
Commentationes Mathematicae Universitatis Carolinae

Miroslav Katětov
On dimensions of semimetrized measure spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 3, 399--411

Persistent URL: http://dml.cz/dmlcz/106552

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106552
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

ON DIMENSIONS OF SEMIMETRIZED MEASURE SPACES 

Miroslav KATÉTOV 

Abstract; We introduce and examine various kinds of dimensions and di­
mensional densities defined for semimetric spaces equipped with a finite mea­
sure. 

Key words; Extended Shannon semientropy, Shannon functional, regularized 
upper (lower) Renyi dimension, monotone dimension. 

Classification; 94A17 

In a previous article [41 by the author, there have been introduced, for 

the class of all semimetrized spaces equipped with a finite measure,dimension 

functionals which generalize the dimensions defined for vector-valued random 

variables in [11 and in subsequent papers of A. Renyi. In the present article, 

we introduce dimension functionals of another kind; in some respects, they be­

have similarly as dimensions of topological (or uniform, as the case may be) 

spaces. We also introduce various kinds of dimensional densities generalizing 

a closely related concept examined in 143. Among other things, theorems are 

proved analogous to the sum theorem for the topological dimension and to the 

theorem on the dimension of the cartesian product of topological spaces. 

Section 1 contains preliminaries. In Section 2, functionals of the form 

y-udim and some related notions are examined. In Section 3, we investigate 

dimension functionals for which there is a theorem analogous to Sum Theorem of 

the topological dimension theory. In Section 4, dimensional densities are con­

sidered. 

1 

1.1. The terminology and notation is that of L3l and 141 with two excep­

tions stated below (1.3 and 1.19). Nevertheless, we will re-state some defi­

nitions and conventions. 

1.2. The symbols N, R, R, R+, H have their usual meaning. We put 0/0=0, 

and, for any beR, 0.b=0; log means log2; we put L(0)=0, L(t)= -t log t if 
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0<t<cx> . For te.R, we put sgn(0)=0, sgn(t)=l if t>0, sgn(t)= -1 if t<0. 

If f :X—>1T is a function, then sgn f denotes the function x »—>sgn(f(x)). 

1.3. If Q=¥0 is a set and A is a £-algebra of subsets of Q, then, in 

accordance with the current terminology, a € -additive function <u: A —>R+ 

satisfying (tt(0)=O will be called a measure on Q (in L23, the term "R-measure" 

was used), whereas a ^ such that, in addition, ^(Q)<co will be called a 

finite measure (in £23,131 and C41, such (0, were called "measures"). 

1.4. If a set A is given, then, for any XcA, i„ is the indicator of X, 

i.e., ix(x)=l if xeX, ix(x)=0 if xeA\X. 

1.5. A) If Q4-0 is a set, then &(Q) and ii(Q) will denote, respective­

ly, the set of all f:Q —*- R and that of all measures on Q. - B) The completi­

on of a (J- £ M(Q) is denoted by JL or C (tcl . If ^u, y e M (Q), we put v & (•*< 

if dom V =dom <u and v(X) £ (u(X) for all Xedom <a . If <t6 e M(Q)t f ,g e^(Q) 

and ^-Ux«.Q:f(x)4-g(x)1 =0, we write f=g(mod <u.). - C) Let < a e . i l ( Q ) . If f e 

e T(Q) is ja-measurable, we put [fL^ = ̂ g e^(Q):g=f(mod|a)^ and call [flu, a 

function (mod (it). We put Vi^l ^ C f j ^ :f c^(Q), f is ja-measurable}. -

D) If F,G € ^[(ttl , then we put F*4 6 (respectively, F< G) iff there are feF 

and geG such that f(x).6g(x) (respectively, f(x)<g(x)) for all x eQ. - E) If 

,-X&JH(Q), f £ : ? ( Q ) , then sup [fi^ denotes the least b c l such that If J =r b, 

and similarly for inf Cf3^ • 

1.6. If /O-e-HCQ), f fe^(Q) is ^measurable and F= C f l ^ O , then the 

measure X I—* j f d (*, , defined on dom (a , is denoted by f.<u or F./u . - Clear­

ly, f.(4,£p, iff [ f ] ^ 1, f.tu. =g. <u, iff f=g (mod (a). 

1.7. If K*0 is countable, §=(x k:keK), xks. R+, SI *k<oo , we put H(£ )= 

=H(xk:k«.K)= 2.(L(xk):kcK)-L(^(xk:k€K)). If Q is countable, <ae Ji(Q) is 

finite and dom $4,=exp Q, we put H((0=H((-cAq$:q€Q). 

1.8. If M is a (partially) ordered set and x , a&A, x, y are in M, we 

often write V ( x :acA), A ( x :acA), xvy, etc. instead of sup(x :aeA), 
d a 3 

inf(x :acA), sup-{x,y}, etc. In particular, if x,ycR, then xvy=max(x,y), 

x Ay=min(x,y). 

1.9. Recall that P=<Q,(t>,<ct> is called semimetrized measure space or W-

space (or also a semimetric space endowed with a measure) if ^ €. M(Q) is fi­

nite and 5? is a I(xx (xl -measurable semimetric. The class of all W-spaces is 

denoted by 7)0 . If P=<Q,<^ , <«,> c 7tQ , we put wP=^(Q); if wP=0, P is called 

a null space; if Q is finite and domp,=exp Q, we call P an FW-space. The class 

of all FW-spaces is denoted by ^ p . - See, e.g., [3 .1, 1.5. 

