Commentationes Mathematicae Universitatis Caroline

Jan H. Chabrowski
 On the Dirichlet problem for a degenerate elliptic equation

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 1, 141--155

Persistent URL: http: //dml.cz/dmlcz/106517

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

28,1 (1987)

ON THE DIRICHLET PROBLEM FOR A DEGENERATE ELLIPTIC EQUATION
 J. H. CHABROWSKI

Abstract: We study the Dirichlet problem for an elliptic equation in a bounded domain $Q \subset R_{n}$ with the boundary data in $L^{2}(\partial Q)$. It is assumed that the ellipticity degenerates at every point of the boundary ∂Q. We prove the existence of a solution in a weighted Sobolev space $W^{1,2}(Q)$.

Key words: Degenerate elliptic equation, the Dirichlet problem.

C1assification: 35005, 35325

1. Introduction. In this paper we investigate the Dirichlet problem for a degenerate elliptic equation
(1) $(L+\lambda) u=-\sum_{i, j=1}^{n} D_{i}\left(\rho(x) a_{i j}(x) D_{j} u\right)+\sum_{i=1}^{n} a_{i}(x) D_{i} u+\left(a_{0}(x)+\lambda\right)=f(x)$
(2) $u=\Phi$ on ∂Q.

In a bounded domain $Q \subset R_{n}$ with a smooth boundary ∂Q, where λ is a real parameter, a boundary data Φ is in $L^{2}(\partial Q)$ and $\rho(x)$ is a C^{2}-function on \bar{Q} equivalent to the distance $d(x, \partial Q)$ for $x \in \bar{Q}$ and its properties are described in Section 2.

Throughout this paper we make the following assumptions
(A) The coefficients $a_{i j}, a_{i}$ and $a_{0}(i, j=1, \ldots, n)$ are in $C^{\infty}\left(R_{n}\right)$ $a_{i j}=a_{j i}(i, j=1, \ldots, n)$
(B) There exists a positive constant γ such that

$$
\gamma^{-1}|\xi|^{2} \leqslant \sum_{i, j=1}^{m} a_{i j}(x) \xi_{i} \xi_{j} \leqslant \gamma|\xi|^{2}
$$

for all $x \in \bar{Q}$ and $\xi \in R_{n}$. Moreover there exists a constant $\beta>0$ such that $a_{0}(x) \geqslant \beta$ on \bar{Q}.
(C) $f \in L^{2}(Q)$.

Since the elliptic equation (1) degenerates on ∂Q, the theory of second-order equations with non-negative characteristic form asserts that the boundary condition is to be imposed on a certain subset of ∂Q, which can be described with the aid of the so called Fichera function (see p. 17 in [10]). In our situation the Fithera function is reduced to $z(x)=\sum_{i} \sum_{1}^{n} a_{i}(x) D_{i} \rho(x)$. Consequently following the terminology of [10], the boundary condition (2) should be imposed on

$$
\Sigma_{2}=\left\{x \in \partial Q: \sum_{i=1}^{m} a_{i}(x) D_{i} \rho(x)>0\right\} .
$$

Throughout this work it is assumed that
(D) $\sum_{i=1}^{m} a_{i}(x) D_{i} \rho(x)>0$ on ∂Q,
therefore $\Sigma_{2}=0$.
The main difficulty encountered in constructing a solution of the Dirichlet problem with L^{2}-boundary data arises from the fact that functions in $L^{2}(\partial Q)$ are not, in general, traces of functions from the Sobolev space $W^{1,2}(Q)$. Consequently the Dirichlet problem (1), (2) cannot be reduced to the problem in $\dot{W}^{1,2}(Q)$. It is also clear that the boundary condition (2) requires a proper formulation.

The purpose of this note is to establish the existence of solutions to the problam (1), (2). We construct a solution by approximating Φ and f in $L^{2}(\partial Q)$ and $L^{2}(Q)$, respectively, by sequences of amoth functions. Then we can use the recent results of [7] in which the existence of solutions in $C(\bar{Q}) \cap C^{2}(Q)$ has been establisheu as well as some estimates near the boundary of the gradient of - solution. In Section 2 we find the uniform bound for this approximating sequence of solutions in a Sobolev space $\tilde{\mathbb{W}}^{2},{ }^{2}(Q)$. The Bpate $\mathbb{W}^{2},{ }^{2}(Q)$, defined in Section 2 , appears to be the right Sobolev space to study the Dirichlet problem (1), (2) with $\Phi \in L^{2}(\partial Q)$. Section 3 is devoted to the main existence result. In the final section we make some comments on the existence of solutions in the caue when (D) is replaced by a weaker condition
$\sum_{i=1}^{0_{i}}(x) D_{i} \rho(x) \geq 0$ on ∂Q.
The methods employed in this paper are not new and have appeared in [1], [2] and [9]. The degenerate Dirichlet problem has
an extensive literature (see for example [4],[5],[7], [10] and the references given there). The case where $\sum_{i=1}^{n \pi} a_{i}(x) D_{i} \rho(x)<0$ on ∂Q is more complex and in general the boundary condition is irrelevant (see [4]). Finally we point out that the case $\sum_{i=1}^{n} a_{i}(x) D_{i} \rho(x)>$ $>\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(x) D_{i} \rho(x) D_{j} \rho(x)$ on ∂Q has been considered in [5] but with zero boundary data.
2. Preliminaries. Let $r(x)=\operatorname{dist}(x, \partial Q)$ for $x \in \bar{Q}$. It follows from the regularity of the boundary ∂Q that there is a number o_{0}^{\sim} such that for $\sigma^{\prime} \in\left(0, \delta_{0}^{\delta}\right]$ the domain $Q_{\delta}=Q \cap\left\{x: \min _{y \in \partial \Omega}|x-y|>\delta\right\}$ with the boundary ∂Q_{δ} possesses the following property: to each $x_{0} \in \partial Q$ there is a unique point $x_{\delta}\left(x_{0}\right) \in \partial Q_{\delta}$ such that $x_{\delta}\left(x_{0}\right)=x_{0}-$ - $\delta \nu\left(x_{0}\right)$, where $\nu\left(x_{0}\right)$ is the outward normal to ∂Q at x_{0}. The above relation gives a one-to-one mapping at least of class c^{2}, of ∂Q onto ∂Q_{σ}. The inverse mapping of $x_{0} \rightarrow x_{\delta}\left(x_{0}\right)$ is given by the formula $x_{0}=x_{\delta}+\delta \nu_{\delta}\left(x_{\sigma}\right)$, where $\nu_{\delta}\left(x_{\sigma^{\prime}}\right)$ is the outward normal to ∂Q_{δ} at x_{δ}.

