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is quasi-continuous up to the boundary extended by the values of 
f . This function h coincides with the "Perron solution" of the 
considered Dirichlet problem . 

Theorem B . Let U be a- finely open s e t . Let u be a quasi-
- l . s . c and finely l.s.c function on U. Suppose that fQr every 
xeU there is a fundamental system of fine neighborhoods V of x 

CV with the property €, (u)^u(x). Then u is finely hyperharmonic 
on U. 

The results of the dissertation are published in [2]. 
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Theorem 1.28 and Corollary 2.3 in [1] form a mechanism in 
which Fr^chet differentiability works. We show, using methods of 
convex analysis, that this differentiability can be replaced by 
any .A-differentiability having the property (m) defined below. 
For instance. Gtteaux differentiability on separable Banach spa
ces can be included in 4;his mechanism. 

We say that a family A of bounded subsets of a Banach spa
ce X is a generating system if (i) A e A implies - A €. A and 
(ii) the span of the set UiA:A © A\ is dense in X. A function 
f:X—*• R is said to be A-dif ferentiable at a point x € X if the
re exists an element x* (called an Ji-derivative of f at x and 
denoted by Jt-df(x)), in the dual Banach space X* such that the 
relation i 

lim supA |t"
1(f(x+th)-f(x))-<h,x*> | = 0 

i>K> he A 
is satisfied for all A in A . W e denote by 7j^ ' the topology of 
uniform convergence on members of A for the set X* . We say that 

A has the property (m) if the topology (T/> |M is metrizable for 
each set McX*. ^ 

Theorem 1. Let A be a generating system having the proper
ty (m). Then the following statements (a) and (b) are equ iva len t . 

(a) -lx e X: A-df (x) exists} is a dense G^ subset of X for 
every continuous convex function f:X—*R. 

(b) For every pair £M,VJ, where McX* is bounded and non
empty and V is a <T^ -neighbourhood of the point OeX* «, there 
exists a weak* open set W c X * such that Mr.W4a0 and MnW -
-MnWc V. 

We say that X is an almost Asplund space if there exists 
a generating system A having the property (m) so that (a) or 
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(b) holds. 

Theorem 2. Let Y, Z be Banach spaces and T:X~—^Y be a 
continuous linear operator with dense range. If X and 2 are al
most Asplund spaces then the same holds for Y and X>rZ. 

Every Asplund and wcg Banach space is an almost Asplund spa-
and every almost Asplund space is in the class Sfe defined in £21. 
The results communicated in 12] form a part of the defended work. 
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