1.10. Let P= \Q,<a , fc> € 7U) . If f c T(Q) is Jtl-measurable, [fV z. 0 
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and f. (UL is finite, we put f.P=<Q,rt?,f.(a>; if Xedom (<X , we put X.P=iy.P 

(see 1.4). If S e ^ , S=<Q,<p ,y> and v ** (U. , we write S£P and call S a 

subspace of P (a pure subspace if S=X.P, Xgdom fl). Clearly, S^P iff S=f.P 

for some fc-measurable f:Q —>R +. - Cf. 133, 1.6, 1.7. 

1.11. If P *W0 , we put exp P=AS:S*Pl. We put Ot= U( exp Px exp P:Pe 

e W ). 

1.12. If P=<Q,cp,<a> e W , Pk= <Q,<j> , ("k> e top for kfcK, where K*0 

is countable, and ft = 21((uk:keK), we put P= X(P.:k€K) and call (P. :keK) 

an o>-partition of P (merely "partition" if K is finite). - See [3.1, 1.6. 

1.13. Lemma. If P e W) , P= 2.(Pn:neN), S£P, then there are S £ P such 

that 2L(Sn:n€.N)=S. 

Proof 

xsn=s. 
. Let S=s.P, Pn=fn.P (see 1.10). Put gn=sfn, Sn=

gn*P^ Pn* clearlV> 

1.14. Let 'U=(U|<:keK) and V=(V :m*M) be o>partitions of P e W) . If 

there are pairwise disjoint NL such that U. =5.(V :meM. ), U M . =M, then V is 

said to refine 11. - See C33, 1.6. 

1.15. If P=<Q,<p,<cc>e m , we put d(P)=sup tj> V * ^ . If ( P ^ ) cCl, 

P i=<Q,?,<
ul>, we put E(P1,P2)=d(P1+P2), r(P1,P2)=/j>d(^1x^2)/wp1#wP2 if 

w P r w P 2 . > 0 , r(Px,P2)=0 if wP1.wP2=0. - Cf . 133,1.19, 

1.16. Let P=<Q, to, (U.>e 02/;, & > 0 . Then 0C=(Xk:keK), where K*0 is 

countable, Xke dom <<Z , will be called an ^/-covering of P if diam X. == e for 

all k and S Q \ f Xk)=0. If, in addition, XinX.=0 for i+j, then (C will be 

called an e,-partition of P. - Cf. C3J, 1.19. 

1.17. If P=<Q,cf , (M> e W) , then we put e*P=<Q,e*<j) , <u,> , where 

(fc*cf>)(x,y)=0 if tx>(x,y)£ e , ( £ * f )(x,y)=l if <^>(x,y) > e, . - See 131, 1.17. 

1.18. If Pj[=<Qi,f v lu i>e ajj, i=l,2, then we put P ^ P 2=<Q,^ , (tC>, 

where 0 = 0 ^ 0 ^ f t 2 ^ * ^ and ?^ xl , x2 ) , ( yl , y2^ = ̂ l^ xl» yi^ v?2^ x2 , y2^ 

1.19. Let <j> : #J0—>"R+ satisfy the following conditions: (1) if 

<Q,(p , (U<>€.#*?, a,beR+, then <y<Q,a(p ,b<u>=ab<|><Q,p ,<u>; (2) if P.= 

= <Q,cpi, <a>€ 2*? , i=l,2, and p 1-^f 2» then <$> Px > 9 P2; (3) if P=<Q,1,^>£ 

e ^ P F , then <pP=H(<a); (4) if Pi=<Qi,cpi, ̂ > e M), 1=1,2, and there is 

an f:Q 1—>Q 2 such that (a) <p2(fx,fy)= j-^Cx.y) if x ^ Q p ^ x } > 0 , (U.-{y}> 

>0, (b) ^ ( ^ ^ 1 ) = ^ { q i for all qeQ 2, then <f?^^?2\ (5a) if P= 

= <Q, <?,<<*> e^F,
 p

n =
< : Q , P n , ^ > e Wf and fn~^f ' then 9 > p

n — ^ P * 
(5b) if P=<Q,tp, <u.>£3#F, <Q,g> , ^ n > € %? F, (a-{q5>0 for all qeQ and (U^ 
—> (JL ) then <^P —* 9 P. Then <y will be called an extended Shannon semient-
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ropy (in the broad sense), which is the expression introduced in [23 and used 

in L33 and £43, or a Shannon functional (in trie broad sense), which is the ex­

pression we use in this article. 

1.20. Convention. The letter <p will always stand for a Shannon functi­

onal (in the broad sense). 

1.21. For the definition of normal gauge functionals (NGF) and of CV, 

and C^ , where X is ah NGF, we refer to [23 and [3J, since we need only (1) 

the fact that r and E are NGF's, (2) the fact that C and CE are Shannon 

functionals (b.s.), and (3) some propositions on CV, see 1.24 - 1.26 below. It 

is also useful to note that there are E-projective (see 1.23) 9>'s distinct 

from Cp, for instance C . 

1.22. Convention. The functional Cc will ne often denoted by E, provid­

ed there is no danger of confusion with the E introduced in 1.15. 

