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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,2(1987) 

FIXED POINTS, EQUILIBRIA AND MAXIMAL ELEMENTS IN LINEAR 

TOPOLOGICAL SPACES 
x) Ghanshyam MEHTA 

Abstract: In this paper we have proved some generalizati
ons of the fixed-point theorems of Browder and Tarafdar in line
ar topological spaces. These results are used to prove some ge
neral theorems on the existence of maximal elements and equili
bria in linear topological spaces. 
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1. Introduction. Browder [1968 Theorem 1] proved that a 

nonempty convex-valued multifunction with open inverse images 

defined on a compact, convex subset of a Hausdorff linear topo

logical space, has a fixed-point. This theorem of Browder was 

generalized by Tarafdar [1977] who replaced the assumption that 

the multifunction has open inverse images by a weaker condition. 

Tarafdar used this generalized theorem to prove the existence 

of a solution to a nonlinear variational inequality. Tarafdar s 

theorem was also used in Mehta and Tarafdar [1985], Tarafdar 

and Mehta [1984] to prove generalized versions of the Gale-Ni-

kaido-Oebreu theorem in mathematical economics. 

The object of this paper is to prove some generalizations 

of the Browder and Tarafdar theorems and to give some applica

tions. In section 2, a generalization of the Browder and Taraf

dar fixed-point theorems is proved in a locally convex linear 

topological space. In section 3, a different approach is employ

ed and a generalization of the Browder and Tarafdar theorems is 

proved, in a linear topological space using a recent theorem of 

x) This work was done while visiting the University of Bonn. I 
should like to thank Professor Hildebrand for his hospitality 
and encouragement. Financial support from the Sonderforschungs-
bereich is gratefully acknowledged. 
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Fan [1984]. Finally, in section 4, these generalizations are used 

to prove some general theorems on the existence of maximal elem

ents and the existence of equilibria of qualitative games or ab

stract economies. 

We shall use the following notation.If K is a subset of a 

linear topological space, then co K denotes the convex hull of 

K, cl K denotes the topological closure of K and int K denotes 

the topological interior of K. 

2. A fixed-point theorem in a locally convex space. The 

following theorem has been proved by Browder [1968, p. 285 3. 

Theorem 2.1. Let K be a compact, convex subset of a Haus-

dorff linear topological space. Let T be a multifunction on K 

into 2 such that 

(a) for each xe K, T(x) is a non-empty convex subset of K; 

(b) for each x e K, T~ (x)= { y e K:x e T(y)} is open in K. 

Then there is a point x £ K such that x e T(x ). 
o o o 

Remark. Instead of condition (b) in the above theorem one 

can make the following weaker assumption: 

( b ) for each x e K, there is a y in K such that 

x 6int LT"1(y)3. 

Tarafdar [1977] has proved the existence of a fixed point of T 

under the weaker condition (b'). 

The question arises if the assumption in the Browder and Ta

rafdar theorems, that the domain of the multifunction is compact, 

can be significantly weakened. We show in this section that this 

can be done in locally convex linear topological spaces. More 

specifically, we prove that a multifunction defined on a para-

compact, convex subset X of a locally convex linear topological 

space with values in a compact subset 0 of X, and which satisfi

es the other conditions, has a fixed-point. 

The method of proof we employ in this section is similar to 

that of Browder and consists of two steps. First, a partition-of-

unity argument is used to get a continuous selection for the gi

ven multifunction. Secondly, a fixed-point theorem is applied to 

get a fixed-point for the continuous selection. The fixed-point 

theorem we use is a generalization due to Himmelberg [ 19723 of 

the classical fixed-point theorem of Fan. 
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Theorem 2.2. Let X be a paracompact, convex, nonempty sub

set of a Hausdorff locally convex linear topological space. Let 

D be 

that 
D be a compact subset of X and T:X —=*• 2 a multifunction such 

(i) for all x in X, T(x) is convex and nonempty; 

(ii) for each x in X, there exists a y in D such that 

x & int T (y). 

Then there exists a point x eD such that x e T(x ). ^ o o o 

Proof. Let 0 =int T (y) for y in D. By assumption (ii), 

0= {0 :yt 0} is an open cover of X. Since X is paracompact, the

re exists an open locally finite refinement V= *[V :ae A£ of 0 

where A is an index set [Kelley, 1955, p. 156J. Since every pa

racompact space is normal [Kelley, 1955, p. 159J, there exists »a 

family of continuous functions •£ f :aeA? on X with non-negative 

real values, such that for each xeX, JE . f„(x) = l and each f„va-
CL e A a a 

nishes outside V [Kelley, 1955, p. 171]. 
Now for each aeA, there exists a y in D such that V £0 g 

a a Va 

-1 
£• T (yg) since V refines 0. Define a function f on X as fol
lows: f (x)= 2LA f ( x )y . Since V is locally finite, each point x 
has a neighbourhood which intersects only finitely many sets of 
the family -t V :ae.AJ. Consequently, only finitely many functions 
have a non-zero value for each x. Thus f is a continuous functi
on. 

