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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,1 (1987) 

SET-THEORETIC CHARACTERISTICS OF SUMMABILITY 
OF SEQUENCES AND CONVERGENCE OF SERIES 

Peter VOJTAS 

Abstract. Using cardinal characteristics of the power set 

of integers tf(to) and the Baire space CUUJ we estimate the 

minimal size of a family of regular (Toepl-itz) matrices such 

that every bounded sequence is summed by one of them and the 

minimal size of a family of bounded sequences such that there 

is no regular matrix which sums all of them. We give the exact 

value of the minimal size of a set of convergent series unbounded 

in the sense that there is no convergent series converging 

"slower" (in terms of lower order and remainders) than each 

series of the very set. It is observed that analogous results 

can be proved for divergent series and/or dominating families. 

Key words: cardinal characteristics, matrix summation, 

the speed of convergence of series. 

1980 Subject classification: 40A05, 40C05, 03E05. 

§1. Introduction and results 

1.1. Recently V. I. Malychin and N. N. Cholscevnikova 

discovered that some problems related to the summation methods 

(for sequences) and the convergence of series of nonnegative 

real numbers are set-theoretically sensitive (see [lO^ and [23). 

The aim of the present paper is to introduce cardinal 

characteristics involved in these problems and to give some 

estimates using some well-known cardinal characteristics of 

f(tu) and <x> 
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1.2. First, lit us introduce the baste notions. We use the 

standard set-theorptic notation (see e»g. f8]). As a rule, a> 

denotes the set of all natural numbers, tf °n means "for all 

but finitely many n's H and 3r? means "for infinitely many 

h*s °, *y denotes the se,t of all mappings from x to y 

(e.g. UJ denotes the Baire space), 4 is the set of all 

bounded sequences of real numbers, CoJ * £x £ «*> : |x| = ££ } » 

Let A s fa(n, k) : n * w , k&«*>} be a matrix of real numbers. 

Mi say that A is regular (Toeplitz) (see £"*]) if the following 

three conditions are satisfied: 

(a) 3» Wit rfU(n» k)| : 0 < k < '+ «# > * m , 
(b) Wk lim a(n, k) = 0 , 

n **> + »» 

(c) Z{i(n, k) J 0*k * + *©} s An---»1 as n 4 4 » , 

Denote by JUL the set of all regular matrices. For 
/ 

A$*£l and b $ X* put (A.bXn) * £fa(n, k)b(k) : k &u*\ 

Clearly* A.b *>,!** . If lim (A.b)(n) exists, it is called 
n <-->6» 

the A-ltmit of b . Recall that if lim b(k) * x then 
k* 

A * lim b(k) * x for all A B Ji . For A ^ c # put 
k-*p + «* 

&CA) * lb $4? x l im <A.b)(n) ex i s t s } , 
n**#ta 

3 * ?XC Jt* : ( 3 A * j O ( X « R(A))} , 

CovU) * rnih f | t ( | : ^ * £ j / & UfR(A) : A € * f c l l * .£**}, and 

ItonW) * win f|x| . X £ , £ * fc X £ 3 | . # 

Finally, l i t 

y * |b€> i1* t (¥n)(b(n) * 0) & £{b(n) : 0*n < + o*} «+<*»} 
be i t i t of a l l convergent series with nonnegative terms. On 
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%w« can define a partial ordering (see also G. M. Fichtengolz, 

(fl) as follows: 

a < b i f f liiii (Zi%(k) : n * k < +W/< r fb (k> : 
n -*<*• 

: n ^ k < + ©<?} ) « 0 . 

A subset U £, P of the partially ordered set (P, < ) is said 

*0 oe unbounded if there is no p c P such that (Vu^U)(u< p) 

a subset O S P is said to be dominating if for every p ^ P 

there is a d e 0 with p *_. d . 

Analogously as in CKK we write 

£(P,<) * win {|U) : U is unbounded in (P,<)} , *and 

d(P,<) « min {)01 : 0 is dominating in (P><)} . 

We say that a set X €• ftaj^ is sparse according to an 

p \ ^ if (Vf 6 ? H V n)(|Cf<"), f(n * 1))H X| * 1) , 

where £f(t\), f(n + 1)) - denotes the (half open) interval of 

natural numbers (ClQ], see also Cfi]; C*]). 

The following hypothesis was introduced by P. Erdbs and 

G. Piranian (cf. t*3 p. 146 . 1*10]): 

For every ? & * V with |3F| < 2 ^ , there is 

(EPH) 

an X eX**->.* which is sparse according to r . 

