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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
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REMARKS CONCERNING J. WITTE'S THEOREM 
AND ITS APPLICATIONS 

Joief BANA£ *) and Jesus RIVERO 

Abstract: In this paper some variant of the theorem due to 
Oiirgen Witte [13] is d i s c u s s e d . Theorems on uniqueness for the 
Cauchy's problem of ordinary differential equations are d e r i v e d . 
Moreover an application to differential equations in the case of 
Banach spaces is shown. 
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1- I n t r o d u c t i o n . It is well known that the so-called unique
ness criteria for the initial value problem 

(1) x' = f(t,x), x(0) = xQ 

can be obtained via various types of Kamke comparison functions, 
among others (cf. for example [2, 6, 10, 12]). 

Let us recall that a function co : < 0,T>xR+—>• R+ (or -co : 

:(0,T>xR+—>• R+) is called a Kamke comparison function (cf. £21) 

if the inequality 

||f(t,x) - f(t,y)|l & ca(t,ttx-yl) 

together with some assumptions concerning the function c«>(t,tO gua

rantee that the initial value problem (1) has at most one solution. 

Examples of Kamke comparison functions can be provided by the cri

teria of Lipschitz, Nagumo or Osgood £12], for instance. 

2 
In the paper [9] Rogers has used the function <o(t,u)=u/t 

which is no longer of Kamke type because the above mentioned in

equality does not imply that (1) has at most one solution. In or

der to obtain a uniqueness criterion for (1) Rogers had to put an 

extra assumption concerning the behavior of a function f(t,x). 

x) ThJ.s paper was done while the first author visited the Univer-
sidad de Los Andes, Venezuela 
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The result of Rogers was next generalized by Witte in [13] who 

considered the function of the form o>(t,u)=a(t)u with a(t) being 

generally discontinuous at t =0 . 

The aim of this paper is to give some generalizations and ap

plications of the result due to Wi t te . We formulate the unique

ness theorem for (1) being more general than that of Wi t te . 

Moreover, we consider also the so-called one-sided condition gua

ranteeing the uniqueness for ( 1 ) . The applicability of Witte's ty

pe theorem to the case of a Banach space is also indicated . 

2 . Some lemma of Witte's t ype . In this section we remind the 

result of 3 . Witte £13] concerning some integral inequa l i ty . We 

point out also to some consequences of this r e s u l t . 

The mentioned result is formulated in a little more general form 

than in Cl3], Apart from- that we give a simple proof of this re

sult because that given in [13] seems to be unnecessarily compli

cated. 

Lemma 1. Let u:<0,l>—>-<0,+ oo) be a continuous function 

and let the following assumptions be satisfied: 

(i) a:(0,l>—>(0, + CD ) is a given continuous function, 

(ii) there exists a function A:(0,1>—>R such that A'(t) = 

=a(t) for almost all tc(0.1> and there exists*the limit lim A(t) 
"i ~> (In

finite or not), 

(iii) u(t) dfr f* a(s)u(s)ds, te<0,t>, 
j o 

(iv) u(t)=o(exp(A(t))) as t — > 0+. 

Then u(t) s 0 on the intervalX0,1> » 

Proof. Let us put F(t)= f a(s)u(s)ds, te<0,l> . We have 

F'(t) = a(t)u(t)^ a(t)F(t). 

Hence 

F'(t)exp(-A(t)) - a(t)F(t)exp(-A(t))^0 

which can be written in the form 

d/dt Lexp(-A(t))F(t)3-60 

for almost all te<0,l> . This allows us to deduce that the func

tion t—> exp(-A(t))F(t) is nonincreasing (cf. til). Hence, choo

sing €/ •?> 0 and taking t sufficiently small, in view of (iv) we 
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get 

exp(-A(t))F(t) = exp(-A(t)) f* a(s)u(s)ds £ 
JQ 

± e exp(-A(t)) f*a(s)exp(A(s))ds^ s exp(-A(t))exp(A(t)) = S 
J0 

so that lim exp(-A(t))F(t)=0. Consequently 
i -•-> 0-v-

exp(-A(t))F(t)*0 * 

for t-> 0 which implies that 

f i a (s )u (s )ds-= .0 . 

Hence u(t) s 0 and the proof is complete. 

Remark. Taking a(t)=l/t and A(t)=lnt we obtain the well known 

Nagumo's criterion 183. The condition (iv) has now the form 

u(t) = o(t) as t~~> 0+. 

Similarly, assuming that a(t) is continuous on the interval <0, 1> 

and putting A(t)= f a(s)ds we can derive the Gronwall's lemma 

[12]. Further notice that in the case a(t)=l/t , cc > 0 and 

A(t) = -l/t°& the condition (iv) ha*s the form 

u(t) = o(exp(-l/oc t*)) as t—>0+. 

Particularly for cc-1 we obtain the Rogers's lemma 19J. 

Finally, consider the situation a(t)=c/t, when o l , c=const. This 

case is not covered by Nagumo's criterion 1123. Note that here the 

assumption (iv) may have the form 

' u(t) = o(tc) as t —>0+. 