Now let $x_{0} \in \partial Q, 0<\delta<\delta_{0}$ and let $\bar{x}_{\delta^{\prime}}$ be given by $\bar{x}_{\delta^{\sigma}}=x_{\delta}\left(x_{0}\right)=$ $=x_{0}-\delta \nu\left(x_{0}\right)$. Let

$$
\begin{aligned}
& A_{\varepsilon}=\partial Q_{\delta^{\prime}} \cap\left\{x_{\delta^{\prime}} ;\left|x_{\delta}-\bar{x}_{\delta^{\prime}}\right|<\varepsilon\right\} \\
& B_{\varepsilon}=\left\{x ; \tilde{x}=x_{\delta^{\prime}}+\delta \nu_{\delta^{\prime}}\left(\tilde{x}_{\delta^{\prime}}\right), \quad \tilde{x}_{\delta} \in A_{\varepsilon}\right\}
\end{aligned}
$$

and

$$
\frac{d S_{\sigma}}{d S_{o}}=\lim _{\varepsilon \rightarrow 0} \frac{\left|A_{\varepsilon}\right|}{T B_{\varepsilon} \mid}
$$

where $|A|$ denotes the $n-1$ dimensional. Hausdorff measure of a set A. Mikhailov [9] proved that there is a positive number γ_{0} such that
(3) $\gamma_{0}^{-2} \leqslant \frac{d s_{0}}{d S_{0}} \leqslant \gamma_{0}^{2}$
and
(4) $\quad \lim _{\delta \rightarrow 0} \frac{d S_{\delta}}{d S_{0}}=1$
uniformly on ∂Q, and moreover $\frac{d S_{0}}{d s}$ at least C^{l}-function on

$$
\begin{aligned}
& \partial Q \times\left[0, \sigma_{0}^{5}\right] \text { (see formula (16) in [9]. } \\
& \text { According to Lemma } 1 \text { in }[31 \mathrm{p} .382 \text {, the distance } r(x) \text { belongs }
\end{aligned}
$$

to $C^{2}\left(\bar{Q}-Q_{\sigma_{0}^{\prime}}\right)$ if σ_{0} is sufficiently small. Denote by $\rho(x)$ the extension of the function $r(x)$ into \bar{Q} satisfying the following properties $\rho(x)=r(x)$ for $x \in \bar{Q}-Q_{\delta_{0}^{r}}, \rho \in C^{2}(\bar{Q}), \rho(x) \geq \frac{3 \delta_{0}}{4}$ in $Q_{\delta_{0}^{r}}$, $\gamma_{1}^{-1} r(x) \leqslant \rho(x) \leqslant \gamma_{1} r(x)$ in Q for some positive constant γ_{1}, $\partial Q_{0}=$ $=\{x ; \rho(x)=\delta\}_{\text {for }} \delta \in\left(0, \delta_{0}\right]$ and finally $\partial Q=\{x ; \rho(x)=0\}$.

The following result is an immediate consequence of Theorem 2.3 in [7].

Theorem 1. Let $\mathrm{f} \in W^{\ell, \infty}(Q)$ with $\ell \geq 1$. Then there exists $0<\mathscr{H}<1$ with $\mathscr{H} \inf _{\partial Q} \sum_{i=1}^{n} a_{i}(x) D_{i} \varrho(x)$ such that any solution u in $C^{2}(Q) \cap C(\bar{Q})$ of (1), (2) with $\Phi=0$ on ∂Q satisfies the estimate (5) $\quad\left|\mid \rho^{\left.1-\mathscr{H}_{D u}\left\|_{L^{\infty}(Q)} \leq C(\ell)| | f\right\|_{W \ell, 0(Q)}\right)}\right.$
where $C(\ell)$ is a constant.
To construct a solution of (1), (2) in $W_{10 c}^{2,2}(Q)$ we need
Lemma 1. Let Φ_{m} and f_{m} be sequences in $C^{2}(\partial Q)$ and $c^{1}(\bar{Q})$, respectively, such that
$\lim _{m \rightarrow \infty} \int_{\partial Q}\left[\Phi_{m}(x)-\Phi(x)\right]^{2} d S_{x}=0$ and $\lim _{m \rightarrow \infty} \int_{Q}\left[f_{m}(x)-f(x)\right]^{2} d x=0$.
Let u_{m} be a solution of (1) with $f=f_{m}$ in $C^{2}(Q) \cap C(\bar{Q})$ satisfying the boundary condition
(2m) $\quad u_{m}=\Phi_{m}$ on ∂Q.
Then there exist positive constants λ_{0} and C, independent of m, such that

$$
\begin{align*}
& \int_{Q}\left|D^{2} u_{m}\right|^{2} \rho^{3} d x+\int_{Q}\left|D u_{m}\right|^{2} \rho d x+\int_{Q} u_{m}^{2} d x \leq \tag{6}\\
\leqslant & C\left(\int_{Q} f_{m}^{2} d x+\int_{\partial Q} \Phi_{m}^{2} d s_{x}\right)
\end{align*}
$$

for all $m=1,2, \ldots$ and $\lambda \geq \lambda_{0}$.
Proof. According to Theorem 1 and Theorem 2.3 in [7] for each m there exists a solution u_{m} of $(1),\left(2_{m}\right)$ in $C^{2}(Q) \cap C(\bar{Q})$
 integrating by parts we obtain

$$
\begin{array}{r}
\quad \int_{\partial Q_{d^{\prime}}} \sigma_{i, j=1}^{m} a_{i j} D_{i} u_{m} \cdot u_{m} D_{j} \rho d S_{x}+\int_{Q_{\sigma}} \rho_{i, j=1}^{m} a_{i j} D_{i} u_{m} D_{j} u_{m} d x+ \\
+\int_{Q_{\delta i}} \sum_{i=1}^{m} a_{i} D_{i} u_{m} \cdot u_{m} d x+\int_{Q_{j}} a_{0} u_{m}^{2} d x+\lambda \int_{Q_{\sigma}} u_{m}^{2} d x=\int_{Q_{j}} \cdot f_{m} \cdot u_{m} d x . \\
-144-
\end{array}
$$

The first integral can be estimated using Young's inequality

$$
\begin{equation*}
\left|\int_{\partial Q_{\delta}} \delta^{r} \sum_{i, j=1}^{m} a_{i j} D_{i} u_{m} u_{m} D_{j} d S\right| \leq C_{1} \delta^{2} \int_{\partial Q_{\delta}}\left|D u_{m}\right|^{2} d s+\int_{\partial Q_{\delta}} u_{m}^{2} d s \tag{8}
\end{equation*}
$$

where C_{1} is independent of $\mathcal{\sigma}$. Integrating by parts the third integral we get
(9) $\quad \int_{Q_{\sigma}} \sum_{i=1}^{n} a_{i} D_{i} u_{m} \cdot u_{m} d x=\frac{1}{2} \int_{Q_{\delta}} \sum_{i=1}^{m} a_{i} D_{i}\left(u_{m}^{2}\right) d x=$,

$$
=-\frac{1}{2} \int_{\partial Q_{\sigma}} \sum_{i=1}^{n} a_{i} D_{i} \rho u_{m}^{2} d S-\frac{1}{2} \int_{Q_{\delta}} \sum_{i=1}^{n} D_{i} a_{i} u_{m}^{2} d x
$$

