Petr Savický Boolean functions represented by random formulas

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 2, 397--398

Persistent URL: http://dml.cz/dmlcz/106550

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.



This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

## ANNOUNCEMENT OF NEW RESULTS

(of authors having an address in Czechoslovakia)

## BOOLEAN FUNCTIONS REPRESENTED BY RANDOM FORMULAS

P. Savický (Katedra kybernetiky a informatiky, MFF UK, Malostran-ské nám. 25, 118 00 Praha 1, Czechoslovakia), received 30.3. 1987

Let n≥1 be a fixed natural number. A Boolean function of n variables is any function f:{0,1}<sup>n</sup>→{0,1}, cf. [l]. We study the representation of Boolean functions by Boolean

formulas of the following type.

**Definition 1.** Let  $x_1, x_2, \ldots, x_n$  be variables. Let B be a set of function symbols all of which have the same number of arguments  $k \ge 2$ . For all  $i \ge 0$  let  $H_i$  be the set of Boolean formulas defined in the following way.  $H_{o} = \{x_{1}, x_{2}, \dots, x_{n}, \neg x_{1}, \neg x_{2}, \dots, \neg x_{n}\}$ 

 $\begin{array}{l} \mathsf{H}_{i+1}=\{ \mathscr{A} ( \ \varphi_1, \ \varphi_2, \ldots, \ \varphi_k); \ \mathfrak{A} \in \mathsf{B}, \ \mathfrak{P}_j \in \mathsf{H}_i \ \text{for } j=1,2, \ldots, k \} \\ \text{Elements of } \mathsf{H}_i \ \text{for } i=0,1,2, \ldots \ \text{are formal expressions of } in- p \\ \end{array}$ creasing complexity. Given an interpretation of all symbols  $\propto \in B$ as functions  $\alpha:\{0,1\}^k \longrightarrow \{0,1\}$ , any formula of H<sub>i</sub> for all i*z* 0 represents a Boolean function in a natural way.

Definition 2. Let F<sub>i</sub> be a random variable whose values are formulas from H, and the distribution of which is the uniform distribution on H<sub>i</sub>.

Our aim is to present some results on the distribution of Boolean functions represented by the formula  ${\rm F}_{\rm i}$  . For an arbitrary set A⊆{0,1}<sup>n</sup> and i≥0 let  $F_i^{h}$  A denote the restriction of the Boolean function represented by  $F_i$  to the set A.

**Theorem 1.** Let  $B=\{\&, v\}$  (i.e. k=2) and  $F_i$  be as in Definition 2. Then for every  $A \subseteq \{0,1\}^n$  and every  $f:A \rightarrow \{0,1\}$  we have

 $\lim_{i \to \infty} P(F_i \land A=f) = \begin{cases} 0 & \text{if } f_i \text{ is not a constant function} \\ 1/2 & \text{if } f \equiv 0 \text{ or } f \equiv 1 \end{cases}$ 

The following theorem deals with the selection function s(x,y,z) defined as s(0,y,z)=y and s(1,y,z)=z for all  $y,z \in \{0,1\}$ .

**Theorem 2.** Let  $B = \{s\}$  (k=3) and  $F_i$  be as in Definition 2. Then for every  $A \subseteq \{0,1\}^n$  and every  $f:A \xrightarrow{1} \{0,1\}$  we have

$$\lim_{n \to \infty} P(F, \uparrow A=f) = (1/2)^{|A|}$$

The convergence in Theorem 1 is of the order of magnitude O(1/i) and in Theorem 2 O( $c^{i}$ ) where c < 1.

**Outline of the proofs.** Note that  $F_{i+1} = \alpha(F_i^1, F_i^2, \dots, F_i^k)$ 

- 397 -

where  $F_i^j$  are independent realizations of the random formula  $F_i$ and  $\infty$  is a random element of B independent of  $F_i^j$ . Using this we can establish a recurrent relation for  $P(F_i \land A=f)$ . We prove Theorems 1 and 2 for one and two element sets A by a direct computation using this relation. Theorem 1 in the general case is a simple consequence. Theorem 2 for  $|A| \ge 3$  can be proved by induction on |A|.

An analogous type of probability distribution on formulas was used by Valiant ([2]) in a probabilistic construction of monotone formulas of the size  $O(n^{5,3})$ , for the majority function. References:

- [1] Savage J.E.: The Complexity of Computing, Wiley-Interscience, New York, 1976.
- [2] Valiant L.G.: Short monotone formulae for the majority function, Journal of Algorithms 5(1984), 363-366.