1.23. Definition. A functional y : 7fK) —** R + will be called E-projective 

if, for any P e720 and any partition (S,T) of P, y(P) £ tf^+ aK T ^ + 

+E(S,T)H(wS,wT). - Cf. 123, 3.10. 

1.24. Fact. The functional E: 7X)—>- R+ is E-projective. - See [2.1, The­

orem II. 

1.25. Proposition. If S^P 6 W) , then E(S)£E(P). - See [33, 2.3. 

1.26.. iProposition. if p e 7-V?, then, for all sufficiently small S ^ O , 

E(s* P) is equal to the infimum of all H(p.Xn:n€N), where (Xn:ncN) is an 

£-partition of P. - See [33, 2.18, 1.19. 

2.1. Definition (cf. [43, 2.1). For any «y and any P e Tif), 9>-uw(P) (res­

pectively, q^-iw(P)) will denote the upper (lower) limit of g?(e#P)/ llog^l 

for ^ — > 0 . We put <y-ud(P)=cp-uw(P)/wP, c.p-id(P)=<^-iw(P)/wP,cjp-udim(P)= 

=sup-C<y-ud(S):S^P|, <y-jedim(P)=sup % - id(S):S-=P|. If <y~uw(P)=<y- AM(P), 

we put g>-Rw(P)=cp-uw(P), c|-Rd(P)=g>-ud(P). We call g>-udim(P) the monotone 

<y-dimension of P. For gp-uw(P), etc., the terminology introduced in [43, 2.1, 

will be used. - If 9>=E, we often omit the prefix "9? '*. - Remark. In the 

present note, the functionals <sp-idim will not be considered. 

2.2. Fact. For any E-projective 9? and any P e 7$) , (1) if P=S+T, then 

<y-uw(P)£<y-uw(S)+g>-uw(T), g> -ud(P)^<y-ud(S)v9?~ud(T), (2) if cp-udim(P)< 

<oo and P= 21(Pk:kfeN), then 9-uw(P)^2:(cp-uw(Pk):keN), gMjd(P) ̂  

^v(o/-ud(Pk):k€N). 
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Proof. Since cp is E-projective, we have cf(e* S)+cp(£#"T)+H(wS,wT) 2: 

>cp(e*P). This proves the inequalities (1). - If q -udim(P)=b < cx> , put Sn= 

= _>(Pk:k>n). Then, for each n€ N, cjp~uw(P)-£ Z(9-uw(Pk):k^n)+c:p-uw(Sn). 

Since wS —.»• 0 and g>-uw(S )± b.wS , this proves the inequalities (2). 

2.3. Proposition. For any E-projective <p and any P e TU) , (1) if P=S+T 

or P=SvT, then cjp-udim(P)=g?-udim(S)v9-udim(R), (2) if c}?-udim(P)-<cx? and 

either P= -£-(P :neN) or P=V(P :n€N), then cf-udim(P)= V"(<y-udim(Pn):neN). 

Proof. Let P=S+T. Then, for any V^P, there are, by 1.13, V ^ S , V 2£T 

such that VX+V2=V. By 2.2, we have cp-ud(V)^ y-ud(V1)v9-ud(V2)^ 9-udim(S)v 

vcf -udim(T). This proves (1), since SvT^S+T. The case P= 21(P :neN) is a-

nalogous to that of P=S+T. - Let P= V(P n:ne N). Put 10=P0,
 T
n+i

= Tn v Pn+1* 

Then P=TQ+ 2KT n + 1-T n:n€N). Since, clearly, U V V = U + V - U A V for any U£P, V£P, 

it is easy to show that c^-udim(T ) ^ V(9>-udim(Pk):k^n). Hence, due to 

c.p-udim(P) < 00 , we get cp -udim(P) ± V (q? -udim(Tn) :n £ N) ̂  V (9 -udim(Pn): 

:n€N). 

2.4. Example. Choose a R>0, b > 0 , ncN, such that Z(bn:neN)=l, 

X(L(bh):n£N)=oo • an~*-0, |log an+1|=(ri £(L(b.):i*-n))'
1 for n>l. Put 

P=<N,<c,<u> , where p(i,j)=a.+a., <y.ii\ =b.. It is easy to see that ud(P)= 

= id(P)=oo , udim(P)=oo . On the other hand, evidently, udimdk!.P)=0 for all 

keN. This shows that, in 2.3, (2), the assumption op-udim(P)<oo cannot be 

omitted. - For an example connected with the assertion (1) in 2.3, see 2.10,E. 

2.5. Lemma. For any E-projective cp and any P e. fyJ), c^-udim(P)= 

=sup -{c£>-ud(S):S:£P, S pure J. 

Proof. Assume wP=l. Write ud instead of q?-ud, uw instead of cj-uw. Put 

b=sup*ud(S):S£P, S pure}. Let T-^P, T=f.P, 0£f(x)^l for all xeQ. Let m e 

Q. N, m>l. Define g as follows: g(x)=k/m if (k-i)/m <f(x)^ k/m; g(x)=l/m if 

f(x)=0. Clearly, g-l/m£f-£g, hence /(g-f)d<a £ 1/m. Put U=g.P, X k={xeQ: 

:g(x)=k/m$. Since Xk.P are pure, we have ud(Xk.P)---b, hence ud((k/m).Xk.P)^ b 

and therefore, by 2.2, ud(U)-£b. Since f.P-=g.P, we get uw(T)^uw(U)^b. 

