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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,1 (1987)

SET-THEORETIC CHARACTERISTICS OF SUMMABILITY
OF SEQUENCES AND CONVERGENCE OF SERIES
Peter VOITAS

Abstract. Using cardinal characteristics of the power set
of integers @ (w) and the Baire space % we estimate the
minimal size of a family of regular (Toeplitz) matrices such
that every bounded sequence is summed by one of them and the
‘minimal size of a family of bounded sequences such that there
is no regular matrix which sumg all of them. We give the exact
value of the minimal size of a set of convergent seriec unbounded
in the sense that there is no convergent series converging
"slower" (in terms of lower order and remainders) than each
series of the very set. It is observed that analogous results
can be proved for divergent series and/or dominating families.

Key words: cardinal characteristics, matrix summation,
the speed of convergence of series.

1980 Subject classification: 40A05, 40C05, O03E05.

§1. Introduction and results

1.1. Recently V. I. Malychin and N. N. Chol&&evnikova
discovered that some problems related to the summation methods
(for seguences) and fhe convergence of series of nonnegative
real numbers are set-theoretically sensitive (see '['10] and [2]).

The aim of the present paper is to introduce cardinal
characteristics involved in these problems and to give some
estimates using some well-known cardinal characteristics of

P(w) and “w

- 173 -



1.2. First, let us mtrodup'e the basic notions. We use the
standard set-theorptic hotation (see e.g. (B]). As a rule, w
denotes the set of all natural numbers, ¥ 7 means "for all
but finitely many n’s " and 3% means "for infinitely many
h's ", Xy denotes the set of all mappings from x to y
(e.g. “w denotes the Baire space), L”is the set of all
bounded sequences of real numbers, fwl“- ix g w: IX]| = ai;}.
Let A = fn(n, k) : n€éew, kew} be a matrix of real numbers.
We say that A is regular (Toeplitz) (see [4]) if the following
three conditions are satisfied: ‘

@ In ¥R Eflan, ] ;06K <+ am,

{b) Wk 1lim a(n, k) = 0 ,
N > + o0

(e) Z{a(n,'k) : 0% k "'“}f“n““’l as N -p+00
benote by ol the set of all regular matrices. for
4
Aeoll and b @™ put (A.D)(n) = T{aln, KIBCK) : k gwl

Clearly, A.b @ £® . If 1im (A.b)(n) exists, it is called
. N« o0
the A-1imit of b . Recall that if 1im b(k) = x then
) K «® 00
A - limblk) = x for all A& . For Aedl put
K=y +co : .

R(A) = b @ 4™ : lim (A.b)(n) exists},
N «p s0 '

I={xa 2% (Fredd)(x@ RN} :
cov(d) = min IRR1 « P& uirR) e b} = L7} e
Non(d) = min {IX] : X € 2% & x¢ ‘]}'. . *
Finally, let .
We{ve £ : (¥n)in) 2 0) B Sfbn) : 0%ne+o0tcarse}

be a set of all convergent series with nonnegative terms. On
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7( we can define a partial ordering (see also G. M. Fichtengolz,
(71) as tollows:

a< b iff lim (F{alk) : n € k < +0a}/F{b(Kk) :
o n -poe '

:nék <+00})

"

0 .
A subset U S P of the partially ordered set (P, < ) is said
to be unbounded if there is no p @ P such that NVugeWuxp)
a subset D& P is said to be dominating if for every Pe P
there is a dsq with p<d .

Analogously as in fS] , we write
p(P,<) = min {lul : U is unbounded in (P, <)}, ‘and
d(P,c) = min {|0] : D is dominating in (P, <)}

We say that a set X € [w]®™ is sparse according to an

Few, it (VieFHUDUMM, tn+ D)AX €D,

where [£(n), £{n + 1)) . denotes the (half open) interval of
natural numbers (L10], see .also L6}; [3]). ’

The following hypothesis was introduced by P. Erdos and
G. Piranian (cf. (6] p. 146 , [10]):

For every ¥ & W, with |F| ¢2“ | there is

(EPH)
2n X € [wl®™ which is sparse according to F .

R. G. Cooke in fA] proved that Cov(J) 1is infinite and
Non(3J) 2 Xi . V. I. Malychin and N. N. Chol¥tevnikova pfoved
in [10] and '[2] that (EPH) implies Cov(d) = b(X, <) = 2°°;
Booth lemma implies (EPH) and Noa(J) = 2% ; all inequalities
Non(® < 2‘:’ , Cov(d) < 2% | adX, <) < 2* are consistent,

too.
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1.3. For £, g € ww we define

t <¥g it (Y(E(n) < g(n))
The set wu) is partially ordered by <% . Denote (see [5])
b = b(“w, <¥) and

(%, <)

A Pelel” isa splitting family if (VAe [wl®)
(Ise ¥ X(IAAS| = |A -] = X ) . Recall that

s = min {Hfl : P is a splitting familyi ..