Combining (7), (8) and (9) with the ellipticity condition we arrive at the estimate

$$
\begin{aligned}
& \boldsymbol{\gamma}^{-1} \int_{Q_{\delta}} \rho\left|D u_{m}\right|^{2} d x+\int_{Q_{\sigma^{\sigma}}}\left(\lambda-\frac{1}{2}+a_{o^{-}}-\frac{1}{2} \sum_{i=1}^{m} D_{i} a_{i}\right) u_{m}^{2} d x \leq \\
& \leq C_{1} \delta^{2} \int_{\partial Q_{\sigma}}\left|D u_{m}\right|^{2} d S+\int_{\partial Q_{\sigma^{\sigma}}}\left(\frac{1}{2} \sum_{i=1}^{m} a_{i} D_{i} \rho+1\right) u_{m}^{2} d S+\frac{1}{2} \int_{Q_{\delta}} f_{m}^{2} d x . \\
& \text { Since } \quad 1-\partial Q_{D u_{m} \in L^{\infty}(Q), \lim _{\delta \rightarrow 0} \delta^{2} \int_{\partial Q_{\sigma^{\prime}}}\left|D u_{m}\right|^{2} d S_{x}=0 .}
\end{aligned}
$$

Consequently taking λ sufficiently large, say $\lambda \geq \lambda_{0}$, and letting $\delta \rightarrow 0$, we get

$$
\begin{equation*}
\int_{Q} \rho\left|D u_{m}\right|^{2} d x+\int_{Q} u_{m}^{2} d x \leq C_{2}\left(\int_{\partial Q} \Phi_{m}^{2} d S+\int_{Q} f_{m}^{2} d x\right) \tag{10}
\end{equation*}
$$

for all m , where C_{2} is independent of m . To estimate $\int_{Q}\left|D^{2} u_{m}\right|^{2} \rho^{3} d x$, we first observe that, if v is a $W^{2,2}$-function with compact support in Q, then

$$
\begin{aligned}
& \int_{Q} \rho_{i,} \sum_{j=1}^{n} a_{i j} D_{i} u_{m} D_{j k}^{2} v d x+\int_{Q} \sum_{i=1}^{n} a_{i} D_{i} u_{m} D_{k} v d x+\int_{Q}\left(a_{0}+\lambda\right) u_{m} D_{k} v d x= \\
& =\int_{Q} f_{m} D_{k} v d x .
\end{aligned}
$$

Integrating by parts the first integral we get

$$
\begin{aligned}
& \int_{Q} D_{k} \rho_{i, j=1}^{n} a_{i j} D_{i} u_{m} D_{j} v d x+\int_{Q} \rho_{i, j=1}^{m} D_{k} a_{i j} D_{i} u_{m} D_{j} v d x+ \\
& +\int_{Q} \rho_{i, j=1}^{n} a_{i j} D_{k i}^{2} u_{m} D_{j} v d x-\int_{Q} \sum_{i=1}^{n} a_{i} D_{i} u_{m} D_{k} v d x- \\
& -\int_{Q}\left(a_{0}+\lambda\right) u_{m} D_{k} v d x=-\int_{Q} f D_{k} v d x .
\end{aligned}
$$

Letting $v=D_{k} u_{m}(\rho-\delta)^{2}$ in Q_{δ} and $v=0$ on $Q-Q_{\sigma}$ we deduce from the last equation

$$
\begin{align*}
& \int_{Q_{\delta}} D_{k} \rho \sum_{i, j=1}^{m} a_{i j} D_{i} u_{m} D_{j k}^{2} u_{m}\left(\rho-\delta^{\gamma}\right)^{2}+ \tag{11}\\
+ & 2 \int_{Q_{\delta}} D_{k} \rho \sum_{i, \gamma=1}^{m} a_{i j} D_{i} u_{m} D_{k} u_{m} D_{j} \rho(\rho-\delta) d x+
\end{align*}
$$

$$
\begin{aligned}
& +\int_{Q_{\delta}} \rho_{i, j=1}^{m} D_{k} a_{i j} D_{i} u_{m} D_{j k}^{2} u_{m}(\rho-\delta)^{2} d x+2 \int_{Q_{\delta}} \rho_{i, j=1} \sum_{k}^{n} D_{k} a_{i j} D_{i} u_{m} D_{k} u_{m}(\rho-\delta) D_{j} \varphi d x+ \\
& +\int_{Q_{\delta}} \rho_{i} \sum_{j=1}^{m} a_{i j} D_{k i}^{2} u_{m} D_{k j}^{2} u_{m}(\rho-\delta)^{2} d x+2 \int_{Q_{\delta} \rho} \rho_{i, j=1}^{n} a_{i j} D_{k i}^{2} u_{m} D_{k} u_{m}(\rho-\delta) D_{j} \rho d x- \\
& -\int_{Q_{\delta}} \sum_{i=1}^{m} a_{i} D_{i} u_{m} D_{k k}^{2} u_{m}(\rho-\delta)^{2}-2 \int_{Q_{\delta}} \sum_{i=1}^{m} a_{i} D_{i} u_{m} D_{k} u_{m}(\rho-\delta) D_{k} \rho d x- \\
& -\int_{Q_{\delta}}\left(a_{0}+\lambda\right) u_{m} D_{k k}^{2} u_{m}(\rho-\delta)^{2} d x-2 \int_{Q_{\delta}}\left(a_{0}+\lambda\right) u_{m} D_{k} u_{m}(\rho-\delta) D_{k} \rho d x= \\
& =-\int_{Q_{\delta} f} f D_{k k}^{2} u_{m}(\rho-\delta)^{2} d x-2 \int_{Q_{\delta}} f D_{k} u_{m}(\rho-\delta) D_{k} \rho d x .
\end{aligned}
$$

Let us denote the integrals on the left side of (11) by J_{1}, \ldots, J_{10} Estimation of these integrals can be obtained as follows

$$
\begin{equation*}
J_{5} \geq \gamma^{-1} \int_{Q_{d}} \sum_{j=1}^{m}\left|D_{j k} u_{m}\right|^{2} \rho(\rho-\delta)^{2} d x \tag{12}
\end{equation*}
$$

Using the Young inequality we get

$$
\begin{align*}
& \left|J_{1}+J_{2}+J_{3}+J_{4}\right| \leqslant C_{3}(\varepsilon) \int_{Q_{\delta}}\left|D u_{m}\right|^{2}(\rho-\delta) d x+ \tag{13}\\
+ & \varepsilon \int_{Q_{d^{\prime}}} \sum_{j=1}^{m}\left|D_{k j} u_{m}\right|^{2}(\rho-\delta)^{3} d x .
\end{align*}
$$

