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COMMENTATIONES MATHEMATICAL UNIVERSITATIS CAROLINAE 

28,2(1987) 

A GENERALIZATION OF THE INTERIOR MAPPING THEOREM OF CLARKE 

AND POURCIAU 

M. FABIAN and D. PREISS 

Abstract: We prove the following generalization of a re
sult of Clarke and Pourciau. A mapping acting between two (su
per) reflexive Banach spaces which is locally approximable by 
convex subsets of linear surjections is locally surjective. The 
main tool of the proof is a modification of the Caristi's fixed 
point principle. We also show that this tool can be used for 
deriving theorems of Cramer and Ray, Dzumabaev, and Graves. 

Key words: Reflexive Banach space, Clarke's generalized 
Jacobian, interior mapping theorem. 

Classification: 58C15, 47H15 

1. Introduction. A special case of the well known theorem 

due to Graves [93, see Corollary 3, asserts that the image of a 

neighbourhood of x eX under a mapping F acting between Banach 

spaces X and Y is a neighbourhood of Fx provided that F is con

tinuously Frechet differentiable at x and the derivative of F 

at xn is surjective. Clarke [23 for X=Y=R and Pourciau [111 for 
n k 

X = R and Y = R , k^n, have generalized this result for Lipschitz, 

not necessarily differentiable, mappings by showing 

Theorem 1. Let F:D(F)c R n — > R k , k^n, be a Lipschitz map

ping and let x be an interior point of the domain D(F) of F. 

Let 3F(x ) denote the set of nx k-matrices obtained as the clo

sed convex hull of all possible limits 

lim DF(x ), 

where xm—»-x„ and the derivatives DF(x ) exist, m o m 

If #F(x ) consists of matrices of maximal rank only, then 

F(0(F)) is a neighbourhood of Fx . 

Let us suppose that OF(x ) contains matrices of maximal 
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rank only. Then, owing to the finite dimensionality, a compact

ness argument ensures that there is an oc > fj such that, for eve-
k n 

ry L e 3F(x ) and every y e R there exists x e K satisfying 
Lx = y and lly IIS ooixtt. 

Moreover, if ft> e (0, oo ) is given, then by using the mean value 
theorem til, Theorem 3.1, Proposition 3.23 and the compactness 

once more, we can find an r > 0 such that for any x, , x~ in the 
closed ball B(x ,r) centred at x and of radius r there exists 

an U t 3 F ( x ) such that 

JlFx,-Fx2-L(x1-x2) |i S(3 II x,-x2 IL 

These observations have led the first named author in 17] 

to generalize the above theorem to Hilbert spaces . The result 

obtained there asserts that if the above relations hold when re

placing 8F(x ) by a convex bounded subset of the space ££(X,Y) 

of continuous linear mappings from X to Y, then the closure of 

F(D(F)) is a neighbourhood of Fx , Recently Ursescu j.131 has 

shown by a more direct and simpler method that Fx is in fact in 

the interior of F(D(F)). It should be noted that this can also 

be derived from the quoted result of [73 by using the Ptak' s 

closed graph theorem L103. 

In this paper we go on in generalizing this result: 

Theorem 2. Let (X, 11*11) and (Y, It'll) be two reflexive Banach 

spaces, r^O, ^ > 0, fi > 0, let F:D(F)c X — > Y be a mapping and 

let x e 0(F). Let us suppose that either F is continuous and its 

domain D(F) is closed or that F has a closed graph and Y is su-

perreflexive. Moreover, let there exist a convex bounded subset 

7K of ^(X,Y) such that whenever x e B(xQ, r) f. D(F) and heX, the

re are e e (0,13 and L e W, fulfilling 

(1) HF(x- eh ) -Fx+ ELh 11 -fc e{3 l ih l i . 

Finally, let us assume that the mappings from 92t are uniformly 

open in the sense that, for each L e W and each y e Y , there ex

ists x e X such that 

(2) Lx = y and II y \ £ ( /& + g>)hxH. 
Then the open ball B(Fx , £>r) of centre Fx and radius G> r 

is included in F(B(x ,r)H0(F)). 

