Commentationes Mathematicae Universitatis Caroline

Miroslav Katětov
 On dimensions of semimetrized measure spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 3, 399--411
Persistent URL: http://dml.cz/dmlcz/106552

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

on dimensions of semimetrized measure spaces Miroslav katétov

Abstract

We introduce and examine various kinds of dimensions and dimensional densities defined for semimetric spaces equipped with a finite measure.

Key words: Extended Shannon semientropy, Shannon functional, regularized upper (lower) Rényi dimension, monotone dimension.

Classification: 94A17

In a previous article [4]by the author, there have been introduced, for the class of all semimetrized spaces equipped with a finite measure,dimension functionals which generalize the dimensions defined for vector-valued random variables in [1] and in subsequent papers of A. Rényi. In the present article, we introduce dimension functionals of another kind; in some respects, they behave similarly as dimensions of topological (or uniform, as the case may be) spaces. We also introduce various kinds of dimensional densities generalizing a closely related concept examined in [4]. Among other things, theorems are proved analogous to the sum theorem for the topological dimension and to the theoren on the dimension of the cartesian product of topological spaces.

Section 1 contains preliminaries. In Section 2, functionals of the form φ-udim and some related notions are examined. In Section 3, we investigate dimension functionals for which there is a theorem analogous to Sum Theorem of the topological dimension theory. In Section 4, dimensional densities are considered.

1

1.1. The terminology and notation is that of [3] and [4] with two exceptions stated below (1.3 and 1.19). Nevertheless, we will re-state some definitions and conventions.
1.2. The symbols $N, R, \bar{R}, R_{+}, \bar{R}_{+}$have their usual meaning. We put $0 / 0=0$, and, for any $b \in \bar{R}, 0 . b=0$; \log means $\log _{2}$; we put $L(0)=0, L(t)=-t \log t$ if
$0<t<\infty$. For $t \in \bar{R}$, we put $\operatorname{sgn}(0)=0, \operatorname{sgn}(t)=1$ if $t>0, \operatorname{sgn}(t)=-1$ if $t<0$. If $f: X \rightarrow \bar{R}$ is a function, then $\operatorname{sgn} f$ denotes the function $x \mapsto \operatorname{sgn}(f(x))$.
1.3. If $Q \neq \emptyset$ is a set and A is a σ-algebra of subsets of Q, then, in accordance with the current terminology, a σ-additive function $\mu: \Omega \rightarrow \bar{R}_{+}$ satisfying $\mu(\emptyset)=0$ will be called a measure on Q (in [2], the term " \bar{R}-measure" was used), whereas a μ such that, in addition, $\mu(Q)<\infty$ will be called a finite measure (in [2],[3] and [4], such μ were called "measures").
1.4. If a set A is given, then, for any $X \subset A, i_{X}$ is the indicator of X, i.e., $i_{X}(x)=1$ if $x \in X, i_{X}(x)=0$ if $x \in A \backslash X$.
1.5. A) If $Q \neq \emptyset$ is a set, then $\mathcal{F}(Q)$ and $\mathcal{M}(Q)$ will denote, respective$l y$, the set of all $f: Q \rightarrow \bar{R}$ and that of all measures on Q. - B) The completion of a $\mu \in \mathcal{M}(Q)$ is denoted by $\bar{\mu}$ or $[\mu]$. If $\mu, \nu \in \mathcal{M}(Q)$, we put $\nu \leq \mu$ if $\operatorname{dom} \nu=\operatorname{dom} \mu$ and $\nu(X) \leq \mu(X)$ for all $X \in \operatorname{dom} \mu$. If $\mu \in \mathcal{M}(Q), f, g \in \mathbb{F}(Q)$ and $\bar{\mu}\{x \in Q: f(x) \neq g(x)\}=0$, we write $f=g(\bmod \mu)$. - C) Let $\mu \in \mathcal{M}(Q)$. If if \in $\in \mathcal{F}(Q)$ is $\bar{\mu}$-measurable, we put $[f]_{\mu}=\{g \in \mathcal{F}(Q): g=f(\bmod \mu)\}$ and call $[f]_{\mu}$ a function $(\bmod \mu)$. We put $\mathcal{F}[\mu]=\left\{[f]_{\mu}: f \in \mathcal{F}(Q), f\right.$ is $\bar{\mu}$-measurable $\}$. D) If $F, G \in \mathcal{F}[\mu]$, then we put $F \leqslant G$ (respectively, $F<G$) iff there are $f \in F$ and $g \in G$ such that $f(x) \leqslant g(x)$ (respectively, $f(x)<g(x)$) for all $x \in Q$. - E) If $\mu \in \mathcal{H}(Q), f \in \mathcal{F}(Q)$, then $\sup [f]_{\mu}$ denotes the least $b \in \bar{R}$ such that $[f]_{\mu} \leq b$, and similarly for $\inf [f]_{\mu}$.
1.6. If $\mu \in \mathcal{M}(Q), f \in \mathcal{F}(Q)$ is $\bar{\mu}$-measurable and $F=[f]_{\mu} \geq 0$, then the measure $X \mapsto \int_{X}$ fd μ, defined on dom μ, is denoted by f. μ or F. μ. - Clear$l y, f . \mu \leq \mu \operatorname{iff}[f]_{\mu} \leq 1, f . \mu=g . \mu$ iff $f=g(\bmod \mu)$.
1.7. If $K \neq \emptyset$ is countable, $\xi=\left(x_{k}: k \in K\right), x_{k} \in R_{+}, \Sigma x_{k}<\infty$, we put $H(\xi)=$ $=H\left(x_{k}: k \in K\right)=\Sigma\left(L\left(x_{k}\right): k \in K\right)-L\left(\sum\left(x_{k}: k \in K\right)\right)$. If Q is countable, $\mu \in \mathcal{M}(Q)$ is finite and $\operatorname{dom} \mu=\exp Q$, we put $H(\mu)=H(\mu\{q\}: q \in Q)$.
1.8. If M is a (partially) ordered set and $x_{a}, a \in A, x, y$ are in M, we often write $\vee\left(x_{a}: a \in A\right), \wedge\left(x_{a}: a \in A\right), x \vee y$, etc. instead of $\sup \left(x_{a}: a \in A\right)$, $\inf \left(x_{a}: a \in A\right)$, $\sup \{x, y\}$, etc. In particular, if $x, y \in \bar{R}$, then $x \vee y=\max (x, y)$, $x \wedge y=\min (x, y)$.
1.9. Recall that $P=\langle Q, \varphi, \mu\rangle$ is called semimetrized measure space or W space (or also a semimetric space endowed with a measure) if $\mu \in M(Q)$ is finite and ρ is a $[\mu \times \mu]$-measurable semimetric. The class of all W-spaces is denoted by $\mathcal{M})$. If $P=\langle Q, \varphi, \mu\rangle \in M$, we put $w P=\mu(Q)$; if $w P=0$, P is called a null space; if Q is finite and dom $\mu=\exp Q$, we call P an $F W$-space. The class of all FW -spaces is denoted by ${n O_{F}}_{F}$. - See, e.g., [3], 1.5.