Similarly we have
(14)

$$
\begin{align*}
& \left|J_{6^{+}} J_{7}\right| \leqslant C_{4}\left[\int_{Q_{\delta^{\prime}}} \rho\left|D u_{m}\right|^{2} d x+\int_{Q_{\delta}}\left|D u_{m}\right|^{2}(\rho-\delta) d x\right]+ \\
+\varepsilon & {\left[\int_{Q_{\delta}} \sum_{j=1}^{n}\left|D_{k j}^{2} u_{m}\right|^{2} \rho(\rho-\delta)^{2} d x+\int_{Q_{\delta}} \sum_{j=1}^{m} \mid D_{k j}^{2} u_{m} r^{2}(\rho-\delta)^{3} d x\right], } \\
& \left|J_{g}\right|+\left|\int_{Q_{\delta}} f D_{k k}^{2} u_{m}(\rho-\delta)^{2} d x\right| \leqslant C_{5}\left(\int_{Q_{\delta}} u_{m}^{2} d x+\int_{Q_{\delta}} f^{2} d x\right)+ \tag{15}\\
+\varepsilon & \int_{Q_{\delta}} \sum_{j=1}^{m}\left|0_{k j}^{2} u\right|^{2}(\rho-\delta)^{3} d x
\end{align*}
$$

and finally

$$
\begin{equation*}
\left|J_{8^{+}} J_{10}\right| \leqslant C_{6}\left[\int_{Q_{\delta}}\left|D u_{m}\right|^{2}(\rho-\delta) d x+\int_{Q_{\delta}} u_{m}^{2} d x\right] \tag{16}
\end{equation*}
$$

where C_{i} are independent of σ and $\varepsilon>0$ is to be determined. We deduce from (11) - (16) that

$$
\begin{aligned}
& \int_{Q_{\sigma}}\left[\left(\gamma^{-1}-\varepsilon\right) \rho(\rho-\delta)^{2}-3 \varepsilon(\rho-\delta)^{3}\right] \sum_{j=1}^{m}\left|D_{j k}^{2} u_{m}\right|^{2} d x \leq \\
& \leqslant C_{7}\left(\int_{Q_{\delta}}\left|D u_{m}\right|^{2}(\rho-\delta) d x+\int_{Q_{\sigma^{\prime}}}\left|D u_{m}\right|^{2} \rho d x+\int_{Q_{0} j^{\prime}} f^{2} d x+\int_{Q_{\sigma}} u_{m}^{2} d x\right)
\end{aligned}
$$

where $C_{7}>0$, Since

$$
\begin{aligned}
\left(\gamma^{-1}-\varepsilon\right) \rho(\rho-\delta)^{2}-3 \varepsilon(\rho-\delta)^{3}= & (\rho-\delta)^{2}\left[\left(\gamma^{-1}-\varepsilon\right) \rho-3 \varepsilon(\rho-\delta)\right]= \\
& -146-
\end{aligned}
$$

$$
\begin{aligned}
& =(\rho-\delta)^{2}\left[\left(\gamma^{-1}-\varepsilon\right)(\rho-\delta)+\delta\left(\gamma^{-1}-\varepsilon\right)-3 \varepsilon(\rho-\delta)\right]= \\
& =(\rho-\delta)^{2}\left[\left(\gamma^{-1}-4 \varepsilon\right)(\rho-\delta)+\delta\left(\gamma^{-1}-\varepsilon\right)\right]>(\rho-\delta)^{3}\left(\gamma^{-1}-4 \varepsilon\right)
\end{aligned}
$$

for ε sufficiently small, say $\varepsilon=\frac{\gamma^{-1}}{5}$, the last two inequalities yield
(17) $\quad \int_{Q_{\sigma^{\sim}}} \sum_{j=1}^{n}\left|D_{j k}^{2} u_{m}\right|^{2}(\rho-\delta)^{3} d x \leqslant 5 \gamma C_{7}\left[\int_{Q_{\delta}}\left|D u_{m}\right|^{2}(\rho-\delta) d x+\right.$ $\left.+\int_{Q_{\delta}}\left|D u_{m}\right|^{2} \rho d x+\int_{Q_{\delta}} f^{2} d x+\int_{Q_{\delta}} u_{m}^{2} d x\right]$.
Letting $\delta \rightarrow 0$ in (17) and combining the resulting inequality with (10) we easily arrive at (6).

Lemma 1 shows that a possible solution to the problem (1),(2) lies in the space $\tilde{W}^{2,2}(Q)$ defined by

$$
\begin{aligned}
& \widetilde{W}^{2,2}(Q)=\left\{u ; u \in W_{10 c}^{2}, 2(Q) \text { and } \int_{Q}\left|D^{2} u(x)\right|^{2} \rho(x)^{3} d x+\right. \\
& \left.+\int_{Q}|D u(x)|^{2} \rho(x) d x+\int_{Q} u(x)^{2} d x<\infty\right\}
\end{aligned}
$$

and equipped with the norm
$\|\left. u\right|_{\tilde{W}^{2}, 2} ^{2}=\int_{Q}\left|D^{2} u(x)\right|^{2} \rho(x)^{3} d x+\int_{Q}|D u(x)|^{2} \rho(x) d x+\int_{Q} u(x)^{2} d x$.
The proof that u_{m} converges weakly in $\tilde{w}^{2,2}(Q)$ to a solution of (1), (2) will, be given in Section 4.
3. Traces in $\tilde{W}^{2,2}(Q)$. To proceed further we need some properties of the space $\tilde{W}^{2,2}(Q)$.

- Lemma 2. If $u \in \tilde{W}^{2},{ }^{2}(Q)$ then $\delta^{2} \int_{\partial Q_{\delta}}|D u|^{2} d s$ is continuous on $\left[0, \delta_{0}\right]$ and moreover

$$
\lim _{\delta \rightarrow 0} \delta^{2} \int_{\partial Q_{\delta}}|\partial u|^{2} d S_{x}=0
$$

Proof. Let $0<\sigma<\delta_{0}$, then
$\int_{Q_{\delta}-Q_{\delta_{0}}} \rho\left|D_{i} u\right|^{2} d x=\int_{\delta^{\delta}}^{\delta_{0}} \mu d \mu \int_{\partial Q_{\mu}}\left[D_{i} u(x)\right]^{2} d s=$
$=\int_{\delta^{\prime}}^{\delta_{0}} \mu d \mu \int_{\partial Q}\left[D_{i} u\left(x\left(x_{0}\right)\right)\right]^{2} \frac{d s_{\mu}}{d S_{0}} d S_{0}=\frac{\delta^{2}}{2} \int_{\partial Q}\left[D_{i} u\left(x_{\delta_{0}^{\prime}}\left(x_{0}\right)\right)\right]^{2} \frac{d S_{0}}{d \delta_{0}} d S_{0}-$
$-\frac{\delta^{2}}{2} \int_{\partial Q}\left[D_{i} u\left(x\left(x_{0}\right)\right)\right]^{2} \frac{d S_{0}}{d S_{0}} d S_{0}-$
$-\int_{\delta}^{\delta_{0}} \mu^{2} \int_{\partial Q}\left[\sum_{j=1}^{m} D_{j i}^{2} u\left(x_{\mu}\left(x_{0}\right)\right) D_{i} u\left(x_{\mu}\left(x_{0}\right)\right) \frac{\partial x_{\mu}}{\partial \mu} \frac{d S}{\partial S^{-}}+\right.$
$\left.+\left[D_{i} u\left(x\left(x_{0}\right)\right)\right]^{2} \frac{\partial}{\partial \mu}\left(\frac{d S_{\mu}}{d S_{o}}\right)\right] d S_{0}$.
From this identity we can compute