Recall that in 171 it is required that whenever x and x- e-h 
belong to B(x ,r), then (1) holds with some L e Wtl . It should 
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be noted that the case p> > 0 can be reduced to that of /3=0; see 
Remark 5. 

The proof consists of three steps. First, from a variant of 

the Caristi's fixed point principle (Lemma 1), we derive an in

terior mapping theorem (Corollary 2). Then we prove Lemmas 2 and 

3 which show that the hypotheses of Theorem 2 lead to the situa

tion occurred in Corollary 2. 

We also show how Lemma 1 may be used to derive the interior 

mapping theorems of Cramer and Ray £3, Theorem 2.1], Ozumabaev 

16 J, and Graves 19, Theorem 1], 

2. Caristi s principle and its consequences. We shall use 

the Caristi s fixed point principle Cl],[5] in the following 

slight reformulation and g e n e r a l i z a t i o n . 

Lemma 1. Let Z be a set and let d , d,,...,dk be pseudomet-

rics on Z. Suppose further that 

d(z,z)=max .£d (z ,z), . . . ,dk(z ,z)i , z,zeZ, 

is a metric in which Z is a complete metric space. Let us consi

der functions f , f,,..., f. : Z—> - L 0 , + co) which are lower semicon-
tinuous with respect to d. Finally fix z eZ and let us assume 

o 

that, for any zeZ fulfilling f Q(z)>0 and 

(3) d.(z0,z)^f.(z0)-f.(z), i=0,...,k, 

there exists zcZ, z #= z, such that 

(4) di(z,z)^fi(z)-fi(z-), i = 0,...,k. 

Then there exists zeZ such that f (z)=0 and d.(z ,z) ^ 

^ f i ( z o ) , i=0,...,k. 

Proof. A simple induction argument ensures that there ex

ists a sequence {z ,z,,...ic Z such that for all n=0,l,... 

d i ( z n ' z n + l
) ^ f i ( z n ) - f i ( z n + l

) . - = <>.....k, 
and 

d o ( z n > z n + l ) 5 2 s n ' 
where 
s n = sup 4 d 0 ( z n , z ) : z e Z , d i ( z n , z ) ^ f i ( z n ) - f i ( z ) , i = 0 , . . . , k h 

C l e a r l y 
( z n . z n + m ) ^ d i ( z n ' z n + : 
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i

( z n , z n + 1 ) + . . . + d i ( Z n + m _ 1 , z n + m ) Ś 



éfi(zn)-fi(zn+l)
ł---+fi(zn+ra-l)-fi(zn+m)=fi(zn)-fi(zn+m) 

foг all n, m and 

fi ( zo ) 2 fi ( zl ) ž---"°-
It follows that iz \ is a Cauchy sequence in each pseudometric 

di, hence in the metric d. As d is complete, iz \ converges in 
the metric d to some zeZ. Then from the lower semicontinuity of 

t. we have for all n 

di(Zn'2)=Jim
oc

di(zn'zn+m
) - f i(zn>-J^ f i ( W * f i(zn)-fi(z) 

and, especially, 

di(z0,z)df.(z0)-f.(z)^fi(z0j, i = 0,...,k. 

If f (z) = 0, we are done. Further let us assume that f (z) .> 0. 

Then, by the assumptions, there exists z e Z, z+z, such that 

di(z,z)ifi(z)-fi(z). 

For each i, we add this inequality and 

di (V>* fi ( zn )- fi ( z ). 
and we obtain 

di(zn ,z)#di(zn,z)+di(z,z) £ 

£ fi(zn)-fi(z)+fi(z)-fi(z)=f. (zn)-fi(z). 

The definition of s then yields that s S d (z ,z). But 

^n^V^п'^1^
0
'
 Hence 

d (z,z)= lim d (z .7) £ lim s =0, 
o <n/~>oo o n* (n-+ou n ' 

a contradiction with z4=z. We have thus shown that the possibi

lity f (z) > 0 cannot occur and so the proof is completed. 