R. 6. Cooke in {TJ proved that Cdv(3) is infinite and 

Non(3) ^ 2C . V. I. Malychin and N. N. CholSfcevnikova proved 

in fiol andf-] tnat <E?H> implies CovQ) • b(5K, < Q) * 2*** ; 

Booth lemma implies (EPH) and Non(3) * 2 W ; all inequalities 

Non(» < 2** , Cov(3) < 2 M , dC#» < Q) < 2 ^ are consistent, 
too. 
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1.3. For Jt, g e **iu we define 

f <-*g if (tfr?)(f(n) < g(n)) . 

The set u> is partially ordered by <** . Denote (see [V]) 

b = b( 'i*,, <*) and 

d = d(*k, <+) . 

An !f ̂ Co>1 W is a splitting family if (^Aettul^) 

(̂  S ̂  if )(|AOS( = |A - S| = ^ ) . Recall that 

s = min {lif | : if is a splitting family \ . , 

Let us define 

e = min {| f | : r C ^ and there is no X G Z**!"* sparse 

according to r } 

Note that e is the minimal cardinal number for which EPH 

fails to be true. 

1.4. In this section we list the main results and indicate 

their proofs (they follow as corollaries of lemmas proved in 

§§2 and 3). 

Theorem 1. (a) b = e 

(b) b = bCKf , < 0) . 

Proof, (a) follows from Lemma 2.1 and Lemma 2.2. 

(b) follows from Lemma 2.3 and the fact that (EPH) 

implies b( Tl , < Q) = 2 ^ 

Corollary, b * CovO) 

Proof. The assertion follows from Theorem 1(a) and "(EPH) implies 

CovO) « 2^". 

Theorem 2. (a) a ^ N o n O ) 

Cb) Non(O) 4. b.s . 
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Proof. See Lemma 3.1 and Lemma 3.2. 

Theorem 3. Assume there is a iC-Luzin set. Then Non(3) 4 »C . . 

Proof. See Lemma 3.4. 

Acknowledgement. The author would like to express his gratitude 

to L. Bukovsky and P. Simon for stimulating discussions. 

§2. The speed of the convergence of series 

2.1. Lemma. Assume that 7 £ ^UJ has no «-£ -upper bound. 

Then for every X 6- Ct^l there is an f €* 7 such that 

sup)xnFf(n), f(n + 1))| = ^ . 

Proof. Let X = {xQ< xl < ... < xR < . , . } . Define g e ^i^, 

by putting g(n) = x 7 . Since the family 7 is unbounded, 
nz 

for some f € r the set J n e c u : g(n) *: f(n) J is infinite. 

If g(n)< f(n) , then |X n XQQ [f(i), f(i + 1))| > n2 and 

therefore one of the intervals Cf(i), f(i + 1)) contains at 

least n points of X . 

Corollary, e £ b . 

2.2. Lemma, b < e . 

Proof. Consider 7 £ %j such that | ? | < b . We show that 

there is an infinite set sparse according to 7 . The following 

useful trick was used (implicitly) by .many authors and appears 

as Lemma 3.16 in £lj . Take an f > ? , and w.l.o.g. we can 

assume that all g £ T and f are increasing and greater than 

A + 1 (the diagonal + 1) . Define T inductively by: 

T(0) = 0 , T(n + 1) = f(T(n)) 
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Then for every g & $ and n0 sufficiently large to fulfil 

( Vn > n0)(f (n) > g(n)) we have, 

g(i) £ I(n) .£ g(i + 1) implies T(n + 1) * g(i + 1) . 

To prove this, assume on contrary that g(i • 1) > J(n + 1) . 

But then T(n «• 1) = f(T(n)) > g(T(n))> g(g(i))->. g(i • 1) , 

a contradiction. Consequently the range of T is sparse according 

to r . 
The statement of Lemma 2.2 appears also independently in 

[l] as Proposition 3.17. 

2.3. Corollary. b . £ J b ( X <cQ) . 

Proof. The assertion follows immediately from "EPH H*bC#, < Q) = 

* 2^n proved in [2*]. 

In order to prove Theorem 1(b) it suffices to prove 

Lemma. b(j^, < Q ) & b . 

Proof. Consider £ S w^ such that |9"| < b(X\ * 0 ) and 

all elements of r are increasing. For every g e- & we define 

nd 

cg(i) * 0 foг i 6 Гo, g(0)) 

c
в
(i) . (

 (k
.