$$
\text { 1.10. Let } P=\langle Q, \wp, \mu\rangle \in W O: \operatorname{If}_{-400} f \in \mathcal{F}(Q) \text { is } \bar{\mu} \text {-measurable, }[f]_{\mu} \geq 0
$$

and $\mathrm{f} . \mu$ is finite，we put $\mathrm{f} . \mathrm{P}=\langle\mathrm{Q}, \mathrm{S}, \mathrm{f} . \mu\rangle$ ；if $X \in \operatorname{dom} \bar{\mu}$ ，we put $X . P=i_{X} \cdot \mathrm{P}$ （see 1．4）．If $S \in \partial D D, S=\langle Q, ৎ, \nu\rangle$ and $\nu \leqslant \mu$ ，we write $S \leqslant P$ and call S a subspace of P（a pure subspace if $S=X . P, X \in$ dom $\bar{\mu}$ ）．Clearly，$S \leqslant P$ iff $S=f . P$ for some $\bar{\mu}$－measurable $\mathrm{f}: \mathrm{Q} \rightarrow \bar{R}_{+}$．－Cf．［3］，1．6，1．7．

1．11．If $P \in \partial 2 \cap$ ，we put $\exp P=\{S: S \leqslant P\}$ ．We put $C=U(\exp P \times \exp P: P \in$ E 220 ）．

1．12．If $P=\langle Q, \rho, \mu\rangle \in 2 \cap, P_{k}=\left\langle Q, \rho, \mu_{k}\right\rangle \in 22$ for $k \in K$ ，where $K \neq \emptyset$ is countable，and $\mu=\Sigma\left(\mu_{k}: k \in K\right)$ ，we put $P=\Sigma\left(P_{k}: k \in K\right)$ and call（ $P_{k}: k \in K$ ） an ω－partition of P（merely＂partition＂if K is finite）．－See［3］，1．6．
 that $\Sigma\left(S_{n}: n \in N\right)=S$ ．

Proof．Let $S=s . P, P_{n}=f_{n} . P$（see 1．10）．Put $g_{n}=s f_{n}, S_{n}=g_{n} . P \leqslant P_{n}$ ．Clearly， $\Sigma S_{n}=S$ ．

1．14．Let $U=\left(U_{k}: k \in K\right)$ and $V=\left(V_{m}: m \in M\right)$ be ω－partitions of $\left.P \in 20\right)$ ．If there are pairwise disjoint M_{k} such that $U_{k}=\Sigma\left(V_{m}: m \in M_{k}\right), \cup M_{k}=M$ ，then V is said to refine U ．－See［3］，1．6．

1．15．If $P=\langle Q, \rho, \mu\rangle \in 22 \rho$ ，we put $d(P)=\sup [\rho]_{\mu \times \mu}$ ．If $\left(P_{1}, P_{2}\right) \in C$, ， $P_{i}=\left\langle Q, \rho, \mu_{i}\right\rangle$ ，we put $E\left(P_{1}, P_{2}\right)=d\left(P_{1}+P_{2}\right), r\left(P_{1}, P_{2}\right)=\int \rho d\left(\mu_{1} \times \mu_{2}\right) / w P_{1} \cdot w P_{2}$ if ${ }^{W} P_{1} \cdot W P_{2}>0, r\left(P_{1}, P_{2}\right)=0$ if $W P_{1} \cdot W P_{2}=0$ ．－Cf．［3］，1．19，

1．16．Let $P=\langle Q, \rho, \mu\rangle \in \lambda 2), \varepsilon\rangle 0$ ．Then $X=\left(X_{k}: k \in K\right)$ ，where $K \neq \emptyset$ is countable，$X_{k} \in \operatorname{dom} \bar{\mu}$ ，will be called an ε－covering of P if diam $X_{k} \leqslant \varepsilon$ for all k and $\bar{\mu}\left(Q \backslash \cup X_{k}\right)=0$ ．If，in addition，$X_{i} \cap X_{j}=\emptyset$ for $i \neq j$ ，then X will be called an ε－partition of P．－Cf．［3］，1．19．

1．17．If $P=\langle Q, \rho, \mu\rangle \in \gamma_{2} \cap$ ，then we put $\varepsilon * P=\langle Q, \varepsilon * \rho, \mu\rangle$ ，where $(\varepsilon * \rho)(x, y)=0$ if $\rho(x, y) \leqslant \varepsilon,(\varepsilon * \rho)(x, y)=1$ if $\rho(x, y)>\varepsilon$ ．－See［3］，1．17．

1．18．If $P_{i}=\left\langle Q_{i}, \rho_{i}, \mu_{i}\right\rangle \in \partial O, i=1,2$ ，then we put $P_{1} \times P_{2}=\langle Q, \rho, \mu\rangle$ ， where $Q=Q_{1} \times Q_{2}, \mu=\mu_{1} \times \mu_{2}$ and $\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\rho_{1}\left(x_{1}, y_{1}\right) \vee \rho_{2}\left(x_{2}, y_{2}\right)$ ．