Remark 1. a) In applications the existence of z is often 

required for any zeZ with f (z)>0, which strengthens a little 

the assumptions of Lemma 1. 

b) It is obvious but useful to realize that the functions 

t. can be replaced by $. o f where fi are as in Lemma 1 and 

§ .: L0,+ eo)—»CO, + 0C>) are nondecreasing lower semicontinuous 

with $i(s)=0 if and only if s=.0. 

c) Another useful variant of b) is to replace (3) and (4) 

by 

(3') di(z0,z)^A.(f.(z0))(fi(z0)-fi(z)) and 
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(4') di(z,z)^Ai(fi(z))(fi(z)-fi(z)) 

respectively. If A . ^ 0 , if $ i fulfil the same hypotheses as in 

b), and if 

(5) Ai(u)(u-v) = <J.(u)- & ( v ) whenever 0^v<u, 

then, according to b), there is z e Z such that f (z) = 0 and 

di(z^z) 4* 4.(f:(z )). Often used situations in which (5) holds 

are, for example: 

A: (0,+co) >(0, + oo), f A(s)ds<+oo for all c>0, and 

A(s)ds, 
0 

we get for 0 ̂  v< u 

§(u)-$(v) = f A(s)ds£A(u)(u-v). 

Hence (5) is satisfied. 

r2u. 
p>) A is nondecreasing. Then the choice <$>(u)= / A(s)ds 

yields for 0 £ v < u 
,2-u. 
, A(s)ds > J A(s)ds £ A(u)u >> A(u)(u-v) 

if 2v^u, and 

§(u)- <$(v) ZA(2v)(2u-2v).>A(u)(u-v) 

if 2v>u. Thus (5) holds again. 

Tf) A(s)s is nondecreasing. Then for <$>(u)= J A(s)ds and 

0 4 v < u we have 

$(u)- <$(v) = / A(s)ds Z J A(s)s ^ ds£A(u)u / ~ ds = 

= A(u)u > A(u)(u-v) 

if ev^u, and 

$(u)- $ ( v ) ^ A(ev)ev Te<ti ds>A(u)u-ln(-)v A(u)(u-v) 
^tv s v 

if ev > u. 

d) Requiring stronger versions of (3'), (4') we can get 

better choices for $ . For example, if A.(s)s are nondecreas

ing and if we replace ( 3 ) , (4') by the inequalities 

d.(z0,z)^Ai(fi(z0))(fi(z0)-max(qifi(z0),f.(z))), 

di(z,z)^A.(f.(z))(fi(z)-max(q.f.(z),f.(z))) 

respectively, where qi e [0,1) are fixed, then we can take 

r " 
Jo 
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Corollary 1. Let (X,d), (Y,d) be complete metric spaces, 

r> 0, f > 0, c;> 0,let F:D(F)c X—*Y be a mapping and let xQeD(F). 

Let us assume that F is continuous and D(F) is closed (or that 

F has a closed graph only). Finally, suppose that, for any xe 

€ B(xQ,r) 0 0(F) and any y e 8(FxQ, JD r), y4-Fx, there exists xe 

€. D(F), "S-fx, such that 

(6) jDd(x,x)^d(Fx,y)-d(Fx,y) 

(and moreover, if F has a closed graph only, that 

(7) cd(Fx,Fx)£d(Fx,y)-d(Fx,y)). 

Then B(FxQ,$>r)c F(B(xQ,r) f) 0(F)). 

Proof. Fix y e B(Fx , <j> r). We are to find an x e B(x ,r)H 

0D(F) such that Fx=y. Denote Z=D(F) 

d (x,x)= £>d(x,x), d, (x,x)=cd(Fx,F"x), x,xeZ, 

f0(x) = f1(x)=d(Fx,y), xt Z. 