Let us define

la
"

e = min ;l:}'l . Fe W, and there is no X € [wl® sparse
according to ?"}
Note that e is the minimal cardinal number for which EPH

fails to be true.

1.4. In this section we list the main results and indicfte
their proofs (they follow as corollaries of lemmas proved in
§§2 and 3).

Theorem 1. (a) e
(b) (X, <)

Proof. (a) follows from Lemma 2.1 and Lemma 2.2.

o o
]

(b) follows from Lemma 2.3 and the fact that (EPH)
implies b( % , <) = 2%

_Corollary. b ‘& Cov(J)

Proof. The assertion follows from Theorem 1(a) and "(EPH) implies
Cov(d) = 2%,

Theorem 2. (a) 8 < Non(J)
(b) -Non(J) & b.s .
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Proof. See Lemma 3.1 and Lemma 3.2,

Theorem 3. Assume there is a ¥C-Luzin set. Then Non(J) & « .

Proof. See Lemma 3.4.

Acknowledgement. The author would like to express his gratitude

to L. Bukovsky and P. Simon for stimulating discussions.
§2. The speed of the convergence of series

2.1. Lemma. Assume that ¥ ¢ &, has no <tupper bound.
Then for every X € [w1® there is an te & such that
suplx ATE(n), £(n + 1] = & .

Proof. Let X = {xo<x1< ce X < ...} . Detine ge%
by putting g(n) = x 2 - §ince the family F is unbounded,
for some f € F 'ch'e1 set jnew : g(n) < !(n)} is infinite.
It g(n) < £(n) , then |XN :Q; @), 1 + 1)) >n?

‘therefore one of the intervals [f(i), f£(i + 1)) contains at

and

least n pqints of X .

Corollary. e £b .

2.2, Lemma. b e .

Proof. Consider ¥c “’w such that |¥ | <b . We show that
there is an infinite set sparse according to ¥ . The following
useful trick was used (implicitly) by.many authors and appears

as Lemma 3.16 in [1] Take an f"> ¥ , and w.l.0.g. we can
assume that»all 1] G? and f/ are increasing and greater than
4 + 1 (the diagonal + 1) . Define T inductively by:

T =0, T(r} + 1) = £(T(n))
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‘Then for every g eF and Ny sufficiently large to fulfil

(¥n3 ng)(2(n) > g(n)) we have,
g(i) € T(n) € g(i + 1) implies T(n + 1) % g(i + 1) .

To prove this, assume on contrary that g(i + 1) > FT(n + 1)
But then T(n + 1) = £(T(n)) > g(F(n)) > g(g(i)) > g(i + 1) ,
a contradiction: Consequently the range of ¥ 1is sparse according
to 97
The statement of Lemma 2.2 appears also independently in
[1] as ‘Propositian 3.17.
2.3, Corollary. b €b(%, <,)
Proof. The assertion follows immediately from "EPH-»b(X, <0) =
= 2% proved in [2]
In order to prove Theorem 1(b) it.-suffices to prove
Lemna. b(X, <) &b .
Proof. Consider F € “w such that |¥| <b(X, <,) and
all ele'ments of F are increasing. For every g e.?’ we define
cg(1) = 0 for i € [o, g(o0))
and
g™ = et gy ) for
1€ [g), g + 1)),
i.e., Zicg(i) : g(k) €1 Lfco} = % for every kéw
Take ¢ E-'7(., an <,-upper bound for all cg's .

v

We define
£(k) = min fj X fe) 13 &1 <+°°} <&—} . We claim that
t% ¥ . By contrediction, let g e ¥ be such that

(AT (£(k) & g(k)) . Then
(Z{e (1) + k) & 4 <+e0} /T fc(i) : g(k) &1 <+00}) 21 for
infinitely many k.

