(s, t)}, \frac{\varphi_{1}(u, v)}{\psi_{1}(s, t)}\right\} \tag{3}
\end{equation*}
$$

for each $s, t, u, v \in \mathbb{R}_{+}$
holds if and only if $\varphi(u, v) \leqslant c_{1} \theta\left(\varphi_{0}(u, v), \varphi_{1}(u, v)\right)$ and $\psi(u, v) \geq c_{2} \theta\left(\psi_{0}(u, v), \Psi_{1}(u, v)\right)$ for some function $\theta \in \widehat{U}$ and some constants $c_{1}, c_{2}>0$.
3. The interpolation space $\bar{\beta}_{E}$. Let \bar{A} be a Banach couple and let $E \subset L^{0}\left(\mathbb{R}_{+}, d t / t\right)$ be a Banach lattice such that $\min (1, t) \in E$, then the space

$$
\bar{A}_{E}:=\left\{a \in A_{0}+A_{1}: K(\cdot, a ; \bar{A}) \in E\right\}
$$

is a Banach space with the norm

$$
\|a\|_{\bar{A}_{E}}=\|K(\cdot, a, \bar{A})\|_{E},
$$

where $K(t, a ; \bar{A})=$ inffilla $\left.\left\|_{A_{0}}+t\right\|_{a_{1}} \|_{A_{1}}: a=a_{0}+a_{1}, a a_{0} G A_{0}, a_{1} \in A_{1}\right\}$ $t \in \mathbb{R}_{+}$, is the K-functional of Peetre. For each a $\in A_{0}+A_{1}$
$K(t, a: \bar{A})$ is a concave function on \mathbb{R}_{+}, so for each $s, t \in \mathbb{R}_{+}$
(4) $\quad \min \left(1, \frac{S}{\mathbf{T}}\right) K(t, a ; \bar{A}) \leqslant K(s . a ; \bar{A})$.

If $a \in \bar{A}_{E}$ then by inequality (4) we get

$$
\begin{equation*}
K(t, a ; \bar{\pi}) \doteq \varphi_{E}(t)\|a\|_{\bar{A}_{E}}, \tag{5}
\end{equation*}
$$

where $\varphi_{E}(t)=\|\min (1, \underset{\mathbf{t}}{\mathbf{s}})\|_{E}^{-1}$. We observe that the function φ_{E} is quasi-concave $\left(0<\varphi_{E}(t) \leqslant \max \left(1, \frac{\mathrm{~T}}{\mathrm{~s}}\right) \varphi_{E}(\mathrm{~s})\right.$ for each $\left.s, t \in \mathbb{R}_{+}\right)$. We say that a Banach couple \bar{A} is of type (\mathcal{A}) (cif. [1]) if for each $t \in \mathbb{R}_{+}$there exists an element a_{t}, such that

$$
\begin{equation*}
c_{1} \min \left(1, \frac{S}{t}\right) \leq K\left(s, a_{t} ; \bar{A}\right) \leq c_{2} \min \left(1, \frac{5}{t}\right) \tag{6}
\end{equation*}
$$

for some dositive constants c_{1}, c_{2} and all $s \in \mathbb{R}_{+}$.
Example. Let X_{0} and X_{1} be two symmetric spaces defined on $(0, \infty)$ (see [4]) with the fundamental functions $\Phi_{X_{i}}(t):=$ $:=\left\|x_{(0, t)}\right\|_{x_{i}}, i=0,1$, where $x_{(0, t)}$ is the characteristic function of the interval $(0, t)$. If the function $\Phi_{01}(t)=$ $=\Phi_{X_{0}}(t) / \Phi_{X_{1}}(t)$ is such that $\Phi_{01}\left(\mathbb{R}_{+}\right)=\mathbb{R}_{+}$, then a couple (x_{0}, x_{1}) is of type (Ω).

Really we have $K\left(s, \chi_{(0, t)} ; \bar{X}\right)=\min \left(\Phi_{X_{0}}(t), s \Phi_{X_{1}}(t)\right)$. Since for each $t \in \mathbb{R}_{+}$there exists t_{*} such that $\Phi_{01}\left(t_{*}\right)=t$, so for