If F is continuous and D(F) is closed, take k = 0, while in the 

parenthetic case consider k=l. Clearly Z is complete and f , f. 

are continuous in the metric max(d ,d.). Also, the inequalities 

(6) and (7) pass exactly to (4). The assumptions of Lemma 1 are 

thus verified and so there exists an xeD(F) such that f (x) = 0, 

i.e., Fx = y, and that d (xQ,x) £ ^n ( xo )' wn--ch implies that 

x £ B(xQ,r). 

Remark 2. a) For slightly weaker assumptions of the above 

corollary see the exact formulation of Lemma 1. 

b) In the same way as in Remark 1 - b),c),d) one can repla

ce (6),(7) by using the functions A and $ . In fact, the versi

on of Corollary 1 obtained by the use of d) implies [3, Theorem 

2.11. 

c) Corollary 1 can be extended to multivalued mappings. 
v 

Thus, if F:D(F)c X > 2 is upper semicontinuous closed valued 
and D(F) is closed, then (6) should be replaced by 

^cJ(x,x)^dist(Fx,y)-dist(Fx,y), 

while if F has a closed graph only, then (6) and (7) should read 

as 

max(f> d(x,x),cd(v,v))# d(v,y)-d(v,y), 
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where (x,v) and ( x , v ) lie in the graph of F. 
d ) .We also notice that, if F is continuous, the complete

ness of Y is not necessary. A similar remark applies also to the 

consequences of Corollary I. 

Corollary 2. Let X, Y be Banach spaces, r > 0 , p > 0, qe 
e 1.0,1), let F:D(F)cX-—>Y be a mapping and let xQ be in D(F). 

Let us assume that F is continuous and D(F) is closed (or that 

F has a closed graph only). Finally, suppose that, for any xc 

6 B(x ,r)DD(F) and any y e B(Fx , / a r ) , y.£Fx, there exist 04=h€ 

eX and e e (0,1] such that 

(8 ) (f>iihll+ i|lF(x- e h ) - F x + e(Fx-y)Ji £?, Fx-y II 

(and moreover, if F has a closed graph only, that 

(9 ) i |IF(x- eh ) -Fx+ e (Fx-y ) | | 4qllFx-yll). 

Then B(FX Q, ? r ) c F(B(xQ,r)f. D(F ) ). 

Proof. Take x € B(xQ , r ) O D(F), y e B(FxQ , ro r) \-CFx } arbitra

rily. By the hypotheses find h and e corresponding to x and y. 

The triangle inequality then yields 

HF(x- eh)-y H£llF(x- eh)-Fx+ e(Fx-y)ll + (l- e ) llFx-yll. 

Thus, by ( 8 ) , 

llF(x- &h ) - y IUIlFx-yli-^e|lhil, 

and after denoting x=x- eh, we get 

<p l ix-xll^li Fx-yll-llFx-yll , 

which is the inequality ( 6 ) . If (9) holds, then 

l iFx -y i . £eq l l Fx - y l l + ( l - e ) l lFx-y ll = ( 1 - e (1 -q ) ) HFx-y II, 

and 

HFx-Fxl l4 i tFx-Fx+ e(Fx-y)H+ eU Fx-y II £ e ( l+q ) l lFx -y l l = 

= ^ ( H F x - y l l - ( l - e ( l - q ) ) i l F x - y i i ) £ ^ ( l ! F x - y l i - i l F x - y . l ) 

and so (7) is verified. It means that Corollary 1 can be applied 

and consequently B(FX Q, <o r) c F(B(xQ,r) f\ D(F)). 

In the proof of Theorem 2 we shall need only Corollary 2. 

But we feel that further consequences of this corollary should 

also be mentioned. 
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Corollary 3. Let X, Y be Banach spaces, r > 0 , p > 0,/3£0, 

let F:D(F)c X — > Y be a mapping with a closed graph and let x e 

6 0(F), Let us assume.that there exists L e ^(X,Y) such that, for 

every x e B(x ,r) 0 0(F) and every h e X , there is e-e (0,13 ful

filling 

(10) l\F(x- eh)-Fx+ e Lh II #&/3llhfi. 