3. Theorems on uniqueness. Now we give the theorems on uni

queness of solutions of ordinary differential equations. 

Theorem 1. Let f(t,x) be a continuous function on the set 

(0,1>?<R and satisfy the conditions: 

(2) |f(t,x)-f(t,y)Ua(t)|x-y| 

(3) |f(t,x)-f(t,y)|i.o(a(t)exp(A(t))) as t — > 0+ uniformly with 

respect to x,y «.<x -<f ,x - ef>> <f > 0 - arbitrary, 
where a(t), A(t) are such as in Lemma 1. 
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Then the initial value problem (1) has at most one solution. 

Proof. Let us suppose that x, y are solutions of our prob

lem. Then by (2) we have 

|X(t) - y(t)| * f* a(s)|x(s) - y(s)|ds. 
J0 

Further, for an arbitrary e > 0 and t sufficiently small, by vir

tue of (3) we get 

|x(t)-y(t)| £ Jo |f(s,x(s))-f(s,y(s))|ds * & J0 a(s)exp(A(s))ds* 

-£ & exp(A(t)) 

wfrich in view of Lemma 1 completes the proof. 

Remark. 3. Witte t133 instead of (3) assumed that 

C D f(t,x) = o(a(t)exp( f* a(s)ds)) as t—> 0+, 

uniformly with respect to xc <f-cf/,or)" . An analogous assumption 

was made also by Rogers [9], namely he assumed that 

(3") f(t,x) = o(exp(-l/t)/t2) as t-—>0+. 

Actually the assumptions like to those of (3') and (3") imply 

the assumption (3) but not conversely. We show this with the 

following example. 

Let 

{ exp(-l/t)/t+exp(-l/t)+l, for x 2r t exp(-l/t), 

x/t2+exp(-l/t) + l, for O ^ x ^ t exp(-l/t), 

exp(-l/t) + l, for x £ 0 . 

This function is continuous on the set (0,l>xR and satisfies 

the assumptions of Theorem 1. The unique solution of the problem 

x'=f(t,x), x(0)=0 is x(t)=t exp(-l/t)+t. But on the other hand 

it is easy to check that f(t,x), does not satisfy the assumption 

(3') or (3"). 

This example shows that our theorem is more general than those 

given in t 9, 133. 
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Now we give a uniqueness theorem involving one-sided conditi- * 

ons (see e . g . E4, 121). Similarly, as before, let us assume that 

a:(0,l> —> (0,+oo) is a given continuous function and A:(0,1>—>R 

is such that A'(t)=a(t) for almost all t*(0,l> , and^the limit 

lim A(t) e x i s t s . Furthermore, we will assume that f:(0,l>xRn—*• 
i>0+ 
r-> Rn is continuous and 

(f(t,x) - f(t,y))(x-y)^a(t)(x-y)2 

for te(0,l> and x,y€,Rn (the above multiplication is understood 

as the scalar p r o d u c t ) . 

Moreover, 

f(t,x) - f(t,y) = o(a(t)exp(A(t))) as t—*0+, 

uniformly with respect to x ,y e <x - cf ,x + <<> where d" > 0 is arbit

r a r y . Then we have the following theorem. 

Theorem 2. Under the above assumptions the initial value 

problem (1) has at most one solution on the interval <0,1>» 

Proof. Let x-(t), x2(t) be solutions of our p roblem . Oenote 

c^(t)=(Xl(t)-X2(t)) . Using the first assumed inequality we get 

c/'(t)=((x1(t)-x2(t))
2)' = 2(x1(t)-x2(t))(x1(t)-x2(t)) = 

= 2(f(t,x1(t))-f(t,x2(t)))(x1(t)-x2(t)) £ 

.A 2a(t)(x1(t)-x2(t))2 = 2 a ( t ) d " ( t ) . 

Hence 

d"(t) - 2 a < t ) c T ( t ) . £ o ' 

and consequently 

<f(t)exp(-2A(t)) - 2 a ( t ) e x p , ( - 2 A ( t ) ) < f ( t ) ^ 0 . 

Thus 

d/dt [d'(t)exp(-2A(t))l *0 

for almost all t e<0,l> . The above inequality implies that the 

function t — ^ cf(t)exp(-2A(t)) is nonincreasing. On the other 

hand, taking &> 0 arbitrary and t sufficiently small and using 

our assumptions we derive 

di(t)exp(-2A(t))= exp(-2A(t))(Xl(t)-x2(t))
2 = 
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= exp(-2A(t))( j£* Ш s ^ Ы Ь И s . x ^ G s m d s ) 2 .-é 

ářexp(-2A(t)) Ê2( f ^ a Ы e x p Ш s ^ d s )
2
^ S

2
exp(-2A(t))exp(2A(t))= 

and further "1ne get 

lini cT(t)exp(-2A(t)) = 0 . 

Finally we deduce that cf(t)^0 which gives x,(t) == x « ( t ) . This 

assertion finishes the proof, 

A* Application to the case of Banach spaces. In this secti

on we give an application of Theorem 1 to the existence problem, 

f̂or ordinary differential equations in Banach spaces (cf, 1 4 1 ) . In 

our considerations we will use the notion of the so-called measure 

of noncompactness defined in the axiomatic way in the work 113 . 