1．19．Let $\varphi: \operatorname{WN}) \rightarrow \bar{R}_{+}$satisfy the following conditions：（1）if $\langle Q, \rho, \mu\rangle \in D O N, a, b \in R_{+}$，then $\varphi\langle Q, a \rho, b \mu\rangle=a b \varphi\langle Q, \rho, \mu\rangle$ ；（2）if $P_{i}=$ $=\left\langle Q, \rho_{i}, \mu\right\rangle \in \partial D, i=1,2$ ，and $\rho_{1} \geq \rho_{2}$ ，then $\varphi P_{1} \geq \varphi P_{2}$ ；（3）if $P=\langle Q, 1, \mu\rangle \in$ \in JOA $_{F}$ ，then $\varphi P=H(\mu)$ ；（4）if $P_{i}=\left\langle Q_{i}, \rho_{i}, \mu_{i}\right\rangle \in ⿰ ㇒ ⿻ 二 丿 ⿴ 囗 ⿱ 一 一 儿, ~ i=1,2$ ，and there is an $f: Q_{1} \rightarrow Q_{2}$ such that（a）$\rho_{2}(f x, f y)=\rho_{1}(x, y)$ if $x, y \in Q_{1}, \mu_{1}\{x\}>0, \mu_{1}\{y\}>$ >0 ，（b）$\mu_{1}\left(f^{-1}\{q\}\right)=\mu_{2}\{q\}$ for all $q \in Q_{2}$ ，then $\varphi P_{1}=\varphi P_{2}$ ；（5a）if $P=$ $=\langle Q, \rho, \mu\rangle \in \delta A_{F}, P_{n}=\left\langle Q, \rho_{n}, \mu\right\rangle \in D Q_{F}$ and $\rho_{n} \rightarrow \rho$ ，then $\varphi P_{n} \rightarrow \varphi P$ ； （5b）if $\left.P=\langle Q, \rho, \mu\rangle \in \mathscr{M}_{F},\left\langle Q, \rho, \mu_{n}\right\rangle \in M O_{F}, \mu\{q\}\right\rangle 0$ for all $q \in Q$ and $\mu_{n} \rightarrow$ $\rightarrow \mu$ ，then $\varphi P_{n} \rightarrow \varphi P$ ．Then φ will be called an extended Shannon semient－ － 401 －
ropy（in the broad sense），which is the expression introduced in［2］and used in［3］and［4］，or a Shannon functional（in the broad sense），which is the ex－ pression we use in this article．

1．20．Convention．The letter φ will always stand for a Shannon functi－ onal（in the broad sense）．

1．21．For the definition of normal gauge functionals（NGF）and of C_{τ} and C_{τ}^{*} ，where τ is an NGF，we refer to［2］and［3］，since we need only（1） the fact that r and E are NGF＇s，（2）the fact that C_{r} and C_{E} are Shannon functionals（b．s．），and（3）some propositions on C_{E} ，see $1.24-1.26$ below．It is also useful to note that there are E－projective（see 1．23）φ＇s distinct from C_{E} ，for instance C_{r} ．

1．22．Convention．The functional C_{E} will ne of ten denoted by E ，provid－ ed there is no danger of confusion with the E introduced in 1.15 ．

1．23．Definition．A functional $\psi: 2$（ $) \rightarrow \bar{R}_{+}$will be called E－projective if，for any $P \in \mathcal{R}^{2}$ ）and any partition（ S, T ）of $\mathrm{P}, \psi(\mathrm{P}) \leqslant \psi(\mathrm{S})+\psi(\mathrm{T})+$ $+E(S, T) H(w S, w T) .-C f .[2], 3.10$.

1．24．Fact．The functional $E:$ 2月 $\rightarrow R_{+}$is E－projective．－See［2］，The－ orem II．

1．25．Proposition．If $S \leqslant P \in \mathcal{O X}$ ，then $E(S) \leqslant E(P)$ ．－See［3］，2．3．
1．26．Proposition．If $P \in N O$ ，then，for all sufficiently small $\varepsilon>0$ ， $E\left(\varepsilon * P\right.$ ）is equal to the infimum of all $H\left(\bar{\mu} X_{n}: n \in N\right.$ ），where（ $X_{n}: n \in N$ ）is an ε－partition of P．－See［3］，2．18，1．19．

2

2．1．Definition（cf．［4］，2．1）．For any φ and any $P \in 22], \varphi$－uw（ P ）（res－ pectively，$\varphi-\ell w(P)$ ）will denote the upper（lower）limit of $\varphi(\varepsilon * P) /|\log \varepsilon|$ for $\varepsilon \rightarrow 0$ ．We put $\varphi-u d(P)=\varphi-u w(P) / w P, \varphi-\ell d(P)=\varphi-\ell w(P) / w P, \varphi$－udim $(P)=$ $=\sup \{\varphi-u d(S): S \leqslant P\}, \varphi-\ell \operatorname{dim}(P)=\sup \{\varphi-\ell d(S): S \leqslant P\}$ ．If $\varphi-u w(P)=\varphi-\ell w(P)$ ， we put $\varphi-\operatorname{Rw}(P)=\varphi-u w(P), \varphi-\operatorname{Rd}(P)=\varphi-u d(P)$ ．We call φ－udim (P) the monotone φ－dimension of P ．For φ－uw（ P ），etc．，the terminology introduced in［4］，2．1， will be used．－If $\varphi=\mathrm{E}$ ，we of ten omit the prefix＂φ＂．－Remark．In the present note，the functionals φ－ℓ dim will not be considered．

2．2．Fact．For any E－projective φ and any $P \in ⿰ 习 习$ ，（1）if $P=S+T$ ，then $\varphi-u w(P) \leqslant \varphi-u w(S)+\varphi-u w(T), \varphi-u d(P) \leqslant \varphi-u d(S) \vee \varphi-u d(T)$ ，（2）if φ－udim $(P)<$ $<\infty$ and $P=\Sigma\left(P_{k}: k \in N\right)$ ，then $\varphi-u w(P) \leqslant \Sigma\left(\varphi-u w\left(P_{k}\right): k \in N\right), \varphi-u d(P) \leqslant$ $\leq v\left(\varphi-\operatorname{ud}\left(P_{k}\right): k \in N\right)$ ．

Proof. Since φ is E-projective, we have $\varphi(\varepsilon * S)+\varphi(\varepsilon * T)+H(w S, w T) \geq$ $\geq \varphi(\varepsilon * P)$. This proves the inequalities (1). - If φ-udim $(P)=b<\infty$, put $S_{n}=$ $=\Sigma\left(P_{k}: k>n\right)$. Then, for each $n \in N, \varphi-u w(P) \leq \Sigma\left(\varphi-u w\left(P_{k}\right): k \leqslant n\right)+\varphi-u w\left(S_{n}\right)$. Since $w S_{n} \rightarrow 0$ and φ-uw $\left(S_{n}\right) \leqslant b . w S_{n}$, this proves the inequalities (2).
2.3. Proposition. For any E-projective φ and any $P \in 2 \not 2$, (1) if $P=S+T$ or $P=S \vee T$, then φ-udim $(P)=\varphi$-udim $(S) \vee \varphi$-udim (R), (2) if φ-udim $(P)<\infty$ and either $P=\Sigma\left(P_{n}: n \in N\right)$ or $P=V\left(P_{n}: \Pi \in N\right)$, then φ-udim $(P)=V\left(\varphi\right.$-udim $\left.\left(P_{n}\right): n \in N\right)$.