If fa(x)=0, xeVag.O &T"1(ya) so that y a&T(x). Hence, by 
ya 

assumption (i), f(x) e T(x) for all x & X, since f(x) is a convex 
combination of the points y in T(x). This proves the existence 

of a continuous selection f for the multifunction T on X. 

Now f is a continuous single-valued function on a convex 

subset X of a separated locally convex topological vector space 

with values in a compact subset D of X. It follows that f is an 

upper semi-continuous multifunction on X with closed and convex 

values. Hence, by a theorem of Himmelberg £1972, Theorem 23 f has 

a fixed-point x . Consequently, x
0
= f ( x

0 )
e K x

0 ) and I n a s a fix

ed point. 

q.e.d. 

Remark 1. The above theorem shows that in a locally convex 
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linear topological space, it is possible to generalize the Brow-

der and Tarafdar theorems, to multifunctions defined on paracom-

pact, convex subsets. 

Remark 2. If we assume that for yeD, T~ (y) is open in X, 

then assumption (ii) is automatically satisfied since T(x) is 

non-empty for each xeX. Hence, the fixed-point theorem of Yann-

elis and Prabhakar [19833 is a special case of the above theorem. 

3. A generalization of the Browder and Tarafdar theorems. 

The object of this section is to generalize the Browder and Ta

rafdar theorems in arbitrary linear topological spaces and to 

prove them in a different way. The proofs of Browder's theorem 

[1968] and the previous fixed-point theorem were based on a par

tition of unity. The approach used in the next theorem does not 

rely on this method. Instead, we prove the existence of a fixed-

point by using a recent generalization of the classic Knaster-

Kuratowski-Mazurkiewicz theorem due to Fan [19843. 

Theorem 3.1. Let K be a convex subset of a Hausdorff line-

ar topological space E and T:K —-v 2 a multifunction such that 

(i) for each xe.K, T(x) is nonempty and convex; 

(ii) for each yeK, T~ (y)= i x e K:y e. T(x) I contains an op

en subset 0 of K; 

(iii) LHO :y fc K]=K; 

(iv) there exists a nonempty subset K of K such that 

. r\, itO ]CJ is compact and K is contained in a compact con-
A 6 KQ X 0 
vex subset of E. 

Then T has a fixed point. 

Proof. Suppose that T has no fixed point. Then x + T (x) 

for all x. This implies that x^O for all x. 
cx 

For xeK, define F(x)= [ 0 "j . Since 0 is open in K for each 

x e K, it follows that F(x) is a relatively closed subset of K 

for each x e. K . 

By assumption (iv), r v F(x ) is compact for some K con-
* e i\0 o o 

tained in a compact, convex subset. 

Let ix,,x«,...,x } be a finite subset of X. We want to show 

that the convex hull S of i x,,x0,...,x } is contained in 
ft 1 z n 

.U^ F(x.). We argue by contradiction. Suppose there is x eS such 
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that x 4 - ^ F(x.). Hence, for each i = l,...,n, xiCO ] c which 

implies that for each i, x e 0 . Now, by assumption (ii),Q £ 
xi i 

-1 -l 
£T (x.), so that x e T (x.) for all i. This implies that x..e 

e T(x) for all i. By assumption (i), T(x) is a convex set for 

all x which implies that x e T(x) and this contradicts our suppo

sition that T has no fixed points. We conclude, therefore, that 

the convex hull of any finite subset {x.,x9,...,x } is contain-

ed in the corresponding union -U/JF(x.). 

Thus all the conditions of Theorem 4 of Fan [19843 are sa

tisfied and we conclude that f^ F(x)=j=- 0. Let x^ be a point in 

K £ K o 

this intersection. Then x e F(x)= CO 3 C for all x in K, and this 

contradicts assumption (iii). The contradiction proves the exisr 

tence of a fixed point for T. 

q.e.d. 

Remark. If K is compact, as in Browder [19683 or Tarafdar 

C19773 condition (iv) is automatically satisfied so that these 

theorems are a special case of the above theorem. 

4. Applications. Let K be a subset of some linear topolo
gical space E. With each binary relation P on K one can associa

te 
te a multifunction T:K—>- 2 in the following way: yeT(x) if and 

i/ 

only if (x,y)e P. Conversely, if T:K —> • 2 is a multifunction, 

then a binary relation P is defined on K by the condition that 

(x,y)eP if and only if y<s.T(x). Hence, we have the following: 

Definition. A point x„ is said to be a maximal element of 

0  

the multifunction T:K—-> 2* if T(x ) = 0. 

We now prove the following theorems on the existence of ma

ximal elements of a multifunction T. 

Theorem 4.1. Let X be a non-empty, paracompact, and convex 

subset of a separated locally convex linear topological space 

and D a compact, convex subset of X. 

Let T:X —> 2 be a multifunction such that 

(i) for each xeX, x £ co T(x); 

(ii) for each x e X, there exists a y in D such that 

xe int Q (y), where Q(x)=co T(x) for x in X. 
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Then there is a maximal element, i.e. a point x such that T(x )= 

-0. 