. fgd(U , ud(T)^b(/ gd ft/ f fd/u)^b+b ffd^i/m. Since meN has been arbit­

rary, we get ud(T)£b. 

2.6. Lemma. Let 3 and K be countable non-void sets. Let x-k, where j e3, 

k&K, be non-negative reals, 2 E ( x . k : j e3,keK) <cco , For je3, keK, put a.= 

= 2.(x^k:k*K>, b k=Z(x j k:je3). Then H(xjk:je3,k eK)^H(a^:je3)+H(bk:keK). 

This follows easily from the well-known special case with both 3 and K 

finite and ̂ Ex.k=l. 
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2.7. Fact. If P is a W-space, P=S+T, then uw(S)vuw(T)£uw(P)^uw(S)+ 

+uw(T). 

Proof. The first inequality follows from 1.25; for the latter, see 2.2. 

2.8. Proposition. For any non-null W-spaces P, and P2, ud(P,)vud(P2)-=-

-iud(P1xP2)!£ud(P1)+ud(P2). - See C41, 4.5. 

2.9. Theorem. For any non-null W-spaces P, and P«, udim(P, )vudim(P2)^ 

=1 udim(Pxx P2)-= u d ^ P , )+udim(P2). 

Proof. The first inequality follows at once from L4l, 2.8. Let Pi= 

= <Q i,f i,^i> > i=l,2, P=P1^P2» P=<Q,<D, <a> , udim(PJL)=bi< co . Put b=bx+ 

+b2. We can assume that wP,=wP2=l. By 2.5, it is sufficient to show that 

ud(S)=rb for any pure S£P. Clearly, there exist sets A c dim (tf.,, B e dim (u-2 

such that (u 1A n>0, <^2Bn>0 and S=X.P, where X= U ( A n x B n ) . Put X-.-- UA R, X2= 

= u B n , S-=X..Pi. - Let cf> 0. We are going to show that, for every suffici­

ently small & > 0 , (1) there exists an e-covering (Y :neN) of S, such that, 

with Un=Xr.(YnxQ2), we have rKjClU^neN) £(brwS+cO|log &\, (2) there ex­

ists an &-covering (Zn:ne,N) of S2 such that, with Vn=Xo(Q,xZn), we have 

H(flVn:n€N)<(b2.wS+cT')|log€/|. For any x<£.Qr put f1(x)=^2( U (B^.ne N,x e 

€. AR)). Clearly, l l is (u^-measurable and X,= 4x:f,*>0$. Put S^fj^P. We have 

S^P,, hence ud(Sp£b, and therefore nrn(E(fc*SJ)/|log &|«)^ b, .wSJ=b, .wS. 

Hence, for every sufficiently small e > 0, there exists, by 1.26, an £-co­

vering (Yn:neN) of S^ such that H(w(Yn.Sp:ne N)< (^.wS+cf )|log &|. Clear­

ly, (YR:neN) is an ^-covering of Sx as well. Put Un=Xr.(
Y
nxQ2). It is ea­

sy to see that <^u
n
=w(Y

n-
s{)> hence H(£ZU :ne.N)<(b, .wS+cT)|log e|: This pro­

ves the assertion (1). The proof of (2) is analogous. 
Pu* Tmn = Um n Vn* Tnen (T m n

; m 6 N> n £N) is an e-covering of S. By 2.6, we 

obtain H(^Tmn:meN,neN)^HC(XUm:m6N)+H(flVn:neN)<(b.wS+2d')|log & |, hence 

E(e* S)< (b.wS+2aT)|log &|. Since this inequality holds for all sufficiently 

small & > 0 , va get uw(S)^b.wS+2c/' . This proves ud(S)^b, for c$ > 0 has 

been arbitrary. 

2.10. Exanple. A) For n*N, let PR= <QR, §>n, ,un> c W ) , wpn=l> diam P R< 

<oo . Let a be positive reals, and let a diam Pn~-> 0. Then TT^(Pn:neN), 

where oc=(a :n€N)» will denote the W-space <Q, ̂  , (u.> , where <Q, <u,> = 

= n « Q n , ^ n > :neN), p((xn),(yn))=sup(an<pn(xn,yn):n6N). If p=(pR:neN), 

p e N, Pn-1» then S(p) will denote the W-space TT^P^neN), where oc -

=(2~n:neN), Pn= <Qn,l, ~»n> , card Qn=pn, »n<qi=l/pn for q eQn. - B) It is 
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easy to show that E(e*S(p))= _£(log Pk:kf n) for 2~
n*e> 2""0"1, and therefo­

re ud(S(p))=lim( 2I(log Pk:k£n)/n), id(S(p))=lim( -£ (log pk:k£n)/n). - C) 

Let r(0)=2, r(k+l)=2r(k) for k*N; put A= { neN:r(2k)£n<r(2k+l) for some ke 

c N . Put uR=2 if neA, un=4 if neN\A, put vn=8/un for all neN. Put u=(uR: 

:neN), v=(vn:neN), U=S(u), V=S(v). It is easy to show (cf. 143, 3.10) that 

if X is a non-null subspace of U or of V, then Al(X)=l, ud(X)=2; hence 

udim(U)=udim(V)=2. - D) Put T=UxV. It can be easily proved that, for any non-

null subspace Y^T, we have ud(Y)= id(Y)=3. This shows that, in 1.8 and 2.9, 

no .£, can be replaced by = . - E) Let M be a "free sum" of U and V and let U' 

and V' denote the subspaces of M corresponding to U and V, respectively. Then 

M=U+V', and it is easy to show that uw(M)=2, hence ud(M)=l and therefore 

uw(M)<" uw(U)+uw(V'), ud(M)< ud(U)Aud(V'). Thus, &. cannot be replaced by = 

in 2.2, (1), and qp-udim cannot be replaced by 9-ud in 2.3, (1). 