Theorem 1. Let \bar{A} be a Banach couple of type (\mathcal{A}). If the spaces \bar{A}_{E}, \bar{A}_{F} intermediste with respect to ($\bar{A}_{E_{0}}, \bar{A}_{E_{1}}$) and ($\bar{A}_{F_{0}}, \bar{A}_{F_{1}}$), respectively are interpolation spaces' with respect to ($\bar{A}_{E_{0}}, \bar{A}_{E_{1}}$) and ($\bar{A}_{F_{0}}, \bar{A}_{F_{1}}$), then there exists a constant $c>0$ such that

$$
\begin{equation*}
\frac{\varphi_{E}(s)}{\varphi_{F}(t)} \leq c \max \left\{\frac{\varphi_{E_{0}}(s)}{\varphi_{F_{0}}(t)}, \frac{\varphi_{E_{1}}(s)}{\varphi_{F_{1}}(t)}\right\} \tag{7}
\end{equation*}
$$

for each $s, t \in \mathbb{R}_{+}$.
Proof. Let \bar{A} be a couple of type (\mathcal{A}). Put $A_{s}=\left\{\lambda_{a_{s}}: \lambda \in \mathbb{R}\right\}$, $f_{s}\left(\lambda a_{s}\right)=\lambda, s \in \mathbb{R}_{+}$. Then $K\left(s, a_{s} ; \bar{A}\right) \geq c_{1}$ and
$\left|f_{s}(a)\right| \leq \frac{1}{c_{1}} K(s, a ; \bar{A})$ for $a \in A_{s}$., Hence f_{s} is a continuous linear functional on a linear subspace A_{s} of a Banach space $A_{0}+A_{1}$ with the norm $K(s, a ; \bar{A})$. By the Hahn-Banach theorem the functional f_{s} can be extended to the functional \bar{f}_{s}, defined on the whole space $A_{0}+A_{1}$ such that

$$
\begin{equation*}
\left|\bar{f}_{s}(a)\right| \leq \frac{1}{c_{1}} K(s, a ; \bar{A}) \text { for each } a \in A_{0}+A_{1} . \tag{8}
\end{equation*}
$$

For each $s, t \in \mathbb{R}_{+}$we define operators $T_{s, t}: A_{0}+A_{1} \rightarrow A_{0}+A_{1}$, $T_{s, t}{ }^{a=\bar{f}_{s}}(a) a_{t}$. Let $a \in \bar{A}_{E_{i}}, i=0,1$, then from (5), (6) and (8) we have

$$
\begin{aligned}
& \quad \| T_{s, t}{ }^{a\left\|_{\bar{A}_{F_{i}}}=\right\| K\left(\xi, \bar{f}_{s}(a) a_{t} ; \bar{A}\right)\left\|_{F_{i}}=\left|\bar{f}_{s}(a)\right|\right\| K\left(\xi, a, a_{t} ; \bar{A}\right) \|_{F_{i}} \leq} \\
& \quad \leq c_{2}\left|\bar{f}_{s}(a)\right|\|\min (1, \xi / t)\|_{F_{i}}=c_{2} \frac{\left|\bar{f}_{s}(a)\right|}{\varphi_{F_{i}}(t)} \leqslant \frac{c_{2}}{c_{1}} \frac{K(s, a ; \bar{A})}{\varphi_{F_{i}}(t)} \leq \\
& \quad \leq \frac{c_{2}}{c_{1}} \frac{\varphi_{E_{i}}(s)}{\varphi_{F_{i}}^{(t)}}\|a\|_{\bar{A}_{E_{i}}} \\
& \text { Hence, we get }
\end{aligned}
$$

$$
\begin{equation*}
i\left\|T_{s, t}\right\|_{\bar{A}_{E_{i}} \rightarrow \bar{A}_{F_{i}}} \leq \frac{c_{2}}{c_{1}} \frac{\varphi_{E_{i}}(s)}{\varphi_{F_{i}}(t)}, \quad i=0,1 \tag{9}
\end{equation*}
$$

Let us see that $\varphi_{E}(s) a_{s} \in \bar{A}_{E_{i}}, i=0,1$, and
$\left\|T_{s, t}\left(\varphi_{E}(s) a_{s}\right)\right\|_{A_{F}} \geq c_{1} \frac{\varphi_{E}(s)}{\varphi_{F}(t)}$, whence

$$
\begin{equation*}
\left\|T_{s, t}\right\|_{\bar{A}_{e} \rightarrow \bar{A}_{F}} \geq c_{1} \frac{\varphi_{E}(s)}{\varphi_{F}(t)} \tag{10}
\end{equation*}
$$

By inequalities (9),(10) and (1) we obtain (7). From Proposition 3 and Theorem 1, we obtain Corollary.

Corollary 2. If for a Banach couple \bar{A} of type (Ω) the Banach space, \bar{A}_{E} intermediate with respect to $\left(\bar{A}_{E_{0}}, \bar{A}_{E_{1}}\right)$ is an interpolation space, with respect to ($\bar{A}_{E_{0}}, \bar{A}_{E_{1}}$), then there exists a
concave function θ on \mathbb{R}_{+}such that
$\varphi_{E}(t) \sim \varphi_{E_{0}}(t) \theta\left(\varphi_{E_{1}}(t) / \varphi_{E_{0}}(t)\right)$.
$-718-$

The following theorem can be proved in a similar way as the theorem 1 .