$$
\delta^{2} \int_{\partial Q}\left[D_{i} u\left(x_{\delta}\left(x_{0}\right)\right)\right]^{2} \frac{d S_{\delta}}{d S_{o}} d S_{0}
$$

and express this integral in terms of other integrals which are continuous on $\left[0, \delta_{0}\right]$, since $u \in \tilde{W}^{2,2}(\Omega)$. On the other hand $\frac{d S_{o}}{d S_{0}} \rightarrow 1$, as $\delta \rightarrow 0$, uniformly on ∂Q, therefore the continuity of the integral $\delta^{2} \int_{\partial Q_{\delta}}|D u|^{2} d S$ easily follows. Assuming that
$\lim _{\delta \rightarrow 0} \delta^{2} \int_{\partial Q_{\delta^{\prime}}}|D u|^{2} d S>0$, we would have

$$
\sigma^{2} \int_{\partial Q_{\delta}}|D u|^{2} d S>a \text { on }\left(0, \delta_{1}\right]
$$

for some positive constants a and δ_{1} and this would imply that

$$
\int_{Q-Q_{\delta_{1}}} \rho|D u|^{2} d x=\int_{0}^{\delta_{1}} \mu d \mu \int_{\partial Q_{\mu}}|D u|^{2} d S=\infty
$$

and we get a contradiction.
Lemma 3. Let $u \in \widetilde{W}^{2,2}(Q)$ be a solution of (1), then

$$
\int_{\partial Q_{\delta}} u^{2} d S \text { is bounded on }\left(0, \delta_{0}\right]
$$

Proof. Multiplying (1) by u and integrating over Q_{j} we obtain
$\frac{1}{2} \int_{\partial Q_{\delta}} u^{2} \sum_{i=1}^{n} a_{i} D_{i} \rho d S S_{x}=-\frac{1}{2} \int_{Q_{\delta}} \sum_{i=1}^{n} D_{i} a_{i} u^{2} d x+\int_{Q_{\delta}} \rho_{i} \sum_{j=1}^{n} a_{i j} D_{i} u D_{j} u d x+$ $+\delta \int_{\partial Q_{\delta}} \sum_{i, j=1}^{n} a_{i j} D_{i} u \cdot u D_{j} \rho d S_{x}+\int_{Q_{\delta}}\left(a_{0}+\lambda\right) u^{2} d x-\int_{Q_{\delta}} f u d x$.
We may assume that

$$
a=\inf _{Q-Q_{\delta_{0}}} \sum_{i=1}^{m} a_{i}(x) D_{i} \rho(x)>0
$$

taking δ_{0} sufficiently small, if necessary. Since by Young's inequality

$$
\delta \int_{\partial Q_{\delta^{\prime}}} \sum_{i, j=1}^{n} a_{i j} D_{i} u \cdot u D_{j} \rho_{d S_{x}} \leqslant C \delta^{2} \int_{\partial Q_{\delta}}|D u|^{2} d S_{x}+\frac{a}{2} \int_{\partial Q_{\delta}} u^{2} d S_{x}
$$

where C is a positive constant depending on n, a and $\left\|a_{i j}\right\| \|_{\infty}$ the result follows easily from Lemma 2.

In order to prove the existence of a trace of a solution $u \in \tilde{W}^{2,2}(Q)$ of (1) we introduce an auxiliary function $x^{\delta}: \bar{Q} \rightarrow \bar{Q}_{\sigma / 2}$ defined in the following way.

For $\sigma^{\prime} \in\left(0, \frac{\delta_{0}}{2}\right]$ we define the mapping $x^{\delta}: \bar{Q} \rightarrow \bar{Q}_{\delta / 2}$ by

$$
x^{\delta}(x)=\left\{\begin{array}{l}
x \text { for } x \in Q_{\sigma}, \\
\frac{x+y_{\delta}(x)}{2} \text { for } x \in \overline{Q^{\prime}}-Q_{\delta},
\end{array}\right.
$$

where $y_{\delta}(x)$ denotes the closest point on ∂Q_{δ} to $x \in \bar{\square}-Q_{\delta}$. Thus $x^{\delta}(x)=x_{d / 2}(x)$ for each $x \in \partial Q$, moreover $x^{\delta^{\delta}}$ is Lipschitz.

We are now in a position to prove the main result of this section.

Theorem 2. Let $u \in \widetilde{W}^{2}, 2(Q)$ be a solution of (1), Then there exists a function $\Phi \in L^{2}(\partial Q)$ such that

$$
\lim _{\delta \rightarrow 0} \int_{\partial Q}\left[u\left(x_{\delta}(x)\right)-\Phi(x)\right]^{2} d S_{x}=0
$$

Proof. Since by Lemma $3, \int_{\partial Q} u\left(x_{\delta}(x)\right)^{2} d S_{x}$ is bounded, there exists a sequence $\sigma_{m} \rightarrow 0$, and a function $\Phi \in L^{2}(\partial Q)$ such that

$$
\lim _{m \rightarrow \infty} \int_{\partial Q} u\left(x_{\delta_{m}}(x)\right) g(x) d S_{x}=\int_{\partial Q} \Phi(x) g(x) d S_{x}
$$

for each $g \in L^{2}(\partial Q)$. We prove that the above relation remains valid if the sequence $\left\{\sigma_{m}^{\sigma}\right\}$ is replaced by the parameter δ.

Since $\int_{\partial Q} u\left(x_{\delta}(x)\right) g(x) d S_{x}$ is continuous on ($\left.0, \delta_{0}\right]$ it suffices to prove the existence of the limit at 0 and with g replaced by $\Psi \in C^{1}(\bar{a})$. Integration by parts yields

$$
\int_{\partial Q_{\delta}} \sum_{i=1}^{m} a_{i} D_{i} \rho \Psi u d S_{x}=-\int_{Q_{\delta}} \sum_{i=1}^{m} D_{i}\left(a_{i} \Psi\right) u d x+\int_{Q_{\delta}}\left(a_{0}+\lambda\right) \Psi u d x+
$$

$$
+\int_{Q_{\delta}} \rho_{i, j=1} \sum_{i j}^{m} a_{i} u \cdot D_{j} \Psi d x+\delta \int_{\partial Q_{\sigma}} \sum_{i, j=1}^{n} a_{i j} D_{i} u D_{j} \varsigma \Psi d S-\int_{Q_{j}} f \Psi d x .
$$

Using Lemma 2, the continuity of the left side easily follows. Letting $\delta \rightarrow 0$, we deduce from the last identity that
$\int_{\partial Q} \Phi \Psi \sum_{i=1}^{n} a_{i} D_{i} \rho d S_{x}=-\int_{Q} \sum_{i=1}^{n} D_{i}\left(a_{i} \Psi\right) u d x+$ $+\int_{Q}\left(a_{0}+\lambda\right) \Psi u d x+\int_{Q} \varsigma_{i, j=1} \sum_{i=1}^{n} a_{i j} D_{i} u D_{j} \Psi d x-\int_{Q} f \Psi d x=\int_{Q} F(\Psi) d x$.