3.1. Definition. For any y and any P e ^ ) , (1) <jp-UW(P) (respectively, 

9>-LW(P)) will denote the infimum of all beR + for which there is an ̂ -parti­

tion U of P such that, for any (Vk:k€,K) refining U , .E(cp-uw(Vk):k<sK)^b 

(respectively, X ( c f - i w ( V k ) : k f e K ) . 4 b ) . We put <j>-U0(P)=9>-UW(P)/wP, <j?-LD(P)= 

= c?-LW(P)/wP, o;-UDim(P)=sup ̂ 9-UD(S):S^.P{, <f -LDim(P)=sup *g> -LD(5):S£Pj. 

We will call cy-UDim(P) and <y-LDim(P) the regularized upper (lower) monotone 

^-dimension of P. For cp-UW(P), etc., we will use the names introduced in L43 

for the values of the corresponding functionals (i.e., for g>-uw(P), etc.), 

with the additional qualification "regularized"; thus, e.g., q?-UW(P) will be 

called the regularized Renyi 9-weight of P. - If 9=E, the prefix "cp " will 

be, as a rule, omitted. 

3.2. Theorem. For any 9 and any P= <Q,p , (t-t> e 7ty , (1) if P= X(P k:ke 

eN ) , then cj-UW(P)= .£( <^-UW(Pk):k <£N), cp-LW(P)= £.(9-LW(Pk):keN), (2) the 

functions X f—>• 9-UW(X.P), X v~-> 9>LW(X.P), defined on dom <a, are measures. 

Proof. The assertion (2) is an immediate consequence of (1). We prove 

(1) for C/-UW; for o/-LW, the proof is analogous. If S£P, put y(S)= 

= <y-uw(S), §(S)=9>-UW(S). Let P= IS(Pn:n6N). - I. We are going to show that 

$(P) £ X $ ( P n ) . We can assume that all <$(Pn) are finite. Let b neR +, b R > 

>$(P n) for all n. For any neN, there is an < .o-part i t ion ^rf^^'-ke^) of 

Pn such that .2(Y(VJ:jeJ)-^bn for any ( V . e j e J ) refining 1Zn. Put U = 

=(Unk:ncN,keKn). Let (Vm:m€.M) be an arbitrary <*>-partition of P refining 11. 

Let ( M ^ n €.N,keKn) be an (^-partition of the set M such that - ^ (
v
m
: m € M

nj <)
= : U

n| < 
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for all neN, keKR. Put MR= UO^tkel^). Then (Vm:meMn) refines U^ and 

therefore !£( Y(Vm):meMn)£bn, hence ̂ ( y(Vm):m€M)^ Slbn. We have shown 

that i(P)£1!Eb . Since D > $(PR) have been arbitrary, we get $(p) *£ 

-£ 2:$(Pn). - II. Suppose that $(P)-*-.£<|> (P ). Choose reals an<$(Pn) 

such that _£a ><J>(P). Then there is an co-partition 1l=(U :meM) of P such 

that (1) Sl(Y(Vk):keK)<c 2 a n whenever (Vk:keK) refines % . Let Um=um.P; 

for meN, neN, put U =u -P. Put W =(Umn:meM,neN), Then W refines U 

and, for any, neN, (U :meM) is an a>-partition of P . For each neN, there 

exists, due to a < <$(Pn), an o>-partition (V.:je3n) of PR refining (U : 

:neN) and satisfying (2) 2.( y(V .):j e3n) .>an . Clearly, (V.:neN,j eJn) 

refines U* , hence U , and therefore, by (1), Z ( Y(VnJ:neN,j eJ )--r 2ia , 

which contradicts (2). We have shown that §> (P)= .2. <$(PR). 

3.3. Fact. For any 9 and any P e Zty , cp-LD(P)^9>-UD(P)^9?-UDim(P)^ 

£<2>-udim(P). 

Proof. If c$>-udim(P)=b-*:oo and P=-E(Pn:neN), then !Z(cp-uw(Pn):neN).e 

-fe 2I(b.wP :neN)=b.wP. This proves the last inequality; the remaining ones 

are evident. 

3.4. Proposition. For any 9? and any P e Wp , if P= X(P :neN), then 

9-LD(P)seV(^-LD(Pn):n4N), 9 -UD(P) ̂ VGy -UD(pn):neN). 

This follows at once from 3.2. 

3.5. Theore*. For any 9 and any P e 720 , if P= X(PR:neN) or P= V(PR: 

:ncN), then <y-LDim(P)= V(cy-LOim(Pn):neN), g>-UDim(P)= V(9>-UDim(Pn):ne 

eN). 