Finally, suppose that the L is such that to each y c Y there is 

x 6. X satisfying Lx = y and liy \\Z ( i> + (p )llx II. 

Then B(FxQ, <p r) c F(B(xo,r) H D(F)). 

Proof. Fix x £B(xo,r)fl D(F) and y e B(Fxo, $D r), y#-Fx. Find 

hcX such that Lh = Fx-y and (|3 + f> )llh 114 H Fx-y II. Let e correspond 

to x and h. Then 

i||F(x- eh)-Fx+ e(Fx-y)l\= i||F(x- &h)-Fx+ eLhll £ 

6/JHhW-p^-llFx-yl 

and so both (8) and (9) hold. Now apply Corollary 2. 

Remark 3. The above corollary is a slight improvement of 

the result of Graves [9, Theorem lj , where (10) is required to 
© 

hold whenever x and x- &h belong to B(x ,r). Another proof of the 

theorem of Graves, by using Nadler's contraction principle for 

multivalued mappings is due to Szildgyi [12-1. 

Corollary 4. Let X, Y be Banach spaces, r > 0 , oc > 0, 

9e(0,l), let F:D(F)cX—>Y be a mapping with a closed graph and 

let x eD(F). Let us assume that, for every x from B(x ,r)(1D(F), 

there are oC > ou , ft &C0, ®<^x) , cT > 0 and a mapping C : 

:B(0, cfv)c X — > Y such that hFu-Fx-C (u-x) II £ (3 i.u-x.l whenever 
o u X X 

u G. B(x , r ) H B(x , cT ) , and t h a t f o r every y e Y the re i s hfcX sa

t i s f y i n g Hy il £ oC x ll h 11 and C x ( t h ) - & y f o r a l l <b > 0 s u f f i c i e n t l y 

s m a l l . 

Then B (Fx Q , ( 1 -8 ) o c r ) c F ( B ( x Q , r ) O D ( F ) \ 

Proof. Choose a f i x e d r e ( 0 , r ) . Take a r b i t r a r y x i n B(x r ) 0 

HO(F) and y i n ( B(FxQ , ( 1 - 8 )oC?) \ - i F x l . F ind h e X and S Q e ( 0 , l ) 

such t h a t i lFx-y I. £ cC Rh l\ and C ( - e h ) = e ( F x - y ) whenever & e 

e ( 0 , ^ D ) . F ix an e e ( 0 , e, ) so sma l l t h a t 

l l x - e h - x l l < cT and l lx - e h-x ll < r. 

- 318 -



Then we can estimate 

il»FCx- e,h)-Fx+ e(Fx-y)lU |llF(x- eh)-Fx-C x(- e h ) | £ /3X llhlk 

^ SjFx-yll 

and 

(l-e)c6lihlU l|lF(x-6h)-Fx+ 6(Fx-ylU (V"0)<*|lFx-y >1 + 

+ e||Fx-yll<llFx-yH. 

It means that Corollary 2 applies. Hence B(Fx , (1- O )cc r) 

F(B(x ,r)OD(F)) and by letting r go to r the result follows. 

Remark 4. This corollary is a slight improvement of the 

resu»lt of Dzumabaev L61, where the C are assumed to have inver

ses and an additional condition cf > tr(l-8 )oc/oo with a fix

ed t 6,(0,1) is required. 

Corollary 5. Let X, Y be Banach spaces, r > 0 , <p > 0, and 

q 61,0,1). Let F : D ( F ) c X — > Y be a continuous mapping (or a map

ping with a closed graph), Gateaux differentiable on B(x ,r)c 

c D(F). Let for every xeB(x ,r) and every yeB(Fx , p r ) , y^=Fx, 

there exist 0 % h & X such that 

<p iihTl+llFx-y-DF(x)hB_£l)Fx-y li 

(and moreover, if F has a closed graph only, that 

IIFx-y-DF(x)hH ^qllFx-yll). 

Then B ( F X Q , <t>r)c F(B(x Q,r)). 