Proof. Let $P=S+T$. Then, for any $V \leqslant P$, there are, by $1.13, V_{1} \leqslant S, V_{2} \leqslant T$ such that $V_{1}+V_{2}=V$. By 2.2, we have $\varphi-u d(V) \leqslant \varphi-u d\left(V_{1}\right) \vee \varphi-u d\left(V_{2}\right) \leqslant \varphi$-udim $(S) \vee$ $\vee \varphi-\operatorname{udim}(T)$. This proves (1), since $S \vee T \leqslant S+T$. The case $P=\Sigma\left(P_{n}: n \in N\right)$ is analogous to that of $P=S+T$. - Let $P=V\left(P_{n}: n \in N\right)$. Put $1_{0}=P_{0}, T_{n+1}=T_{n} \vee P_{n+1}$. Then $P=T_{0}+\sum\left(T_{n+1} T_{n}: n \in N\right)$. Since, clearly, $U \vee V=U+V-U \wedge V$ for any $U \leqslant P, V \leqslant P$, it is easy to show that φ-udim $\left(T_{n}\right) \leq V\left(\varphi-\operatorname{udim}\left(P_{k}\right): k \leq n\right)$. Hence, due to $\varphi-\operatorname{udim}(P)<\infty$, we get $\varphi-\operatorname{udim}(P) \leq V\left(\varphi-\operatorname{udim}\left(T_{n}\right): \cap \in N\right) \leq V\left(\varphi-\operatorname{udim}\left(P_{n}\right)\right.$: $: \Pi \in N)$.
2.4. Example. Choose $a_{n}>0, b_{n}>0, n \in N$, such that $\sum\left(b_{n}: n \in N\right)=1$, $\sum\left(L\left(b_{n}\right): n \in N\right)=\infty ; a_{n} \rightarrow 0,\left|\log a_{n+1}\right|=\left(n \Sigma\left(1-\left(b_{i}\right): i \leq n\right)\right)^{-1}$ for $n \geq 1$. Put $P=\langle N, \varsigma, \mu\rangle$, where $\rho(i, j)=a_{i}+a_{j}, \mu\{i\}=b_{i}$. It is easy to see that ud(P)= $=\ell d(P)=\infty, \operatorname{udim}(P)=\infty$. On the other hand, evidently, udim $(\{k\} . P)=0$ for all $k \in N$. This shows that, in 2.3, (2), the assumption φ-udim $(P)<\infty$ cannot be omitted. - For an example connected with the assertion (1) in 2.3 , see $2.10, \mathrm{E}$.
2.5. Lemma. For any E-projective φ and any $P \in \mathcal{R}), \varphi$-udim $(P)=$ $=\sup \{\varphi-u d(S): S \leqslant P, S$ pure $\}$.

Proof. Assume wP=1. Write ud instead of φ-ud, uw instead of φ-uw. Put $b=\sup \{u d(S): S \leqslant P, S$ pure $\}$. Let $T \leqslant P, T=f . P, 0 \leqslant f(x) \leqslant 1$ for all $x \in Q$. Let $m \in$ $\in N, m>1$. Define g as follows: $g(x)=k / m$ if $(k-1) / m<f(x) \leq k / m ; g(x)=1 / m$ if $f(x)=0$. Clearly, $g-1 / m \leqslant f \leqslant g$, hence $\int(g-f) d \mu \leq 1 / m$. Put $U=g . P, X_{k}=\{x \in Q$: $: g(x)=k / m\}$. Since $X_{k} \cdot P$ are pure, we have $u d\left(X_{k} \cdot P\right) \leqslant b$, hence $u d\left((k / m) \cdot X_{k} \cdot P\right) \leqslant b$ and therefore, by 2.2 , ud $(U) \leqslant b$. Since $f . P \leqslant g . P$, we get $u w(T) \leqslant u w(U) \leqslant b$. . $\int \mathrm{gd} \mu, u d(T) \leqslant b\left(\int \mathrm{gd} \mu / \int \mathrm{fd} \mu\right) \leqslant b+b \int \mathrm{fd} \mu / \mathrm{m}$. Since $\mathrm{m} \in \mathrm{N}$ has been arbitrary, we get $u d(T) \leqslant b$.
2.6. Leama. Let J and K be countable non-void sets. Let $x_{j k}$, where $j \in J$, $k \in K$, be non-negative reals, $\sum\left(x_{j k}: j \in J, k \in K\right)<\infty$. For $j \in J, k \in K$, put $a_{j}=$ $=\Sigma\left(x_{j k}: k \in K\right), b_{k}=\Sigma\left(x_{j k}: j \in J\right)$. Then $H\left(x_{j k}: j \in J, k \in K\right) \leqslant H\left(a_{j}: j \in J\right)+H\left(b_{k}: k \in K\right)$.

This follows easily from the well-known special case with both J and K finite and $\Sigma_{x_{j k}}=1$.
2.7. Fact. If P is a W-space, $P=S+T$, then $u w(S) \vee u w(T) \leqslant u w(P) \leqslant u w(S)+$ $+u w(T)$.