Proof. Let P=£-Pn. Put bn=<y-UDim(Pn), b=9-UDim(P). Clearly, b>bR for 

all neN. Let S£P. Then, by 1.13, there are Sn-=Pn such that S=.2.Sn. We ha­

ve Cf-UD(Sn)^bn and hence, by 3.4, <y-UD(S)*V(bn:neN). This proves b*V(bn: 

:neN). - If P=VPn:neN), then the proof is similar to the corresponding part 

of the proof of 2.3. 

Remark. The theorem shows that, in some respects, the behavior of 

cf-Udim and <gp-LDim is similar to that of various kinds of dimension of topo­

logical spaces (for instance, for normal spaces, dim P=V(dim P :neN) when­

ever P= ̂ Ppf Pn are closed). On the other hand, the behavior of 9-udira 

(where cp is E-projective) is different from that of the topological dimensi­

on and rather resembles the behavior of the dimension cTd of uniform spaces 

(the equality c/*d(SuT)=</d(S) vo^d(T) does hold whereas <Td( U (Pn:neN))= 

= V(</d(Pn):neN) does not, in general). 
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3.6. Lena. Let X c ' W } and assume that X contains all null spaces. 

Then, for any P e 9̂ ? , there is an S^P such that (1) S has an co-partition 

consisting of spaces in X , (2) if T.6P-S, T e X , then wT=0. 

Proof. It is easy to show by transfinite induction that there is a coun­

table ordinalcC>0 and an indexed collection (X^ : /3<-OG) such that (a) for 

all /?><oo, Xfl e.X , wX i 3>0, (b) 21 (X^: /3<r«,)£P, (c) if Y ^ P - . Z ( X / 3 : 

: /S<oc), Y C. X , then wY=0. Put S= -^(X^ : /3<oc). Clearly, S satisfies (1) 

and (2). 

3.7. Leana. For any <g> and any P e ^ , if wP>0, be¥ + and 9>-udim(S)> 

£b whenever S^P, wS>0, then <.j>-UD(P)£b. 

Proof. Let a<b. Let /2t=(Un:n&N) be an oo-partition of P. Put M= Km 

:wUn>0}. If nsM, then, by 3.6, there are S^-sU , kcN, such thatZ(SJlk:ke 

cN)-:Un, 9-uw(Snk)2a.wSmk and 9>-ud(T)?a for no Ti-Vn=P- S ^ . k c N ) , * 

hence 9-udim(Vn)--. a. This implies wVn=0, Un= 2. (Snk:k6N). Hence (Snk:ne.M, 

keN) is an co-partition of P refining % . Clearly, .E(9>-uw(S^):n€M,ke N)> 

> a.wP. Since 11 has been arbitrary, this proves c/-UW(P)> a.wP. 

3.8. Proposition. For any <j> and any P € 22/) , <y-UOim(P) is equal to 

the infimum of all beW + for which there exist Pn^P such that ̂ P =P, 

cp-udim(Pn)£b for all neN. 

Proof. Put s=g>-UDim(P); let t be the infimum in question. If b€R + 

and there are P with properties stated above, then, by 3.3 and 3.4, s^b. 

This proves s^t. - Let s > s . By 3.6, there are S s£P, n€N, such that 

<^-udim(Sn)^s', ^ ( S n : n € N ) . 6 P and 9>-udim(T)-£s' for no non-null T-£V=P-

-5:S n. By 3.7, wV>0 would imply 9-U0(V)>s', hence <j?-UOim(P)> s'. Hence 

wV=0, 2 S =P and therefore t^s'. ' n 

3.9. Proposition. If <p is E-projective, P e 710 and 9>-udim(P) < oo , 

then cp -UDim( P )=<y-udim( P). 

Proof. If S4P and S=2(S n:neN), then, by 2.3, c^-uw(S) £ 2-(g>-uw(Sn): 

:ncN). This implies 9>-uw(T) & g?-UW(T) for all T^P. Hence, 9 -udim(P) £ 

£ cp-UDim(P). By 3.3, this proves the proposition. 

3.10. Theorem. Let ?^ and ?2 be W-spaces. Then UDim(P]LxP2)^ UDim(P,)+ 

+U0im(P2). 

Proof. Put b.=ut)im(P.), b=b-+b2. We can assume that b<oo . Let €/> 0. 

For i=l,2, there exists, by 3.8, an co-partition (Pir|:ncN) of ?i such that 

udim(Pin)<bi+€,/2 for all ncN. Put T ^ P ^ P ^ . By 2.8, udimd^) *b+ b 
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for all m,n«.N, hence, by 3.5 and 3.3, UOiroCP-.x^)--^b+ €, . Since £ > 0 has 

been arbitrary, the theorem is proved. 

Remark. Let U and V be as in 2.10. Put T=UxV. It is easy to prove 

UDim(U)=UDim(V)=2, UDim(T)=3. This shows that .& cannot be replaced by = in 

3.10. 

4.1. Proposition and definition. For any y> and any P=< Q,p , <*.> e 200, 
there is exactly one function (mod (a) f (respectively, g) such that cp-UW(X.P)= 

= /xfd (X (respectively, g?-LW(X.P)= / xgd <a) for all Xfcdom ja. - We denote 

f and g by <y- V U(P) (or V^(P)) and 9 - V L ( P ) (or ^ ( P ) ) , respectively; 

Vc«(P) (respectively, V^iP)) will be called the upper (lower) <p-dimensional 

density of P. If cy=E, we often omit the prefix "<p ". 