Proof. Take <p e ( 0 , p ) , q e ( q , l ) , and 0---r<r<r. Let F be 

the restriction of F to B(x ,r). Then D(F) is closed and the abo

ve inequalities ensure that there exists e e (0,1.1 such that 

the assumptions of Corollary 2 hold with r,rc, q, and F replaced 

by r, (z , q, a n d ? respectively. Hence B(Fx , <p r) c F(B(xQ,f)) and 

we conclude the proof by letting ro converge to ^ and If conver

ge to r. 

Corollary 6 ([9, Theorem 31). Let L Q e *£(X,Y) and let the

re exist ex .> 0 such that to every y eY there is x e X satisfying 

LQx = y and Ity II £ ooji x II. 

If L e 5£(X,Y) is such that liL-L U<oO, then 

(oc- \i L-LQn )By c L( B X ) , where B x and B y denote the closed unit 
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balls in X and Y respectively. 

Proo f . Let L be as above and take any x e X and any y c Y \ 

\ U x ^ . Find h e x such t h a t LQh=Lx-y and oc \\ h II is II Lx-y II. Then 

h + 0 and 

(oc - i lL-L ft)lthll + I IL(x-h) -Lx + (Lx-y) l | = (-* - l lL-L lOtlhll + IILh-L r.116 

4 otA lhl l fcl lFx-yl l . 

Thus (8) holds with 6 = 1 and so, by Corollary 2 

(o6-||L-Loli)BY = B(L(0),(<tf -IIL-L0ll))c L(B(0 ,1»=L(BX) . 

Remark 5. The above corollary enables us to reduce in The

orem 2 the case |3 > 0 to that of p=0. Let us show it. Define 

m ' ^ L ' e i£(X,Y):llL'-L)| & [3 for some L e m i . 

Let x e B(x ,r)0 D(F) and hex be given. Clearly, we may suppose 

that h + 0 . Let G c X be a hyperplane such that llh+g II £ H h II for all 

g e G . Define 

L'(th+g)= - |(F(x- eh)-Fx)+Lg, teR, geG, 

where & > 0 and L £ W correspond to x and h. Then F(x-eh) -

-Fx+eL'h=0. Further, L' is linear and by (1) 

)|L'(th+g)-L(th+g)l= U|(F(x- &h)-Fx)+L(th)R 4 J-|--6 £ ll h I = 

t -^ef3 l ih l l = | t | £ I! nil s/i l l th+gK 

t o r a l l t e R and a l l g e G . Hence | IL ' -L I I .&|J , and so L ' e Wl' . 

Now app ly ing C o r o l l a r y 6 we get t h a t 

<pByc {(I + p - I IL ' -L I I )B Y c L ' ( B X ) . 

From this inclusion it easily follows that for every y e Y there 

is x e X such that L'x = y and lly II £. <p II x ll. Thus we have shown that 

the assumptions of Theorem 2 are fulfilled with (h and 7^1 re

placed by 0 and ffll r e s p e c t i v e l y . 

3. Geometrical lemmas and the proof of Theorem 2. If X is 

a Banach space,1 let X* denote its dual, X** its second dual, 

-je.X—>x** the canonical embedding and <x*,x> the value of 

x*<& X* at xe X. If L e &(X,Y), then L* means the adjoint to L. 

Lemma 2. Let X and Y be Banach spaces, ^ic #(X,Y) be a 
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convex s e t , and oo >• 0. Let us cons ider the f o l l o w i n g a s s e r t i 

ons : 

( i ) f o r every y* e Y* the re i s 0 4-x e X such t h a t <y*,Lx>£ 

S ct| ly*l l llxll whenever L e Wl; 

( i i ) f o r every y * e Y * and every L G # t \\ L* y* II £ cO |j y% 

( i i i ) whenever y c Y and L e E then there i s x e X such t h a t 

Lx = y and IIy II 2 06 ll x . 

Then ( i ) —*> ( i i ) , ( i i i ) = £ > ( i i ) and, i f X i s r e f l e x i v e , 

then a l l the a s s e r t i o n s are e q u i v a l e n t . 