ч ì} )( g(k „ í) . g(k) ) for 

i € foCk), g(k + D ) , 

i.e., Z l c ( i ) : g(k) £ i ^L + OO'] X -| for every k € co 

Take c <&*K» an ^Q-upper bound for all c 's . 

We define 

f(k) * min fj : Xlfc(i) : j * i < + 00} 4 * } . we claim that 

f %.$? . By contradiction, let g e ? be such that 

(3f)(f(k) *o(k)) . Then 

(Ifcg(i) : 0(k) 4 i <+*>>/I{e(i) : 'g(k) * i < + © © > ) -£1 for 

infinitely many k . 

2.4. Denote 
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<# = { b e jf': (l/n)(b(n) ̂  0 ) X X ( b ( n ) : 0 £ n < + <*>} « +oo } . 

On 2) we can define a partial ordering < as follows: 

a <L b iff lim (£fa(k) : 0 * k * n} /2,{b(k) : 0 * k * n}) « 0 
n -*><*» 

Put 

b(«J,, < 0 ) = min {|B| : B £ 2) & n( 3a 6 2) )(V b e B)(a<Q b)} 

and 

d(JH, <Q) = min )|0| : D S a i ( ( a 6 « ) ( 3 d t O ) ( d < 0 a)}/. 

If we replace the convergent series by the divergent ones 

and /or »the unbounded families by the dominating onejs, then we 

can analogously prove the corresponding results: 

d ( * , < 0 > = d , b(2U,<0) = b , d ( 8 i , < 0 ) » d . 

§3. Summability of sequences - generalized limits 

3.1. Lemma, s -£Non(0) . 
1 •••• "' • » — • 

Proof. Consider & £ Jt* such that | 6 | < s . Let 

A (ci( be an arbitrary regular m a t r i x . Then the sequence 

A,b is bounded for every, b & H . For every rational number 

q £ Q , put 
Lb,q * *n : <A-b><") * q} . 

The family {LQ q : b e 6 k q e Q ^ h a s size 1 6 , . - ^ < s , 

so it cannot be splitting and hence there is an X € feu]*** 

such that for each b €r fc and q e Q either Xf»Lb _ or 

X - LK n is finite. The row submatrix . b,q 

Ax = {a(n, k) : n ^ X i k e w ] 

sums all b's . Suppose not, i.e. there is a b & & such 

that A^.b has two accumulation points, say u < v . Take 
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q 6 Q such that u •< q < v . Then 

|xr .Lb > q | = | x o ( i - - L b q ) | = *£ , 

a contradiction. 

3.2. Lemma. Non(3) * b.s . 
CO 

Proof. We give a construction of b.s many elements of 2 which 

cannot be covered by a regular matrix. Namely, let ?"£ <4o> be 

an unbounded family consisting of increasing functions of size 

|£| = b and let iP c [ w l
w be a splitting family of size 

I f | = s . For f £ .? and S ^ ? let gf Q 6 - ^ be defined 
i, s 

by 
g* e(k) = 0 if k e D(n), f(n + 1)) and n g 5 
I ,5 

= 1 if k eff(n), f(n + 1)) and n ^ S . 
We need to prove that the set { gf : f £ ? and S €* if} 

i, s 

cannot be covered by a regular matrix. 

Fix a regular matrix A = Ja(n, k) : n £ to » kfc-toj . 

For each n define two numbers 1„, r„ as follows: 
n * n 

ln = sup {k : I{a(n, i) : 0 £ i * k} *£ ̂  } if it is finite, 

= 0 otherwise; 

rn = min fk : £{a(n, i) : k < i < : + o « } < | } . 

Obviously ln < rn , and we may assume that for each n we 

have rn < 1 • (take a submatrix if necessary). By Lemma 2.1 

there exists f Q ?* such that the set 

M « { n : [f(n), f(n + 1)) contains at least 2 l.'s } 

is infinite. By the splitting property there exists S ̂  if such 

that | M O S| = |M - S| = ^ Q . Consider the function gf . 

There exists i 0ecp such that for all j > j , 9/8 > 
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> 5 o a(j» ° > 7/8 • 
But now suppose that for some n , j > j , 

• o 
ly l3+l €fr(n), f(n + D ) . 