It is clear that this relation continues to hold for $\Psi \in W^{1,2}(0)$. Now taking $\Psi(x)=u\left(x^{\sigma}(x)\right)$ we get

$$
\begin{align*}
\int_{\partial Q} \Phi(x) u\left(x^{\delta^{\prime}}(x)\right) \sum_{i=1}^{n} a_{i}(x) D_{i} \rho(x) d S_{x} & =\int_{Q_{\delta}} F(u(x)) d x+ \tag{19}\\
& +\int_{Q_{-}-Q_{\delta}} F\left(u\left(x^{\delta}(x)\right) d x\right.
\end{align*}
$$

We now prove that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \int_{Q_{\delta}} F(u(x)) d x=\lim _{\delta \rightarrow 0} \int_{\partial Q} u\left(x_{\delta}(x)\right)^{2} \sum_{i}^{n} a_{i}(x) D_{i} \rho(x) d S_{x} \tag{20}
\end{equation*}
$$

and
(21). $\lim _{\delta \rightarrow 0} \int_{Q-Q_{\delta}} F\left(u\left(x^{o^{2}}(x)\right) d x=0\right.$.

Since $x^{\delta}(x)=x_{\frac{\delta}{2}}(x)$ on $2 Q,(19),(20)$ and (21) yield that

$$
\int_{\partial Q} \Phi(x)^{2} d S_{x}=\lim _{\delta \rightarrow 0} \int_{\partial Q} u\left(x_{\delta}(x)\right)^{2} \sum_{i=1}^{m} a_{i}(x) D_{i} \rho(x) d S_{x}
$$

and the L^{2}-convergence follows from the uniform convexity of $L^{2}(a 0)$.
To show (20), observe that using the fact that u is a solution to (1) we get

$$
\int_{a_{\delta}} F(u(x)) s x=-\int_{Q_{\delta}} \sum_{i=1}^{m} D_{i}\left(a_{i} u\right) u d x-\int_{Q_{\delta}} \sum_{i=1}^{n} a_{i} D_{i} u \cdot u d x-
$$

$-\delta \int_{\partial Q_{\delta}} \sum_{i, j=1}^{n} a_{i j} D_{i} u \cdot u D_{j} \rho d S=\int_{\partial Q_{\delta}} u^{2} \sum_{i=1}^{n} a_{i} D_{i} \rho d S-\int_{\partial Q_{\delta}} \sum_{i=1}^{n} a_{i j} D_{i} u \cdot u D_{j} \varphi d S$ and this claim follows from Lemma 2. Finally

$$
\begin{aligned}
& \left|\int_{Q-Q_{\delta}} F\left(u\left(x^{\delta}\right)\right) d x\right| \leq \text { Const }\left[\int_{Q-Q_{\delta}}|f(x)|\left|u\left(x^{\delta}\right)\right| d x+\right. \\
+ & \int_{Q-Q_{\delta}}(x)|D u(x)|\left|D u\left(x^{\delta}\right)\right| d x+\int_{Q-Q_{\delta}}|u(x)|\left|u\left(x^{\delta}\right)\right| d x+ \\
+ & \left.\int_{Q_{\delta}}\left|D u\left(x^{\delta}\right)\right||u(x)| d x\right] .
\end{aligned}
$$

Now Lemma 2 from [1] implies that the first and third integrals converge to 0 as $\delta \sim 0$. The convergence to 0 of the second and fourth integral follows from Lemmas. 5 and 3 of [2] respectively.
4. Existence of solution to the problem (1) - (2). Theorem 2 of Section 3 suggests the following approach to the Dirichlet problem (1), (2).

Let $\Phi \in L^{2}(\partial Q)$. A solution u of (1) in $\tilde{W}^{2,2}(Q)$ is a solution of the Dirichlet problem with the boundary condition (2) if

$$
\begin{equation*}
\lim _{d^{2} \rightarrow 0} \int_{\partial Q}\left[u\left(x_{\delta}(x)\right)-\Phi(x)\right]^{2} d S_{x}=0 \tag{22}
\end{equation*}
$$

Theorem 3. Let $\lambda \geq \lambda_{0}$ (where λ_{0} is a constant frombeming 1). Then for every $\Phi \in L^{2}(\partial Q)$ there exists a unique solution $u \in \widetilde{W}^{2},{ }^{2}(Q)$ of the problem (1), (2).

Proof. Let u_{m} be a sequence of solutions of the problem (1), (2m) constructed in the proof of Lemma 1. By the estimate (6) there exists a subsequence, which we. relabel as u_{m}, converging weakly to a function u in $\mathbb{W}^{1,2}(Q)$. According to Theorem 4.11 in $[B], \widetilde{W}^{1,2}(Q)$ is compactly embedded in $L^{2}(Q)$, therefore we may as sume that u_{m} tends to u in $L^{2}(Q)$ and a.e. on Q. It is evident that u satisfies (1). By virtue of Theorem 2 there exists a trace $\xi \in L^{2}(\partial Q)$ of u, in the sense of L^{2}-convergence. We have to show that $\xi=\Phi$ a.e. on ∂Q. As in the proof of theorem 1 , for every $\Psi \in C^{1}(Q)$ we derive the following identities
$\int_{\partial Q} \sum_{i=1}^{n} a_{i} D_{i} \rho \xi \Psi d S_{x}=\int_{Q} \rho_{i, j=1}^{m} a_{i j} D_{i} u D_{j} \Psi d x+\int_{Q}\left(a_{0}+\lambda\right) u \Psi d x=$
$-\int_{Q} \sum_{i=1}^{n} D_{i}\left(a_{i} \Psi\right) u d x-\int_{Q} f \Psi d x=\int_{Q} F(\Psi) d x$
and similarly for u_{m} we have

$$
\begin{gathered}
\int_{\partial Q} \sum_{i=1}^{m} D_{i} \rho \Phi_{m} \Psi d S_{x}=\int_{Q} \rho \sum_{i, j=1}^{m} a_{i j} D_{i} u_{m} D_{j} \Psi d x+ \\
+\int_{Q}\left(a_{0}+\lambda\right) u_{m} \Psi d x-\int_{Q} \sum_{i=1}^{m} D_{i}\left(a_{i} \Psi\right) u_{m} d x-\int_{Q} f \Psi d x=\int_{Q} F_{m}(\Psi) d x . \\
\text { Since } \lim _{m \rightarrow \infty} \int_{Q} F_{m}(\Psi) d x=\int_{Q} F(\Psi) d x \text {, we have that } \\
\int_{\partial Q} \Phi \Psi \sum_{i=1}^{m} a_{i} D_{i} \rho d S_{x}=\int_{\partial Q} \xi \Psi \sum_{i=1}^{m} a_{i} D_{i} \varrho^{\infty} S_{x}
\end{gathered}
$$

for any $\Psi \in C^{1}(\bar{Q})$ and consequently $\Phi=\xi$ a.e. on ∂Q. The uniqueness of solution of (1), (2) can be deduced from the following energy estimate

$$
\begin{aligned}
& \int_{Q}\left|D^{2} u(x)\right|^{2} \rho(x)^{3} d x+\int_{Q}|D u(x)|^{2} \rho(x) d x+\int_{Q} u(x)^{2} d x \leq \\
\leqslant & C\left[f_{Q} f(x)^{2} d x+\int_{\partial Q} \Phi(x)^{2} d S_{x}\right]
\end{aligned}
$$

which is valid for any $u \in \mathbb{W}^{2}, 2(Q)$ satisfying (1), (2) with λ_{0} and the proof of which is a slight modification of the proof of (6). We only use Lemma 2 in place of Theorem 1.