Proof. The first inequality follows from 1.25 ; for the latter, see 2.2.
2.8. Proposition. For any non-null W-spaces P_{1} and $P_{2}, \operatorname{ud}\left(P_{1}\right) \vee \operatorname{ud}\left(P_{2}\right) \leq$ $\leqslant \operatorname{ud}\left(P_{1} \times P_{2}\right) \leqslant \operatorname{ud}\left(P_{1}\right)+\operatorname{ud}\left(P_{2}\right)$. - See [4], 4.5.
2.9. Theorem. For any non-null W-spaces P_{1} and $P_{2}, \operatorname{udim}\left(P_{1}\right) \vee \operatorname{udim}\left(P_{2}\right) \leqslant$ $\leqslant \operatorname{udim}\left(P_{1} \times P_{2}\right) \leqslant \operatorname{udim}\left(P_{1}\right)+\operatorname{udim}\left(P_{2}\right)$.

Proof. The first inequality follows at once from [4], 2.8. Let $P_{i}=$ $=\left\langle Q_{i}, \rho_{i}, \mu_{i}\right\rangle, i=1,2, P=P_{1} \times P_{2}, P=\langle Q, \rho, \mu\rangle, \operatorname{udim}\left(P_{i}\right)=b_{i}<\infty$. Put $b=b_{1}+$ $+b_{2}$. We can assume that $w P_{1}=w P_{2}=1$. By 2.5 , it is sufficient to show that $u d(S) \leqslant b$ for any pure $S \leqslant P$. Clearly, there exist sets $A_{n} \in \operatorname{dim} \mu_{1}, B_{n} \in \operatorname{dim} \mu_{2}$ such that $\mu_{1} A_{n}>0, \mu_{2} B_{n}>0$ and $S=X . P$, where $X=U\left(A_{n} \times B_{n}\right)$. Put $x_{1}=U A_{n}, x_{2}=$ $=U B_{n}, S_{i}=x_{i} \cdot P_{i}$. Let $\sigma>0$. We are going to show that, for every sufficiently small $\varepsilon>0$, (1) there exists an ε-covering ($Y_{n}: n \in N$) of S_{1} such that, with $U_{n}=X \cap\left(Y_{n} \times Q_{2}\right)$, we have $H\left(\bar{\mu} U_{n}: n \in N\right) \leqslant\left(b_{1} \cdot w S+\sigma^{\prime}\right)|\log \varepsilon|$, (2) there exists an ε-covering $\left(Z_{n}: n \in N\right)$ of S_{2} such that, with $V_{n}=X \cap\left(Q_{1} \times Z_{n}\right)$, we have $H\left(\bar{\mu} V_{n}: n \in N\right)<\left(b_{2} \cdot w S+\sigma^{\prime}\right)|\log \varepsilon|$. For any $x \in Q_{1}$, put $f_{1}(x)=\mu_{2}\left(\cup\left(B_{n}: n \in N, x \in\right.\right.$ $\left.\in A_{n}\right)$). Clearly, f_{1} is μ_{1}-measurable and $X_{1}=\left\{x: f_{1} x>0\right\}$. Put $S_{1}^{\prime}=f_{1}$. P. We have $S_{1}^{\prime} \leqslant P_{1}$, hence $\operatorname{ud}\left(S_{1}^{\prime}\right) \leqslant b_{1}$ and therefore $\overline{\operatorname{Im}}\left(E\left(\varepsilon * S_{1}^{\prime}\right) /|\log \varepsilon| 1\right) \leqslant b_{1} \cdot w S_{1}^{\prime}=b_{1} \cdot w S$. Hence, for every sufficiently small $\varepsilon>0$, there exists, by 1.26 , an ε-covering $\left(Y_{n}: n \in N\right)$ of S_{1}^{\prime} such that $H\left(w\left(Y_{n} \cdot S_{1}^{\prime}\right): n \in N\right)<\left(b_{1}, w S+\delta\right)|\log \varepsilon|$. Clearly, ($Y_{n}: n \in N$) is an ε-covering of S_{1} as well. Put $U_{n}=X \cap\left(Y_{n} \times Q_{2}\right)$. It is easy to see that $\bar{\mu} U_{n}=w\left(Y_{n} \cdot S_{1}^{\prime}\right)$, hence $H\left(\bar{\mu} U_{n}: n \in N\right)<\left(b_{1} \cdot w S+\sigma^{\prime}\right)|\log \varepsilon|$: This proves the assertion (1). The proof of (2) is analogous.