We recall shortly some basic f a c t s . 

Let us assume that E is a given real Banach space. Denote by 32Tj-, 

#tr the families of all bounded and nonempty subsets or nonempty 

and relatively compact subsets
4
 of E, r e s p e c t i v e l y . 

Definition [ 1 1 . A function |U : M^—*<0,-J-CP) will be called 

a measure of noncompactness in the space E provided the following 

conditions are satisfied: 

(i) the family ker (U = fX € 73tL: <a(X) = 03 is nonempty and 
ker {uu c 2tp , 

( i i ) Xc Y «-*<u,(X) *<u<Y) , 

( H i ) <it(50= ^(Conv X)= <u(X), 

( i v ) < r * ( A X + ( l - A ) Y ) * A<* (X) + (1 -A)<e/ (Y) for A e < 0 , l > , 

( v ) i f Xn are c losed and X n + i c * n f o r n = l , 2 , . . . and i f 
CO 

lim ̂ (Xn)=0 then K^ = P. Xn=|-0 and X„ € ker AJL . 

For the properties of measures of noncompactness we refer to 

rn. 
Now let us consider an ordinary differential equation 

(4) x' = f(t,x) 

with the initial condition 
(5) x(0) = xQ. 

In what follows we will assume that f is a function defined on the 
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Cartesian product of the interval <0,T> and the closed ball 

K(x ,r) in the space E, with values in E. Moreover, the function 

f is uniformly continuous and bounded, |f(t,x)§«& A. 

Further, let |a be a given measure of noncompactness in the space 

E such that 4.x 1 c ker^ and a(t), A(t) be given functions of the 

same type as in Theorem 1. We assume that f satisfies the follow
ing comparison oondition 

(6) ^(x0+f(t,X))^a(t) (U(x), for t e<0,T>, XcK(xQ,r) 

and 

(7) <«,(xo+f(t,X))
 = o(a(t)exp(A(t))), as t — > 0+ 

uniformly with respect to XcK(x ,r). 

Under the above assumptions we have the following theorem 

which generalizes those given in T3, 413. 

Theorem 3. Let T-£l, A=^r. Then the equation (4) has at 

least one solution x which satisfies the condition (5). 

Moreover, x(t)t£ E ^ = Ix € E: <",(-£xl) = 03 for all t e<0,T> 

Proof. Let us consider the set X consisting of all functi

ons x:<0,T>—>E such that x(0)=xQ and §x(t)-x(s)ll * A|t-s| . 

Actually X is nonempty, closed,convex and equicontinuous in the 

space C«0,T>,E) with the usual maximum norm. The transformation 

F defined by the formula 

(Fx)(t) = xQ + Г f(s,x(s))ds -

maps continuously the set X into itself and our problem is equi

valent to the existence of a fixed point of F. Further, consider 

the sets X
n+1
=Conv FX

R
, n=0,l,2,... . All these sets are of the 

same type as X and X ,c X . Putting 

u
n
(t) =(tt(X

n
(t)), t€<0,T> 

we have 0-£ u ,(t).£ u (t) and moreover, in view of the properties 

of measures of noncompactness 111 we deduce that the sequence 

u(t) converges uniformly to a function u^ (t)= lim u„(t). Fur-

thermore, using (6) and Lemma 5 from 133 we get 

(8) un(t)=(u(x0+ ftf(s,Xn(s))ds) £ fQ |*(xo+f(s,Xn(s)))ds * 
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gf a(s) ̂ u.(Xn(s))ds *£ J a(s)un(s)ds. 

Next, let us fix an arbitrary e >* 0. Then from (7) we infer that 

there exists <f> 0 such that 

^(xQ+f(t,X))^ ea(t)exp(A(t)) 

for tc(0,cf> , XcK(x Q,r). Hence we'get 

un(t) £ f (U (x0+f(s,Xn__1(s)))ds *tfQ a(s)exp(A(s))ds^ eexp(A(t)) 

for tc(0,cf> , so that u.(t)=o(exp(A(t))) as t—*»• 0+ and consequent

ly 

(9) "^(t) = o(exp(A(t))) as t—*0+, 
i 

Moreover, the functions *t—**-a(t)u (t) are integnable on the inter
val <0,T> and the sequence a(t)u (t) converges uniformly to a 
function a(t)uop(t) so that via (8) we obtain 

uo- ( t ) - X a ( s ) u
æ

 (s )ds-Jo 
Combining the above inequality and (9) and applying Lemma 1 we 

conclude that ufl0(t) s 0. 

Finally notice that 

lim -tmax lu(t):t e<0,T>3l * 0 
CO 

so that the set X^ = JQ^ x is nonempty, closed, convex and con

tained in ker (U. . Now using the Schauder fixed point principle 

and some properties of measures of noncompactness [13 we obtain 

the desired assertion. Thus the proof is complete. 

Remark. In the proof of Theorem 3 we have used the ideas of 

the proof of an existence theorem given in [53. 
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