Remark 1. If Φ © $L^{\infty}(\partial Q)$, we may assume that $\lambda=0$. Indeed, - 151 -
we approximate Φ by a sequence of C^{1}-functions Φ on ∂Q, which is uniformly bounded in m. The corresponding estimate (6) from Lemma 1 takes the form

$$
\int_{Q}\left|D^{2} u_{m}\right|^{2} \rho^{3} d x+\int_{Q}\left|D u_{m}\right|^{2} \rho d x \leqslant \text { Const }\left[\int_{Q} f_{m}^{2} d x+\right.
$$

$$
\left.+\int_{\partial Q} \Phi_{m}^{2} \mathrm{ds}_{x}+\int_{Q} u_{m}^{2} d x\right]
$$

It follows from [7] p. 283 that the sequence u_{m} is uniformly bounded in m and our claim easily follows.
5. Case $\sum_{i=1}^{m} a_{i} D_{i} \varphi \geq 0$ on ∂Q.

In this section we assume that $\sum_{i=1}^{n} a_{i} D_{i} \rho \geq 0$ on ∂Q. For each $\varepsilon>0$ we consider the Dirichlet problem
(1^{ε}) $\quad\left(L^{\varepsilon}+\lambda\right) u=-\sum_{i=1}^{m} D_{i}\left(\rho a_{i j} D_{j} u\right)+\sum_{i=1}^{m}\left(a_{i}+\varepsilon D_{i} \rho\right) D_{i} i+\left(a_{0}+\lambda\right) u=f$ on Q, with the boundary condition (2), where $\Phi \in L^{2}(\partial Q)$.

Inspection of the proof of Theorem 2 shows that there exists λ_{0} such that for each $0<\varepsilon<1$ there exists a solution $u_{\varepsilon} \in \widetilde{W}^{2,2}(Q)$ of the problem (1^{ε}), (2).

Theorem 4. Let $\Phi \in L^{2}(\partial Q)$ and suppose that $i \sum_{=1}^{m} a_{i}(x) D_{i} \varrho(x) \not \equiv$ $\not \equiv 0$ on $2 Q$. Then there exists a solution u in $\widetilde{W}^{2,2}(Q)$ of (1) such that
$\lim _{\delta \rightarrow 0} \int_{\partial Q_{\delta}} u(x) \Psi(x) \sum_{i=1}^{m} a_{i}(x) D_{i} \rho(x) d S_{x}=\int_{\partial Q} \Phi(x) \Psi(x) \sum_{i=1}^{n} a_{i}(x) D_{i} \rho(x) d S_{x}$ for each $\Psi \in C^{1}(\bar{Q})$.

Proof. Observe that $\sum_{i=1}^{n} a_{i}(x) D_{i} \rho(x)+\varepsilon|D \rho(x)|^{2}>0$ on ∂Q. Hence multiplying (1^{ε}) by u^{ε} and integrating by parts over a_{σ} and then letting $\delta^{\sigma} \rightarrow 0$, we obtain that

$$
\int_{Q} \rho_{i, j=1}^{n} a_{i j} D_{i} u_{\varepsilon} D_{j} u \varepsilon^{d x+} \int_{Q}\left[\lambda+a_{0}-\frac{1}{2} \sum_{i=1}^{m}\left(D_{i} a_{i}+\varepsilon D_{i i} \rho^{\rho}\right)\right] u_{\varepsilon}^{2} d x=
$$

$=\frac{1}{2} \int_{\partial Q}\left[\sum_{i=1}^{m} a_{i} D_{i} \rho+\varepsilon\left(D_{i} \rho\right)^{2}\right] \Phi^{2} d S_{x}=\int_{Q} f u_{\varepsilon} d x$.
As in the final part of the proof of theorem 1 we get

$$
\int_{Q}\left|D^{2} u_{\varepsilon}\right|^{2} \rho{ }^{3} d x \leqslant c_{1}\left(\int_{Q}\left|D u_{\varepsilon}\right|^{2} \rho d x+\int_{Q} u_{\varepsilon}^{2} d x+\int_{Q} f^{2} d x\right),
$$

where $C_{1}>0$ is a constant independent of ε. Combining these two relations we obtain

$$
\int_{Q}\left|D^{2} u_{\varepsilon}\right|^{2} \rho^{3} d x+\int_{Q}\left|D u_{\varepsilon}\right|^{2} \rho d x+\int_{Q} u_{\varepsilon}^{2} d x \leqslant C_{2}\left(\int_{Q} f^{2} d x+\int_{\partial Q} \Phi^{2} d S_{x}\right)
$$

for each $\varepsilon>0$ and $\lambda \geq \lambda_{0}$, where λ_{0} can be chosen independently of ε. It is clear that there exists $\varepsilon_{m} \rightarrow 0$ such that $u_{\varepsilon_{m}} \rightarrow u$ weakly in $\tilde{W}^{2,2}(Q)$, strongly in $L^{2}(Q)$ and a.e. on Q and that u is a solution of (1). Taking $\Psi \in C^{1}(\bar{Q})$ we find out by integration by parts that

$$
\begin{aligned}
& \int_{Q_{\delta}} \rho_{i, j=1}^{m} a_{i j} D_{i} u D_{j} \Psi d x-\delta \int_{\partial Q_{\delta}}, \sum_{i, j=1}^{m} a_{i j} D_{i} u D_{i} \varrho \Psi d S_{x}+ \\
+ & \int_{Q_{\delta}}\left(\lambda+a_{0}-\sum_{i=1}^{m} D_{i}\left(a_{i} \Psi\right)\right) u d x=\int_{\partial Q_{\delta}} \sum_{i=1}^{m} a_{i} D_{i} \rho u \Psi d S_{x}+\int_{Q_{\sigma}} f u d x .
\end{aligned}
$$