Put $T_{m n}=U_{m} \cap V_{n}$. Then ($T_{m n}: m \in N, n \in N$) is an ε-covering of S. By 2.6, we obtain $H\left(\bar{\mu} T_{m n}: m \in N, n \in N\right) \leqslant H\left(\bar{\mu} U_{m}: m \in N\right)+H\left(\bar{\mu} V_{n}: n \in N\right)<(b . w S+2 \delta)|\log \varepsilon|$, hence $E(\varepsilon * S)<(b \cdot w S+2 \delta)|\log \varepsilon|$. Since this inequality holds for all sufficiently small $\varepsilon>0$, we get $u w(S) \leqslant b \cdot w S+2 \sigma^{\circ}$. This proves $u d(S) \leq b$, for $\delta>0$ has been arbitrary.
2.10. Example. A) For $n \in N$, let $P_{n}=\left\langle Q_{n}, \rho_{n}, \mu_{n}\right\rangle \in$ DO , w $P_{n}=1$, diam $P_{n}<$ $<\infty$. Let a_{n} be positive reals, and let a_{n} diam $P_{n} \rightarrow 0$. Then $\prod_{\infty}\left(P_{n}: n \in N\right)$, where $\alpha=\left(a_{n}: n \in N\right)$, will denote the W-space $\langle Q, \varrho, \mu\rangle$, where $\langle Q, \mu\rangle=$ $=\Pi\left(\left\langle Q_{n}, \mu_{n}\right\rangle: n \in N\right), \rho\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sup \left(a_{n} \varphi_{n}\left(x_{n}, y_{n}\right): n \in N\right)$. If $p=\left(p_{n}: n \in N\right)$, $P_{n} \in N, P_{n} \geq 1$, then $S(p)$ will denote the W-space $\prod_{\alpha}\left(P_{n}: n \in N\right)$, where $\alpha=$ $=\left(2^{-n}: n \in N\right), P_{n}=\left\langle Q_{n}, 1, \nu_{n}\right\rangle$, card $Q_{n}=p_{n}, \nu_{n}\{q\}=1 / p_{n}$ for $q \in Q_{n}$. - B) It is
easy to show that $E(\varepsilon * S(p))=\Sigma\left(\log p_{k}: k \leqslant n\right)$ for $2^{-n} \geq \varepsilon>2^{-n-1}$, and therefore ud(S $(p))=\overline{\lim }\left(\sum\left(\log p_{k}: k \leqslant n\right) / n\right), \quad \ell d(S(p))=\lim \left(\sum\left(\log p_{k}: k \leqslant n\right) / n\right)$.-C) Let $r(0)=2, r(k+1)=2^{(k)}$ for $k \in N$; put $A=\{n \in N: r(2 k) \leqslant n<r(2 k+1)$ for some $k \in$ $\in N$. Put $u_{n}=2$ if $n \in A, u_{n}=4$ if $n \in N \backslash A$, put $v_{n}=8 / u_{n}$ for all $n \in N$. Put $u=\left(u_{n}\right.$: $: n \in N), v=\left(v_{n}: n \in N\right), U=S(u), v=S(v)$. It is easy to show (cf. [4], 3.10) that if X is a non-null subspace of U or of V, then $\ell d(X)=1$, $\operatorname{ud}(X)=2$; hence $u \operatorname{dim}(U)=u d i m(V)=2$. - D) Put $T=U \times V$. It can be easily proved that, for any nonnull subspace $Y \leqslant T$, we have $u d(Y)=\boldsymbol{\ell d}(Y)=3$. This shows that, in 1.8 and 2.9 , no \leq can be replaced by $=.-E$) Let M be a "free sum" of U and V and let U. and V^{\prime} denote the subspaces of M corresponding to U and V, respectively. Then $M=U^{\prime}+V^{\prime}$, and it is easy to show that $u w(M)=2$, hence $u d(M)=1$ and therefore $\mathrm{uw}(M)<\mathrm{uw}\left(U^{\prime}\right)+\mathrm{uw}\left(V^{\prime}\right), \mathrm{ud}(M)<u d\left(U^{\prime}\right) \wedge u d\left(V^{\prime}\right)$. Thus, \leq cannot be replaced by $=$ in 2.2 , (1), and φ-udim cannot be replaced by φ-ud in 2.3 , (1).

3

3.1. Definition. For any φ and any $P \in 2 \cap$, (1) φ-UW(P) (respectively, $\varphi-L W(P)$) will denote the infimum of all $b \in \bar{R}_{+}$for which there is an ω-partition U of P such that, for any $\left(V_{k}: k \in K\right)$ refining $U, \Sigma\left(\varphi-u w\left(V_{k}\right): k \in K\right) \leq b$ (respectively, $\Sigma\left(\varphi-\ell w\left(V_{k}\right): k \in K\right) \leqslant b$). We put $\varphi-U D(P)=\varphi-U W(P) / W P, \varphi-L D(P)=$ $=\varphi-\operatorname{LW}(P) / w P, \varphi-\operatorname{UDim}(P)=\sup \{\varphi-\operatorname{UD}(S): S \leqslant P\}, \varphi-\operatorname{LDim}(P)=\sup \{\varphi-\operatorname{LD}(S): S \leqslant P\}$. We will call φ-UDim(P) and φ-LDim(P) the regularized upper (lower) monotone φ-dimension of P. For φ - UW(P), etc., we will use the names introduced in [4.] for the values of the corresponding functionals (i.e., for φ-uw(P), etc.), with the additional qualification "regularized"; thus, e.g., φ-UW(P) will be called the regularized Renyi φ-weight of P. - If $\varphi=E$, the prefix " φ " will be, as a rule, omitted.
3.2. Theorem. For any φ and any $\left.P=\langle Q, \rho, \mu\rangle \in \eta_{Q}\right)$, (1) if $P=\Sigma\left(P_{k}: k \in\right.$ $\in N$), then $\varphi-U W(P)=\Sigma\left(\varphi-U W\left(P_{k}\right): k \in N\right), \varphi-L W(P)=\Sigma\left(\varphi-L W\left(P_{k}\right): k \in N\right)$, (2) the functions $X \mapsto \varphi$ - UW(X.P), $X \mapsto \varphi-L W(X . P)$, defined on dom $\bar{\mu}$, are measures.

Proof. The assertion (2) is an immediate consequence of (1). We prove (1) for $\varphi-U W$; for $\varphi-L W$, the proof is analogous. If $S \leqslant P$, put $\psi(S)=$ $=\varphi-\mathrm{uw}(S), \Phi(S)=\varphi-\mathrm{UW}(S)$. Let $P=\Sigma\left(P_{n}: \Pi \in N\right)$. - I. We are going to show that $\Phi(P) \leq \Sigma \Phi\left(P_{n}\right)$. We can assume that all $\Phi\left(P_{n}\right)$ are finite. Let $b_{n} \in R_{+}, b_{n}>$ $>\Phi\left(P_{n}\right)$ for all n. For any $n \in N$, there is an ω-partition $U_{n}=\left(U_{n k}: k \in K_{n}\right)$ of P_{n} such that $\Sigma\left(\psi\left(v_{j}\right): j \in J\right) \leq b_{n}$ for any $\left(v_{j} \in j \in J\right)$ refining u_{n}. Put $U=$ $=\left(U_{n k}: \cap \in N, k \in K_{n}\right)$. Let ($V_{m}: m \in M$) be an arbitrary ω-partition of P refining U. Let ($M_{n k}: n \in N, k \in K_{n}$) be an ω-partition of the set M such that $\Sigma\left(V_{m}: m \in M_{n k}\right)=U_{n k}$
for all $n \in N, k \in K_{n}$ ．Put $M_{n}=U\left(M_{n k}: k \in K_{n}\right.$ ）．Then（ $V_{m}: m \in M_{n}$ ）refines U_{n} and therefore $\Sigma\left(\psi\left(V_{m}\right): m \in M_{n}\right) \leqslant b_{n}$ ，hence $\Sigma\left(\psi\left(V_{m}\right): m \in M\right) \leq \Sigma b_{n}$ ．We have shown that $\Phi(P) \leq \Sigma b_{n}$ ．Since $b_{n}>\Phi\left(P_{n}\right)$ have been arbitrary，we get $\Phi(P) \leq$ $\leq \Sigma \Phi\left(P_{n}\right)$ ．－II．Suppose that $\Phi(P)<\Sigma \Phi\left(P_{n}\right)$ ．Choose reals $a_{n}<\Phi\left(P_{n}\right)$ such that $\Sigma a_{n}>\Phi(P)$ ．Then there is an ω－partition $U=\left(U_{m}: m \in M\right)$ of P such that（1）$\Sigma\left(\psi\left(V_{k}\right): k \in K\right)<\Sigma a_{n}$ whenever $\left(V_{k}: k \in K\right)$ refines U ．Let $U_{m}=u_{m} \cdot P$ ； for $m \in N, n \in N$ ，put $U_{m n}=u_{m} . P$ ．Put $U^{\prime}=\left(U_{m n}: m \in M, n \in N\right)$ ，Then U^{\prime} refines U and，for any．$n \in N,\left(U_{m n}: m \in M\right.$ ）is an ω－partition of P_{n} ．For each $n \in N$ ，there exists，due to $a_{n}<\Phi\left(P_{n}\right)$ ，an ω－partition $\left(V_{n j}: j \in J_{n}\right.$ ）of P_{n} refining（ $U_{m n}$ ： $: n \in N)$ and satisfying（2）$\sum\left(\psi\left(V_{n j}\right): j \in J_{n}\right)>a_{n}$ ．Clearly，$\left(V_{n j}: n \in N, j \in J_{n}\right)$ refines u^{\prime} ，hence U ，and therefore，by（1），$\sum\left(\psi\left(V_{n j}\right): n \in N, j \in J_{n}\right)<\sum a_{n}$ ， which contradicts（2）．We have shown that $\Phi(P)=\Sigma \Phi\left(P_{n}\right)$ ．