If n 6 S , then for all i £ ff(n), f(n + 1)) , gf (i) = 0 , 
i, s 

in particular, gf (i) = 0 for all i€-fl.., r.] . Therefore, 
- ,s J j•* 

for this j we have 

Ia(j, i)gf (i) * £
J a(j, i) + ZT a(j, i)ii 

*'s i=0 i = r.-M 4 

On the other hand, if n & S , then 

Ia(j, i)9 f > s(i)>f- --I- | 

But this implies lim sup H a(j, i)gf (i) ̂  £ > i ^ 
j-*<x> IjS _ 

^lim inf Xa(j, i)gf _(i) . 
j-»oo I,s 

3.3. To prove the Theorem 3 we need the following 

Lemma. For every regular matrix A the set 

R(A) O 2 is meager . 

Proof. Take any A 6- tM . Consider <" c u2 = U f ° 2 : n e to J 

with the partial ordering & . Put 

Hn= \9 €<a*2 : (3i > n)(E{a(i, k).p(k) : k G don»(p)J > | & 

& Z{|a(i, k)| : dom(p) ^ k < ; + o o } < T | ) } 

and 

J^ = {p e<0J2 : (3i > n)(£fa(i, k).p(k) : k e dom(p)} < ̂  %. 

V X{|a(i> k>l : dom(p) * k < +00} -c y^ )), 

where dom(p) denotes the domain of p , a natural number. 

Using properties of regular matrices we easily see that both 
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families are dense in ( <<^2, c ) . For s £ 2 , put 

fs] • {f € W2 : sS f} . E_ -Ufrsl : s g U ^ and C_ -
a L-HCs] : s 6 £ \ are open dense subsets of ^ 0 , O and so 

is also C_ * TV n C_ . Observe that if x £ C_ , then 
n n —n ^ n * 

( 3 i > n ) (JT{a( i , k ) .x (k ) : 0 < k < + o « } > | ) and 

( 3 j > n ) ( I f a ( j , V ) . x (k ) : 0 * k < W } < ^ ) . 

But theri R(A) Q 0 ( <Q, 1> - c_) , which proves the lemma. 

3.4. A set L €L^0, 1^ is said to be a K-Luzin set (see 

e.g. &_) i f |L| ^ KI and for every meager set X££<0, 1 ^ 

we have |X C| L| <c K 

Leroroa. Assume there is a IC-Luzin set. Then NonO) 4k K • 

Proof. Let L be a lC-Luzin set. W.l .o .g. we can assume that 

|L| * lC (else an arb i t rary lC-sized subset of L is also a 
# 

JC-Luzin set). As R(A) C\ 2 is meager for every regular 

matrix A , necessarily L v. R(A) 4 0 . 

I 

References 

[l] B. Balcar, P. Siroon. disjoint refinement. To appear in the 

Handbook of Boolean algebras. 

p ] N. N. ChqlitCevnikova. Unsolvability of several questions of 

convergence of series. Mat. Zametki 34,5 (1983) 711-718. 

(33 6, Choquet: Deux classes reroarquables d'ultrafliters sur 

M. Bull. Sc. roath., 2e se*rie, t. 92, 1968, 143-153. 

|Y} R. 6. Cooke, Infinite Matrices and Sequence Spaces. Mac 

. Millan Co., London 1950. 

£5| E. K. van.Oouwen: The integers and topology. In Handbook of 

set-theoretic topology (ed. by 3. Vaughan and K. Kunen). 

North Holland, Amsterdam, 1984, 111-167. 

- 182 



(XI P . Erdos, G. Piranian: The topologization of a sequence 
space by Toeplitz matrices. Michigan Math* 3. 5,2 (1958), 
139-148. 

JY) 6. M. Fichtengolz: Course of Differential and Integral 
Calculus. Vol. 2. Nauka. Moscow 1969. 

[e] T. Oech: Set-theory. Academic Press. New York, 1978. 
(V] N. Luzin: Sur un probleme de M. Baire. C. ft. Hebdomadsires 

Stances Acad. Sci. Paris, 158 (1914), 1258-1261. 
jltf) V. I. Malychin.. N. N. CholSCevnikova: Independence of two 

set-theoretic statements in the theory of summation. Mat. 
Zametki 28,6 (1980), 8 6 9 - 8 8 2 . 

Mathematical Institute 
Slovák -Academy of Sciences 
Jesenná 5, 041 54 KoSice 
Czechoslovakia 

(Oblátům 7.4. 1986) 

Ш 


		webmaster@dml.cz
	2012-04-28T13:54:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