Theorem 2. Let $\left(X_{0}, X_{1}\right)$ be a couple of Banach lattices of type (\mathcal{A}). If the spaces \bar{X}_{E}, \bar{X}_{F} intermediate with respect to $\left(\bar{X}_{E_{0}}, \bar{X}_{E_{1}}\right)$ and ($\left.\bar{X}_{F_{0}}, \bar{X}_{F_{1}}\right)$, respectively are positive interpolation spaces with respect to ($\bar{X}_{E_{0}}, \bar{X}_{E_{1}}$) and ($\bar{X}_{F_{0}}, \bar{X}_{F_{1}}$), then there exists a constant $\mathrm{c}>0$ such that

$$
\begin{equation*}
\frac{\varphi_{E}(s)}{\varphi_{F}(t)} \leqslant c \max \left\{\frac{\varphi_{E_{0}}(s)}{\varphi_{F_{0}}(t)}, \frac{\varphi_{E_{1}}(s)}{\varphi_{F_{1}}(t)}\right\} \tag{11}
\end{equation*}
$$

for each $s, t \in \mathbb{R}_{+}$.
We say that a Banach lattice $E=L^{0}\left(R_{+}, \frac{d t}{t}\right)$ is the parameter of the K-method if $L^{\infty} \cap L_{1 / s}^{\infty}=E \subset L^{1}+L_{1 / s}^{1}$ and the Calderon operator $S x(t)=\int_{0}^{\infty} \min \left(1, \frac{t}{s}\right) x(s) \frac{d s}{s}$ is bounded in E (see [3.]).

In the sequel, let $E_{i}, F_{i}, i=0,1$ be parameters of the K-method such that $E_{i}=\left(L^{\infty}, L_{1 / s}^{\infty}\right)_{E_{i}}, F_{i}=\left(L^{\infty}, L_{1 / s}^{\infty}\right)_{F_{i}}, i=0,1$ and $\left(\varphi_{\mathrm{E}_{\mathrm{o}}} / \varphi_{\mathrm{E}_{1}}\right)\left(\mathbb{R}_{+}\right)=\mathbb{R _ { + }},\left(\varphi_{\mathrm{F}_{\mathrm{o}}} / \varphi_{\mathrm{F}_{1}}\right)\left(\mathbb{R}_{+}\right)=\mathbb{R _ { + }}$.

Theorem 3. Let $\varphi_{i}, \psi_{i}, \varphi, \psi \in \overparen{U}$ and let $\left(X_{0}, x_{1}\right)$ be a couple of Banach lattices of type (\mathcal{A}). The spac̣es $\bar{X}_{\varphi(\bar{E})}, \bar{X}_{\psi(\bar{F})}$ intermediate with respect to $\left(\bar{X}_{\varphi_{0}}(\bar{E}), \bar{X}_{\varphi_{1}}(\bar{E})\right)$ and $\left(\bar{X}_{\psi_{0}}(\bar{F}), \bar{X}_{\psi_{1}}(\bar{F})\right)$, respectively are positive interpolation spaces with respect to $\left(\bar{X}_{\mathcal{\varphi}_{0}}(\bar{E}), \bar{X}_{\mathcal{\rho}_{1}(\bar{E})}\right)$ and $\left(\bar{X}_{Y_{0}}(\bar{F}), \bar{X}_{\psi_{1}}(\bar{F})\right.$) if and only if there exists a constant $c>0$ such that the inequality (3) holds.

Proof. We easily obtain that $\rho_{\rho_{f}(E)}(t) r \sim \rho_{\rho}\left(\rho_{E_{0}}(t), \rho_{E_{1}}(t)\right)$, so the necessity follows from Theorem 2. Now, let the inequality (3) hold, then by Proposition 3, there exists the function $\Theta \in \overparen{\mathscr{U}}$ and constants $c_{1}, c_{2}>0$ such that $\varphi(u, v) \leqslant c_{1} \theta\left(\varphi_{0}(u, v), \varphi_{1}(u, v)\right)$ and $\psi(u, v) \geq c_{2} \Theta\left(\psi_{0}(u, v), \psi_{1}(u, v)\right)$ for all $u, v \in \mathbb{R}_{+}$. From Proposition 1 we have

$$
\begin{align*}
& \varphi(\bar{E}) \subset \theta\left(\varphi_{0}, \varphi_{1}\right)(\bar{E})=\theta\left(\varphi_{0}(\bar{E}), \varphi_{1}(\bar{E})\right), \tag{12}\\
& \psi(\bar{F}) \supset \theta\left(\psi_{0}, \psi_{1}\right)(\bar{F})=\theta\left(\psi_{0}(\bar{F}), \psi_{1}(\bar{F})\right)
\end{align*}
$$