3．3．Fact．For any φ and any $P \in ⿰ 冫 欠 口 ⿱ ㇒ 廾 刂), \varphi-\operatorname{LD}(P) \leq \varphi-\operatorname{UD}(P) \leq \varphi-\operatorname{UDim}(P) \leq$ $\leqslant \varphi$－udim (P) ．

Proof．If φ－udim $(P)=b<\infty$ and $P=\Sigma\left(P_{n}: n \in N\right)$ ，then $\sum\left(\varphi-u w\left(P_{n}\right): n \in N\right) \leqslant$ $\in \Sigma\left(b . w P_{n}: n \in N\right)=b . w P$ ．This proves the last inequality；the remaining ones are evident．

3．4．Proposition．For any φ and any $P \in$ 牛 ，if $P=\Sigma\left(P_{n}: n \in N\right)$ ，then $\varphi-L D(P) \leqslant V\left(\varphi-L D\left(P_{n}\right): n \in N\right), \varphi-U D(P) \leqslant V\left(\varphi-U D\left(p_{n}\right): n \in N\right)$ ．

This follows at once from 3．2．
3．5．Theorem．For any φ and any $P \in 22$ ，if $P=\Sigma\left(P_{n}: n \in N\right)$ or $P=V\left(P_{n}\right.$ ： $: n \in N)$ ，then $\varphi-\operatorname{LDim}(P)=V\left(\varphi-\operatorname{LDim}\left(P_{n}\right): n \in N\right), \varphi-\operatorname{UDim}(P)=V\left(\varphi-\operatorname{UDim}\left(P_{n}\right): n \in\right.$ EN）．

Proof．Let $P=\Sigma P_{n}$ ．Put $b_{n}=\varphi-U D i m\left(P_{n}\right), b=\varphi-\operatorname{UDim}(P)$ ．Clearly，$b \geq b_{n}$ for all $n \in N$ ．Let $S \leqslant P$ ．Then，by 1.13 ，there are $S_{n} \leqslant P_{n}$ such that $S=\sum S_{n}$ ．We ha－ ve $\varphi-U D\left(S_{n}\right) \leq b_{n}$ and hence，by $3.4, \varphi-U D(S) \leq V\left(b_{n}: n \in N\right)$ ．This proves $b \leq V\left(b_{n}\right.$ ： $: n \in N$ ）．－If $P=\vee P_{n}: n \in N$ ），then the proof is similar to the corresponding part of the proof of 2.3 ．

Remark．The theorem shows that，in some respects，the behavior of φ－Udim and φ－LDim is similar to that of various kinds of dimension of topo－ logical spaces（for instance，for normal spaces， $\operatorname{dim} P=V\left(\operatorname{dim} P_{n}: n \in N\right)$ when－ ever $P=\cup P_{n}, P_{n}$ are closed）．On the other hand，the behavior of φ－udim （where φ is E－projective）is different from that of the topological dimensi－ on and rather resembles the behavior of the dimension δd of uniform spaces （the equality $\delta^{\prime d}(S \cup T)=\sigma^{\prime} d(S) \vee \sigma^{\prime} d(T)$ does hold whereas $\sigma^{\prime} d\left(U\left(P_{n}: n \in N\right)\right)=$ $=V\left(d^{d}\left(P_{n}\right): n \in N\right)$ does not，in general）．

3．6．Lemma．Let $X \subset Z \cap)$ and assume that X contains all null spaces． Then，for any $P \in D D D$ ，there is an $S \leqslant P$ such that（1）S has an ω－partition consisting of spaces in X ，（2）if $T \leqslant P-S, T \in X$ ，then $W T=0$ ．

Proof．It is easy to show by transfinite induction that there is a coun－ table ordinal $\alpha \geq 0$ and an indexed collection（ $X_{\beta}: \beta<\alpha$ ）such that（a）for all $\beta<\alpha, X_{\beta} \in X, W X_{\beta}>0$ ，（b）$\Sigma\left(X_{\beta}: \beta<\alpha\right) \leqslant P$ ，（c）if $Y \leqslant P-\Sigma\left(X_{\beta}:\right.$ $: \beta<\alpha), Y \in X$ ，then $w Y=0$ ．Put $S=\Sigma\left(X_{\beta}: \beta<\alpha\right)$ ．Clearly，S satisfies（1） and（2）．