P roo f . ( i ) ===->( i i ) . Let y* c Y* and L £ m . By ( i ) t he re 

i s 0 4 - xeX such t h a t < y* ,Lx > £ oOlly* ii l| x Ii. Hence 

| lL*y*U l l x l U < L * y * , x > = < y * , L x > £ o c l l y * l l l l x l , IlL* y *ii £ celly*!V 

( i i i ) .=^(ii). For y * e Y * a n d an a r b i t r a r y <f > 0 f i n d y e Y\ 

lly H = 1 , such t h a t < y * , y > £ ( l - ef ) l | y * B . Then by ( i i i ) , f o r any Lc 

fc 7K t he re e x i s t s x e X such t h a t Lx = y and 1= I. y Ii * coll x l\. Hence 

HL*y*H l i x l U < L * y * , x > = < y * , L x > = < y ^ , y > Z ( l ~ c r ) | j y * i l £ 

S ( l - <-OoCli y* l ! llxA,ltL*y*»J = ( l - c T ) i l y * l l . 

And since cT -r 0 was arbitrary, we get (ii). 

Let X be reflexive by the end of the proof. Let us prove 

(ii) = > ( i ) , We shall proceed as Clarke in the proof of [2, Lem

ma 3]. Fix 0=^y*€ Y*. Let us remark that the set {I* y* :L € W\ 

is convex ana disjoint irom ix* e X*: llx*|| < cc II y* W\. Hence by the 

separation theorem and reflexivity there is xe X, x40, such that 

for any L e W 

< y * , L x > = <L* y * , x > S sup -£<x*,;<>. \x*t < osHy*H\ = <x>ily* H H xft . 

It remains to prove (ii) =-=^(iii). By (ii) L* maps Y* onto 

the closed subspace Z = L*(Y*) of X* and there exists S e Is6(Z,Y*) 

such that HSltfel/cC and S(L*y*)=y* for all y* e Y* . Then S* maps 

Y** into Z*. Fix now y e Y, y 4-0. Then S*(*e(y)) is in Z* and 

hence, by the Hahn Banach theorem, there exists x** e X** such 

that Hx**li = HS**(y)» and that <x**,z>= <S**e(y),z> for all ze 

£ Z. As X is reflexive, we can write x**= -̂ e(x) with some x e.X. 

Then we have 

<y*,Lx> = <L*y*,x>= <*e(x),L* yi<> = <S* *e(y) ,L* y*> = 

= <*(y),SL*(y*)> = <ae(y),y*> = <y*,y> 

f o r a l l y* e Y* Hence Lx = y. Moreover HS*II = I I S R £ 1 / C G and so 
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lxMx**IU IS*»t(y)Ui l*(y)» =^lyl. 

Thus (iii) holds. 

Lemma 3. Let X, Y be Banach spaces, let cc > 0, ye-($><*,) 

be given and let W, c &(X,Y) be a nonempty convex bounded set 

such that for every y* c Y* there exists 0 =+- x e X satisfying 

<y*,Lx>£oGlly*.i lixH whenever I e "M . 

If the norm of Y is FrSchet differentiable off the origin, 

then for every 0 4-y e Y there are t 6(0,1/7-) ar|d 9 e x such that 

(11) ilgl| = llyll and Hy-tLg II < (1- f t)lly II whenever L e W - • 

If the norm of Y is uniformly Fr6chet differentiable on the unit 

sphere, then there exists t e (0, I f f ) such that for every 0-J*ye 

e Y there is g £ X fulfilling (11). 