Proof. The proposition follows from 3.2 and the Radon-Nikodym theorem. 

4.2. Conventions. To express the subsequent propositions 4.3, 4.4, 4.6 

and 4.16 in a concise and exact manner, we introduce some ad hoc conventions. 

- A) If <u, c M£Q), f and g are <a-measurable, F= ttl^ , G= C g ] ^ » we put 

fG=F6= Lfg3v , where v=f.<tc . Observe that, under this convention , FG=GF 

does not hold in general. - B) Let (a, v c^i(Q), let <u, be finite, letvi.(«. 

and let f c^(Q) be ̂ -measurable. Then /tf3 v d<a is defined as follows: 

let X be a support of v with respect to <a (i.e., (1) y £ X. <a , (2) if v ^ 
*Y.<a , then (£(XSY)=0); we put /Cf3 9 d(.i= /xfd<a,. - C) If <a e M(Q) 

is finite and, for neN, p>n * <*, (* = V(^.n:nfcN), Fns ̂ -<an3 and FR? 0, 

then we put V(Fn:ncN)= t V(fr|ix(n):n€N)J(lx , where, for each neN,f neF n 

and X(n) is a support of p>n with respect to <a . - D) If ̂  <> Mi^), F ^ 
e # C ^ l , i=l,2, then we put F-^F^ Cf V ' where ^ = ̂ l x ̂ 2 and' for some 

fi^Fi, f is the function (x,y)v~* fx(x)+f2(y). 

4.3. Proposition. For any 9 and any P= <Q,p , <a> «•* #*£ , if S=s.P=^ P, 

then <y-UW(S)= / s X^U(P)d «a , <j-LW(S)= / s ̂ L(P)d <a . 

Proof. It is easy to see that there are sets X(n)ts dom ££ and reals a 

such that ^(anix(r|):ncN)=s (mod<a). Then 9-UW(S)= ^(an9-UW(X(n).P):n€ 

*N)= X a n /x(n) Vcr
U(P)d p = / <Zanix(n)

) V ^ ( P ) d < * = S s V?
U(P)d<a . For 

ep-LW, the proof is analogous. 

4.4. Proposition. For any cp and any P= <Q,p,<a> e 1N) , if S=s.P^P, 
then ^(S)=(sgn s). ^ U ( P ) , vi"(S)=(sgn s). V L ( P ) . 
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Proof. Put v = s . ^ , t=sgn s. Let f e V^iP). If Xedom/w,. then 

/ x tfd» = / x tf5d(tc=/x sfd<o,, hence, by 4.3, / x tfdp = <y-UW(X.s.P)= 

= 9-UW(X.S). This proves that tf € \?pU(S), and therefore (see 4.2, A) 

\^U(S)=t ^LU(P). The proof for S&L is analogous. 

4.5. Theorem. For any cp and any P=< Q,p ,(tt> e 2)Q , cp-UDim(P)= 

=sup^ U(P), <y-LDim(P)=sup v^L(P). 

Proof. Put a=9-U0im(P), b=supV^U(P). For any S=s.P^ P, we have 

CJ?-UD(S)=/S ^U(P)d<a/wS, hence 9»-UD(SMb. This proves a^b. - Let c<b; 

let f e \£(P). Then there is an Xc dom ja such that £t,X>0, f(x).> c if xc X. 

Clearly, Cf-UD(X.P)=/xfd<ct/(<ZX^c. This proves a£b. - The proof for cf-LDim 

is analogous. 

Remark. There are examples (not quite simple) of W-spaces P satisfying 

)= V U(P) an 

certain interval. 

^7L(P)= V U(P) and such that UDim(S), where S^P, assumes all values from a 

4.6. Theorem. For any y> and any P e W) , if P= :S(Pn:n£N) or P=V(Pn: 

:neN), then V^U(P)= V ( V ^ P ^ n 6N), ^L(P)= V( Vtf
L(Pf1):n * N ) . 

Proof. We only prove the first equality. Clearly, it is sufficient to 

show that the equality holds if P= V P Let P =f .P. Put g =sgn f . Then, by 

4.4, ̂ U(Pn)=gn. \^
U(P). Since, clearly,^ V(gn.<u:n eN), Vg R=l (modft), 

we get V ( \^(Pn):n £N)= \^
U(P). 

4.7. Definition. For any 9 , a W-space P will be called c/-dimension-

bounded (or merely " cp -bounded") if 9-udim P <c 00 . It will be called fully 

cp-exact if Gp-ud(S)=G/- id(S) for all S^P. If g>=E, we often omit the prefix 

" 9 " in " cp -dimension-bounded" and "fully cp-exact". 