2.4, Denote
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D={be L7 (Un)mM2 & T{bn) : 0€n <+0}= 400},
On 3 we can define a partial ordering <o as follows:

a<, b iff r1li_n;°g):‘fa(k) :0%k<n}/3fb(k) : 0%KkSn})=0.
Put

B(AY, <) =min {[B] : BeD & ~(FaeD)(¥Wbebag, 0}
and

4(®i, <) =nin §10] : DC D V¥ (Yae2)(FdeD e, )}

If we replace the convergent series by the divergent ones

and /or ‘the unbounded families by the dominating ones, then we

can analogously prove the corresponding results:

g(j("o)=g_7 2(2]&1<0)=E! 2(9"<0)=2
§3. Summability of sequences - generalized limits

3.1. Lemma. s £Non(J) . )

Proof. Consider M ¢ 4% such that |B| <«s . Let
AG c# be an arbitrary regular matrix. Then the sequence
A.b is bounded for every. be 4 . For every fat%onal number
q €0 put

Lp,q * fn: (AD)(N) % q} .
The family {Lb.q :be® vageal has size |8]. & <5,
so it cannot be splitting and hence there is an X € [wl®
such that for each be ® and ge Q either XﬂLb’q or
X - Lb,q is finite. The row submatrix
Ay = fan, k) : nex¥ kewld

sums all b’'s . Su?posé not, i.e. there‘is a be® such

that Ax.b has two accumulation points, say u <v . Take
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g &0 such that u-<q <v . Then

XAty ol = IXatw-1, ol = &,
a contradiction.
3.2. Lemma. Non(J) € b.s .
Proof. We give a constructiop of b.s many elements of “2 which
cannot be covered by a regular matrix. Namely, let < ., be
an unbounded family consisting of increasing functions of size
I¥] =b and let ¥ & [wWI® be a splitting family of size
1 ¥

by

s. For £€F and Se &P let gfsew‘” be defined
’

97 ¢(K) =0 it k €[t(n), #(n + 1)) and nes
=1 if ke[t), t(n+ 1)) and n¢s .
We need to prove that the set {gf,s : fe? and S & S"}
cannot be covered by a regular matrix.
Fix a regular matrix A = {a(n, k) : ne w , kew} .

For each n define two numbers 1 r, as follows:

n’
1, = sup $k : Zfa(n, 1) : 0 €1 ekl g} if it is finite,
= 0 otherwise; ‘ ’
r, = min {x :Y{a(n, 1)t k <i <+oo}<-é} .

Obviously 1n Lr and we may assume that for each n we

n ’

have T, <1 (take a submatrix if necessary). By Lemma 2.1

n+1
there exists f & F such that ‘the set

M=%{n: [En), £(n + 1)) contains at least 2 lj's 1
is infinite. By the splitting property theré exists S€ Y such
that |[MAS| = |[M -S| = & . Consider the function 9 g
There exists j,ew such that for all j.> ig » 9/8 >
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o0
>& a3, 1) > /8 .
But now suppose-that for some n , j> jo ,

15, 14 e[tn), £(n + 1))
If n€S, then for all i & [f(n), £(n + 1)) , g9g (i) =0,

in particular, g, (i) = 0 for all i G-flj, rj] . Therefore,

for this j we have
+ .0

Sa(s, gy (&S] aG, D+ X ey, D&
’ i=0 i=r.44

3
On the other hand, if n ¢ S , then
.. . 7 ‘1 _ 5
Za(j, 1)gf,s(1) >g-25°3%
But this implies lim sup Za(j, idg; (1) 23 >i»
j oo ’

>1lim inf 2 a(j, 1)gy 4(1)
j=>e0 ’

3.3. To prove the Theorem 3 we need the following
Lemma. For every regular matrix A the set
\ R(A) N\ “2 is meager.
Proof. Take any A & . Considér “w, U™ :newt
with the partial ordering & . Put
D ={pe “2 . (31> n)(Efali, K).pk) :kedom(p)}>% &
& T{lati, K| : dom(p) €k < +oa}<yp )}

and
E\:{ps‘wz; (31>'”(Z{“i,k)&W):kecmMm}<% Z
% ¥ tlaCi, k)| : dom(p) € k < +o0} < T% %,

where dom(p) denotes the domain of p , a natural number.

Uéing properties of regular matrices we easily see that both
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families are dense in (““2,e). For s €<w2 put

[s] = {te“2 :.s¢ t}. T, =Ufls1 : s €U,} and C =
= U{fs] : 8 & p—n} are open dense subsets of <0, 1) and so
is also C = Unngn . DObserve that if xgC, , then
(Fi>nd(Tfali, kK).x(k) : 0% k <+oo}>§) and
(33 >n)(Tfal3, X .x(k) : 06k <se}ed)
But then R(A) G keJ“S <0, 1> - C;) , which proves the lemma.

3.4, A set L €0, 1> is said to be a W -Luzin set (see
e.g. [9) it |Ll 2K and for every meager set X& <0, 1)
we have |[XO L]l <« X '

Lemma. Assume there is a K-Luzin set. Then Non(J) &
Proof. Let L be a K-Luzin set. W.l.0:g. we can assume that
ILIP = K (else an arbitrary K -sized subset of L is also a
K-Luzin set). As R(AY Y %2 is meager for every regular
matrix A , necessarily L ~R(A) # @ .

\
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