Proof. Let 0 4- y & Y be given. Let llyli' denote the Fr^chet 

derivative of ll * H at y. By assumptions, to y*=llyH', there exists 

gcx, II gll = liyll, such that 

< H y l V , L g > 2 c 6 | l ly l l ' I I H gil = oCll y II 

f o r a l l L 6 W> . Denote c = sup -UlLH.Le. ^ t } . As W i s bounded, 

c i s f i n i t e . Since the norm i s Fr6chet d i f f e r e n t i a b l e a t y , t h e 

re i s t 7 0 such t h a t 

lly-z lUllyH - <llyll',z>+ ^ f ^ l i z II 

whenever z <s Y and II z II & t c liy i l . We note t h a t i f the norm on Y i s 

u n i f o r m l y Fr6chet d i f f e r e n t i a b l e on the u n i t sphere, then t can 

be chosen independent ly of the concre te y . As 11 tLg II fete llyll f o r 

a l l L e W, , we have 

i i y - t L g l l s l i y i l - < l l yH ' , tLg>+ - ^ f ^ - l l t L g l l £ 

4 l l y f i -oc t l l y l l+ -^~\c\\y\\<{\- tft)iiyil, 

which was to prove. 

Proof of Theorem 2. According to Troyanski [4, p. 164i Y* 

admits an equivalent locally uniformly rotund norm. If Y is su-

perreflexive, so is Y* 14, p. 87J and by Enflo 14, p. 87J there 

exists an equivalent uniformly rotund norm on Y*. Further, it is 

known and easy to check C83 that such norms can be taken arbit-
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rarily close, in the sense of Banach-Mazur distance, to the ori

ginal norm on Y*. Hence, by an easy duality argument [43 we get 

that Y admits an equivalent norm which is Frechet (or uniformly 

Frechet)differentiable on the unit sphere and is arbitrarily clo

se to the original norm on Y. Thus we may assume that the origi

nal norm on Y is Frechet (uniformly Frechet) differentiable on 

the unit sphere and that the assumptions of Theorem 2 hold with 

ft and p replaced by ft, + cT and <p -2c/" respectively, whereof 

is some fixed number from (0,p/3). 

Take x e B(x
Q
 ,r) f> D(F) and y € B(FxQ, ( p -3cT )r), y + Fx. From 

(2), by applying subsequently Lemmas 2 and 3 we can find te 

€> (0,l/((5+p -2t/ )) and geX such that 

ligl|=HFx~yll and l iFx -y - tLg l l < ( l - ( fi + f -2d ) t ) | | g II 

for all L € OT . Let us note that in the case of uniform Frechet 

differentiability the t does not depend on the choice of x and 

From the hypotheses choose &&(0,1J and L e flfo such that 

,(F(x- etg)-Fx+ sL(tg)l| £ e ( p+oT )litgD. 

Then the last two inequalities yield 

i ) ( F ( x - ^ t g ) - F x + e ( F x - y ) . l * 4 I I F < X - e t g ) - F x + £L ( t g ) i . + 

+ H F x - y - t L g l l < ( (3 + iT ) litgll + ( l - ( /i + ̂ - 2 ^ ) t ) i',gii = 

= l !Fx-y i l - (p -3cT ) l | tg l | = ( l - ( p -3c/ ) t ) I l F x - y | | , 

(p -3cT )lltgl|+ -|llF(x- etg)-Fx+ fc(Fx-y)ll< II Fx-y li

lt means that (8) and (9) hold with h = tg, q=l-( p -3 if )t, and 

with p replaced by p -3c/ . Thus by Corollary 2 

B (Fx ,( p -3(/ )r)c F(B(x ,r)H D(F)). And since c/V 0 could be ar

bitrarily small, the conclusion of Theorem 2 follows. 

Remark 6. From the above proof one can see that the versi

on of Theorem 2 with F continuous and D(F) closed holds under 

weaker assumptions. Namely, the reflexivity of Y can be replaced 

by the requirement that the set of equivalent Frexhet differen-

tiable norms on Y is dense in the sense of Banach-Mazur distance. 

We do not know whether this case occurs if one such norm exists. 

Final note. After this paper had been prepared for publi

cation, we learned about the paper of P.H. Dien, Some results 
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on locally Lipschitzian mappings, Acta Math. Vietnamica 6(1981), 

97-105. Here a theorem similar to our Theorem 2 is presented un

der a little stronger assumptions. Its proof is based on the 

Ekeland's variational principle. 
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