4.8. Remark. It is easy to prove that, for any y> and any P e 7¥) , the­

re is exactly one partition (P, ,PO» P3» PA) sucn that V (P,)= V (PO-ccx? , 

V^P2)*^P2)<cx> , VC,
L(P3)= V9

UtP3)= co , \ ^ L ( P 4 ) < ^ U ( P 4 ) = C D . The 

spaces P,,...,P. can be characterized as follows: (1) P, has an ^-partition 

consisting of <̂ >-bounded fully 9-exact subspaces, (2) P« has an o> -partiti­

on consisting of op-bounded subspaces and contains no fully 9-exact subspace, 

(3) every non-null subspace S-^P, contains subspaces T with c?-,6d(T) arbit­

rarily large, (4) if S^P* is non-null, then it is neither qp-bounded nor 

fully 9-exact, 

4.9. Fact and definition. For any cf and any P= <Q,jo , .o,> e 7f)Q , if 
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there exists a function (rood <a) F such that (*) / XF d(«, = 9*UW(X.P)= 

= g--0w(X.P) for all Xedom<u> , then this F is unique. It will be denoted by 

ce- V R(P) or XL>(?) and called the exact g>-dimensional density for P. If 
R there is no F satisfying (*), we will say that 9- V (?) does not exist. -

If q>=E, we often omit the prefix " <p ". - Remark. If f is an Rw-density 
R 

function for P in the sense of £43, 3.12, then V (P)= itl^, ; conversely, if 
R *R 

S? (?) exists, then every f e V (?) is an Rw-density function for P. 

4.10. Proposition. For any 9 and any Pe W) , if 3?- V (?) exists, 
then P is fully 9-exact and \^U(P)= ^L(P)= \^ R(P). 

Proof. If 9 - V R ( P ) exists, then, for any S4P, r . f~uw(S)=9-^w(S) and 
if S= 2I(Sn:neN), then <y-uw(S)= .S( ^-uw(Sn)). This implies that P is fully 

cf-exact and 9-UW(S)=<y-uw(S)=9-iw(S)=g>-LW(S) for each S-6P. 

4.11. Proposition. For any 9 and any ?e&P , if there are fully 9-

exact Pn such that P= 2(P n:ncN), then V^(?> ^ L ( P ) . 

Proof. If P is fully 9-exact, then 9>-uw(T)=<y-iw(T) for all T£?, 
hence 9>UW(S)= 9-LW(S) for all S-̂ P and therefore ^(P)= ^ L ( P ) . If P= 

- .E(Pn:neN) and PR are fully <y-exact, apply 4.6. 

4.12. Remark. Let P=<Rn,£> ,f .A> , where p is any usual metric on Rn, 

7K is the Lebesgue measure and (-t=f.A is a finite measure. Then (1) P is 

fully exact, (2) for any non-null S£?, UDim(S)=LDim(S)=n, (3) VU(?> 
= VL(P)=n. Lsgni]^; this follows from £43, 2.9. However, if e.g. n=l, f(x)= 

= (xl^llog xT5"*2, then Rd(P)= co , whereas Rd(X.P)=l whenever XedomjEE is 
R bounded and ^ X > 0 ; thus V (P) does not exist. 

4.13. Fact. For any P e WQ and any Pn*P satisfying X(Pn:ncN)=P, (1) 
,S(iw(Pn):n€N) -*iw(P), (2) if P is dimension-bounded, then uw(P) ^ 

*Z(uw(P n).n*N). 

Proof. The assertion (1) follows at once from £43, 3.1. For (2), see I43, 

3.4. 

4.14. Fact. For any P e 7lQ , (1) LW(P) £ M?), (2) if P is dimension-

bounded, then uw(P)^UW(P). 

This is an immediate consequence of 4.13. 

4.15. Proposition. Let P e 7k) be dimension-bounded. Then the following 
R 

conditions are equivalent: (1) P is fully exact,(2) V (P) exists, (3) 

VL(P)= X7U(P). 

Proof. I. If (1) holds, then uw(T)=iw(T) for all T£P. Hence, by 4.13, 

if S6P, S=X(S n:n&N), then 21(Rw(Sn):nc N)*Rw(S) * -£(Rw(Sn):neN). This 
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proves that XJ—* Rw(X.P) is a measure, hence V (P) does exist. - II. By 

4.10, (2) implies (3). - III. If VL(P)= VU(P)„ then, for any S^P, UW(S) = 

=LW(S) and hence, by 4.14, uw(S)=iw(S). 

4.16. Theorem. For any W-spaces Px and P2, V
U(P 1xP 2)=i V

U(P1)+ v U(P 2)-

Proof. Let P i=<Q i, ̂ j ^a^, P=P]~ P2= <Qi(p , <u> . Let A e d o m ^ , B e 

e d o m ^ ; put C=AxB. Then, by 3.9, UD(C.P)^UD(A.P1)+UD(B.P2), hence UW(C.P)^ 

i4UW(A.P1). rvt2B+UW(B.P2). /t^A. Clearly, UW(C.P)=/c V
U(P)d ^ , UW(A.PX). 

• <*2B=^B^A vTU(P1)d[u1d(u2, UW(B.P2). M^ fA fB VU(P2)d ̂ d (iy This pro­

ves that / A x B VU(P)d(tt £ f ( VU(P1)+ V
U(P2))d(U for all Aedom <cT B e 

e dom jap and therefore VU(P) ^ VU(P})+ v,U(P2). 

Remark. The equality VU(P1 x P2)= V
U(P1)+ V

U(P 2) does not hold, in ge­

neral. For instance, for U and V from 2.10, we have V (U xV) ^ VU(U)+ 7*U(V). 
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