with continuous inclusions. Since the operator S is positive, by Proposition 2 the spaces $\theta\left(\varphi_{0}, \varphi_{1}\right)(\bar{E})$ and $\theta\left(\psi_{0}, \psi_{1}\right)(\bar{F})$ are the parameters of the K-method. By Corollary 2 in [8] and (12) we get $\left.\bar{X}_{\varphi(\bar{E})} \subset \theta\left(\bar{X}_{\varphi_{0}}(\bar{E}), \bar{X}_{\varphi_{1}}(\bar{E})\right)=\bar{X}_{\theta\left(\varphi_{0}\right.}(\bar{E}), \varphi_{1}(\bar{E})\right)=\bar{X}_{\theta\left(\varphi_{0}, \varphi_{1}\right)(\bar{E})} \quad$, $\left.\bar{X}_{\theta\left(\psi_{0}, \psi_{1}\right)(\bar{F})}=\bar{X}_{\theta\left(\psi_{0}\right.}(\bar{F}), \psi_{1}(\bar{F})\right)=\theta\left(\bar{X}_{\psi_{0}}(\bar{F}), \bar{X}_{\psi_{1}}(\bar{F})\right) \subset \bar{X}_{\psi(\bar{F})}$ wi th continuous inclusions. Now; if the operator

$$
T:\left(\bar{X}_{\varphi_{0}}(\bar{E}), \bar{X}_{\varphi_{1}}(\bar{E})\right) \rightarrow\left(\bar{X}_{\psi_{0}}(\bar{F}), \bar{x}_{\psi_{1}}(\bar{F})\right)
$$

is positive and $x \in \bar{X}_{\varphi}(\bar{E})$, then

$$
\begin{aligned}
\|T x\|_{\psi(\bar{F})} & \left.\left.\leqslant c_{1}\|T x\|_{Q\left(\bar{X}_{\psi_{0}}(\bar{F})\right.}, \bar{X}_{\psi_{1}(\bar{F})}\right) \leqslant c_{2}\|x\|_{\theta\left(\bar{X}_{\varphi_{0}}(\bar{E})\right.}, \bar{X}_{\varphi_{1}}(\bar{E})\right)
\end{aligned}
$$

by Proposition 2 , where c_{1}, c_{2} and c_{3} are some positive constants. The proof is complete.

From Proposition 3 and Theorem 3 we obtain
Corollary 3. Let $\varphi_{0}, \varphi_{1}, \varphi \in \overparen{U}$ and let \bar{X} be a couple of Banach lattices of type (\mathcal{A}). The spaces $\bar{X}_{\varphi}(\bar{E}), \bar{X}_{\varphi}(\bar{F})$ are positive interpolation spaces with respect to $\left(\bar{X}_{\varphi_{0}}(\bar{E}), \bar{X}_{\varphi_{1}}(\bar{E})\right)$ and $\left(\bar{X}_{\varphi_{0}}(\bar{F}), \bar{X}_{\varphi_{1}}(\bar{F})\right)$ if and only if $\varphi(u, v) \sim \theta\left(\varphi_{0}(u, v), \varphi_{1}(u, v)\right)$ with some function $\theta \in \overparen{U}$.

If the spaces $X_{i}, F_{i}, i=0,1$ have the F atou property, then by - result of Ovčinnikov [7] we obtain an analogous interpolation theorem if we take "interpolation" instead of "positive interpolation" in Theorem 3.

References

[1] ASEKRITOVA I.U.: On the K-functional of the pair
$\left(K_{\Phi_{0}}(\bar{X}), K_{\Phi_{1}}(\bar{X})\right)$, Collection of papers on "Theory of functions of several real variables", Jaroslavl, 1980, 3-32 (Russian).
[2] CALDERÓN A.P.: Intermediate spaces and interpolation, the complex method, Studia Math.24(1964), 113-190.
[3] DMITRIEV V.I. and OVČINNIKOV V.I.: On interpolation in real method spaces, Soviet Math.Dokl. 20(1979), 538-542 (Russian).
[4] KREIN S.G. and PETUNIN Yu.I. and SEMENOV E.M.: Interpolation of linear operators, Nauka,Moscow, 1978 (Russian), English translation: American Mathematical Society, Providence, 1981).
[5] LOZANOVSKII G.Ya.: On some Banach lattices IV, Sibirski Math.J. 14(1973), 140-155 (Russian).
[6] MASTYKO M.: Interpolation of linear operators in CalderónLozanovskii spaces, Comment.Math. Prace Mat. (to appear).
[7] OVČINNIKOV V.I.: Interpolation theorems resulting from an inequality of Grothendieck, Funkcional.Anal.i Priložen. 10(1976), 45-54 (Russian).
[8] VODOP' YANOV V.V.: Commutativity of the K-method of interpolation and Calderón-Lozanovskii method, Izv.Vyssh. Uchebn.Zaved., Mat . 2(1984), 58-60 (Russian).

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
(Oblatum 25.2. 1986)