Lemma 2 and the Hölder inequality yield

$$
\lim _{\delta \rightarrow 0} \delta \int_{\partial Q_{\delta}} \sum_{i, j=1}^{n} a_{i j} D_{i} u \cdot \Psi d S_{x}=0
$$

and consequently
(23) $\lim _{\delta \rightarrow 0} \delta^{N} \int_{\partial Q_{\delta}} \sum_{i=1}^{n} a_{i} D_{i} \rho u \Psi d S_{x}=\int_{Q} \rho_{i} \sum_{j=1}^{n} a_{i j} D_{i} u D_{j} \Psi d x+$

$$
+\int_{Q}\left[\lambda+a_{0}-\sum_{i=1}^{n} D_{i}\left(a_{i} \Psi\right)\right] u d x-\int_{Q} f u d x
$$

Similarly, using the fact that $u_{\varepsilon_{m}}\left(x_{d}\right)$ converges to Φ in $L^{2}(a Q)$, we get that

$$
\begin{aligned}
& \int_{Q} \rho \sum_{i, j=1}^{n} a_{i j} D_{i} u_{\varepsilon_{m}} D_{j} \Psi d x+\int_{Q}\left[\lambda+a_{0}-\sum_{i=1}^{n} D_{i}\left(a_{i}+\varepsilon_{m} D_{i} \rho\right) \Psi\right] u_{\varepsilon_{m}} d x= \\
& =\int_{\partial Q} \Phi\left[\sum_{i=1}^{m} a_{i} D_{i} \rho+\varepsilon_{m}\left|D_{\rho}\right|^{2}\right] \Psi d S_{x}+\int_{Q} f u_{\varepsilon_{m}} d x . \\
& \text { Letting } \varepsilon_{m} \rightarrow 0, \text { we deduce from the last identity that }
\end{aligned}
$$

(24) $\quad \int_{Q} \rho_{i, j=1}^{m} a_{i j} D_{i} u D_{j} \Psi d x+\int_{Q}\left[\lambda+a_{0}-\sum_{i=1}^{m} D_{i}\left(a_{i} \Psi\right)\right] u d x=$ $=\int_{\partial Q} \Phi \Psi \sum_{i=1}^{n} a_{i} D_{i} \rho d S_{x}+\int_{Q} f u d x$.

Comparing (23) and (24)we obtain that
(25) $\quad \lim _{\delta \rightarrow 0} \int_{\partial Q_{\delta}}\left(\sum_{i=1}^{m} a_{i} D_{i} \rho\right), u \Psi d S_{x}=\int_{\partial Q} \Phi \Psi_{i} \sum_{i=1}^{m} a_{i} D_{i} \rho d S_{x}$.

Remark 2. Assume that $\sum_{i=1}^{n} a_{i}(x) 0_{i} \rho(x)=0$ on $\partial 0$. Inspection of the prool of theorem 3 shows that there exists a solution $u \in \widetilde{W}^{2,2}(Q)$ of (1) such that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \int_{\partial Q_{\delta}}\left(\sum_{i=1}^{n} a_{i} D_{i} \rho\right) u \dot{\Psi d S_{x}=0} \tag{26}
\end{equation*}
$$

for each $\psi \in C^{1}(Q)$. The relation (26) shows that the boundary data Φ is irrelevant. A natural question arises whether a solution u, understood as a limit of a sequence u_{ε} from Theorem 3 , is independent of the choice of Φ. We are only able to give an affirmative answer provided $\Phi \in L^{\infty}(Q)$.

Indeed, let Φ_{1} and Φ_{2} belong to $L^{\infty}(\partial Q)$. Let us denote the corresponding sequences of solutions by u_{ε}^{1} and u_{ε}^{2}, respectively. Since $u_{\varepsilon}^{1}-u_{\varepsilon}^{2}$ satisfies the homogeneous equation (1), by Theorem 2.1 in $\{7\}$, we may assume that $u_{\varepsilon}^{1}-u_{\varepsilon}^{2}$ is bounded independently of ε. Set

$$
\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}^{1}=u^{1} \text { and } \lim _{\varepsilon \rightarrow 0} u_{\varepsilon}^{2}=u^{2},
$$

where the limits are understood weakly in $\tilde{W}^{2,2}(\square)$, strongly in $L^{2}(Q)$ and a.e. on Q. It is clear that $u^{1}-u^{2}$ belongs to $\tilde{w}^{2,2}(Q) n$ $\cap L^{\infty}(\square)$. As in theorem 3 we arrive at the following identity
$\int_{Q} \rho_{i, j=1}^{m} a_{i j} D_{i}\left(u^{1}-u^{2}\right) D_{j}\left(u^{1}-u^{2}\right) d x+\int_{Q}\left(\lambda_{0}+a_{0}-\frac{1}{2} \sum_{i=1}^{m} D_{i} a_{i}\right)\left(u^{1}-u^{2}\right)^{2} d x=0$ for $\lambda \geq \lambda_{0}$, and consequently $u^{1}=u^{2}$ a.e. on Q, provided λ_{0} is sufficiently large. To establish this identity we have used a relation

$$
\lim _{\delta \rightarrow 0} \delta \int_{\partial Q_{\delta}} \sum_{i, j=1}^{m} a_{i j} D_{i}\left(u^{1}-u^{2}\right) o_{j} \varphi\left(u^{1}-u^{2}\right) d S_{x}=0
$$

which follows from Lemma 2 provided $u^{1}-u^{2} \in L^{\infty}(Q)$.

References

[1] J. CHABROWSKI and B. THOMPSON: On traces of solutions of a semilinear partial differential equation of elliptic type, Ann.Polon.Math. 42(1982), 45-71.
$[2]$ J. CHABROWSKI and B. THOMPSON: On the boundary values of the solutions of linear elliptic equations, Bull. Austral.Math.Soc. 27(1983), 1-30.
[3] D. GILBARG, N.S. TRUDINGER: Elliptic partial diffarential equations of second order, Die Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
[4] C. GOULAOUIC, N. SHIMUKURA: Regularité hölderienne de certain problèmes aux limites elliptiques dégénérés, Ann.Sc.Norm.Sup.di Pisa, 10(1),(1983), 79-108.
[5] J.J. KOHN and L. NIRENBERG: Degenerate elliptic parabolic equations of second order, Comm. Pure Appl.Math. 20 (1967), 797-872.
[6] A. KUFNER, O. JOHN, S. FUČfk: Function spaces, Noordhoff, Leyden, Academia, Prague, 1977.
[7] Michel LANGLAIS: On the continuous solutions of a degenerate elliptic equation, Proc.London Math.Soc. (3)(50) (1985), 282-298.
[8] R.D. MEYER: Some embedding theorems for generalized Sobolev spaces and lapplications to degenerate elliptic differential operators, J.Math, Mech. 16(1967), 739-760.
[9] V.P. MIKHAILOV: Boundary values of the solutions of elliptic equations in domains with smooth boundary, Mat. Sb. 101(143)(1976), 163-188.
[10] O.A. OLEİNIK and E.V. RADKEVIČ: Second order equations with non-negative characteristic form, Am. Math. Soc. Providence, Plenum, New York 1976.
The University of Queensland, Department of Mathematics, St. Lucia 4067, Brisbane, Queensland, Australia
(Oblatum 5.5. 1986)