Proof. If there is no maximal element, T(x), and therefo

re Q(x), is nonempty for each x e X, so that Q:X —>- 2 is non

empty, convex-valued multifunction. Assumption (ii) of Theorem 

4.1 implies that assumption (ii) of Theorem 2.2 is satisfied. By 

Theorem 2.2, we conclude that there exists a point x such that 
' o 

x e T(x ) £ Q(x ). This is a contradiction since assumption (i) 

implies that x<£Q(x) for all x e X . Hence, T has a maximal elem

ent. 

Remark. Assumption (ii) of Theorem 4.1 is weaker than the 

assumption used by Yannelis and Prabhakar that for all y e D, 

T (y) is open in X. The reason for this is the following. If 

T (y) is open, then Q (y) is also open, where Q(y)=co T(y) 

[1983, p. 239J . Hence, Theorem 4.1 is a generalization of the 

result of Yannelis and Prabhakar [1983, p. 240]. 

Theorem 4.2. Let K be a convex subset of a Hausdorff line-

ar topological space E and T:K — > 2 a multifunction such that: 

(i) for each xeK, T(x) is convex; 

(ii) for each xeK, x^T(x); 

(iii) for each y e K , T" (y) contains an open subset 0 of 

(iv) IH0 :y£K?=K; 

(v) there exists a nonempty subset K of K such that 

X Q K "-[0 1 C l S compact and K is contained in a compact convex 

subset of E. 

Then T has a maximal element. 

Proof. Follows immediately from Theorem 3.1. 

For a recent general theorem on the existence of maximal e-

lements see HadzAc [1986, Proposition]. 

We turn now to the problem of the existence of equilibria 

of qualitative games or abstract economies. 

Let X. be a nonempty set for is I, where I is an index set. 

An abstract economy or qualitative game E is defined by a family 

of ordered triples (X.,A.,P.) where A.: TT. TX . — > X. and P.: 
X X X X J f e X J X X 

: TT. TX, — > X. are multifunctions. An equilibrium for E is an 

jel j l —a  
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x* G ^j^jX. such that for each i: 

(i) x*e cl A.(x*), 

(ii) P.(x*)n Ai(x*)= 0 • 

We now prove the following generalization of the main theo

rem of Yannelis and Prabhakar £1983.1. 

Theorem 4.3. Let E=(X.,A.,P.) be an abstract economy satis

fying for each i in some countable index set I. 

(i) X. is nonempty, compact, convex, metrizable subset of 

a locally convex linear topological space; 

(ii) A.(x) is convex and nonempty for, all xeX; 

(iii) the correspondence A..-X —*• 2 defined by A.(x) = 

= cl A.(x) for all x£ X is upper semicontinuous. 

(iv) the set U.= ixeX: $-(x)*0? is open in X; 

(v) for each x e U., there exists y- in X. such that 

x € int $ 7 (y-; )» where <J>.(x)=A.(x)r.co P,(x) for all x e X ; 

(vi) x.^'co P.(x) for all xeX. 

then E has an equilibrium. 

X. 

Proof. Consider the correspondence ^&. :U.—> 2 . Assump

tions (ii) and (iv) imply that <£. is nonempty and convex valued 

for each xcU.. Assumption (v) implies that assumption (ii) of 

Theorem 2.2, is satisfied. Hence, as the proof of Theorem 2.2, 

shows, there exists a continuous function f.:U.—> X. such that 

f.(x) e $.;(x) for all xeU., since U. is paracompact as a subset 

of the metrizable space TT._TX.. 

The rest of the proof is based on an idea used by Gale and 

Mas-Colell L1975, p. 103 and is carried out as in Flam E1979J or 

Yannelis and Prabhakar 11983!. For completeness we give it here. 

Oefine the correspondence F.:X-^>2 by 

F.(x)= 4f.(xH if x eU t, 

Fi(x)=A.(x) if x 4 U r 

V 

F. is easily seen to be upper semi-continuous. Define F:X-->2 

by F(x)= 7T. -rF. (x). It is easily verified that F is an upper se

mi-continuous multifunction with non-empty, closed and convex 

values. Hence, by Himmelberg's theorem E1972J, F has a fixed 

point x* . For each i, x*$ U. since if x*e U-, then x^ = f.(x*)e 
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€. $ . ( x * ) £ c o P . ( x * ) , a contradiction to assumption (vi). Hence, 

x*4-U. and it is easily checked that x* is an equilibrium point 

of the economy E. . 
7 q . e. d . 

Remark. Yannelis and Prabhakar L1983.1 assume that A. and 
-1 -1 

P. have open inverse images, i.e. A. (y) and P. (y) are open for 

each y. It is easily verified that these assumptions imply that 

conditions (iv) and (v) of Theorem 4.3 are satisfied. Consequen

tly Theorem 4.3 is a generalization of the main theorem of Yan

nelis and Prabhakar [1983, Theorem 6.1J. 
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