3．7．Lemma．For any φ and any $P \in ⿰ 习 习$ ，if $w P>0, b \in \bar{R}_{+}$and φ－udim（ S ）\geq $\geq \mathrm{b}$ whenever $\mathrm{S} \leqslant \mathrm{P}$ ， $\mathrm{wS}>0$ ，then $\varphi-U D(P) \geq \mathrm{b}$ ．

Proof．Let $a<b$ ．Let $U=\left(U_{n}: n \in N\right)$ be an ω－partition of P．Put $M=\{n$ ： $\left.: w U_{n}>0\right\}$ ．If $n \in M$ ，then，by 3.6 ，there are $S_{n k} \leq U_{n}, k \in N$ ，such that $\sum\left(S_{n k}: k \in\right.$ $\in N) \leq U_{n}, \varphi-u w\left(S_{n k}\right) \geq a \cdot w S_{m k}$ and $\varphi-u d(T) \geq$ a for no $T \leq V_{n}=P-\Sigma\left(S_{n k}: k \in N\right)$ ，• hence φ－udim $\left(V_{n}\right) \leq a$ ．This implies $w V_{n}=0, U_{n}=\sum\left(S_{n k}: k \in N\right.$ ）．Hence（ $S_{n k}: n \in M$ ， $k \in N$ ）is an ω－partition of P refining U ．Clearly，$\sum\left(\varphi-u w\left(S_{n k}\right): n \in M, k \in N\right)>$ $>$ a．wP．Since U has been arbitrary，this proves φ－UW $(P) \geq$ a．wP．

3．8．Proposition．For any φ and any $P \in \mathscr{D}), \varphi-\operatorname{UDim}(P)$ is equal to the infimum of all $b \in \bar{R}_{+}$for which there exist $P_{n} \leqslant P$ such that $\sum P_{n}=P$ ， φ－udim $\left(P_{n}\right) \leqslant b$ for all $n \in N$ ．

Proof．Put $s=\varphi-U D i m(P)$ ；let t be the infimum in question．If $b \in \bar{R}_{+}$ and there are P_{n} with properties stated above，then，by 3.3 and $3.4, s \leq b$ ． This proves $s \leq t$ ．－Let $s^{\prime}>s$ ．By 3．6，there are $S_{n} \leq P, n \in N$ ，such that φ－udim $\left(S_{n}\right) \leqslant s^{\prime}, \Sigma\left(S_{n}: n \in N\right) \leqslant P$ and φ－udim $(T) \leqslant s^{\prime}$ for no non－null $T \leqslant V=P$－ $-\Sigma S_{n}$ ．By 3．7，$W V>0$ would imply $\varphi-U D(V) \geq s^{\prime}$ ，hence φ－UDim $(P) \geq s^{\circ}$ ．Hence $w V=0, \Sigma S_{n}=P$ and therefore $t \leq s^{\prime}$ ．

3．9．Proposition．If φ is E－projective，$P \in 2 \cap$ and φ－udim $(P)<\infty$ ， then φ－UDim $(P)=\varphi$－udim (P) ．

Proof．If $S \leqslant P$ and $S=\Sigma\left(S_{n}: n \in N\right)$ ，then，by $2.3, \varphi-u w(S) \leq \sum\left(\varphi-u w\left(S_{n}\right)\right.$ ： $: n \in \dot{N})$ ．This implies $\varphi-u w(T) \leqslant \varphi-U W(T)$ for all $T \leqslant P$ ．Hence，φ－udim $(P) \leqslant$ $\leqslant \varphi-\operatorname{UDim}(P)$ ．By 3．3，this proves the proposition．

3．10．Theorem．Let P_{1} and P_{2} be W－spaces．Then $\operatorname{VDim}\left(P_{1} \times P_{2}\right) \leq \operatorname{VDim}\left(P_{1}\right)+$ $+\operatorname{Uim}\left(P_{2}\right)$ ．

Proof．Put $b_{i}=\operatorname{UDim}\left(P_{i}\right), b=b_{1}+b_{2}$ ．We can assume that $b<\infty$ ．Let $\varepsilon>0$ ． For $i=1,2$ ，there exists，by 3．8，an ω－partition（ $P_{i n}: \cap \in N$ ）of P_{i} such that $\operatorname{udim}\left(\dot{P}_{i n}\right)<b_{i}+\varepsilon / 2$ for all $n \in N$ ．Put $T_{m n}=P_{1 m} \times P_{2 n}$ ．By 2.8 ，udim $\left(T_{m n}\right) \leqslant b+\varepsilon$
for all $m, n \in N$, hence, by 3.5 and 3.3 , $\operatorname{UDim}\left(P_{1} \times P_{2}\right) \leqslant b+\varepsilon$. Since $\varepsilon>0$ has been arbitrary, the theorem is proved.

Remark. Let U and V be as in 2.10. Put $T=U \times V$. It is easy to prove $\operatorname{UDim}(U)=\operatorname{UDim}(V)=2, \operatorname{UDim}(T)=3$. This shows that \leqslant cannot be replaced by $=$ in 3.10.

4

4.1. Proposition and definition. For any φ and any $P=\langle Q, \rho, \mu\rangle \in \eta_{2} \rho$, there is exactly one function $(\bmod \mu) f($ respectively, $g)$ such that φ-UW (X.P) $=$ $=\int_{X} f d \mu$ (respectively, $\varphi-L W(X . P)=\int_{X} \operatorname{gd} \mu$) for all $X \in$ dom $\bar{\mu}$. - We denote f and g by $\varphi-\nabla^{U}(P)$ (or $\nabla_{\varphi}^{\prime}(P)$) and $\varphi-\nabla^{L}(P)$ (or $\nabla_{\varphi}^{L}(P)$), respectively; $\nabla_{\varphi}^{U}(P)$ (respectively, $\nabla_{\varphi}^{L}(P)$) will be called the upper (lower) φ-dimensional density of P. If $\varphi=E$, we of ten omit the prefix " φ ".

Proof. The proposition follows from 3.2 and the Radon-Nikodym theorem.
4.2. Conventions. To express the subsequent propositions 4.3, 4.4, 4.6 and 4.16 in a concise and exact manner, we introduce some ad hoc conventions. - A) If $\mu \in \mathcal{M}(Q), f$ and g are $\bar{\mu}$-measurable, $F=[f]_{\mu}, G=[g]_{\mu}$, we put $\mathrm{fG}=\mathrm{FG}=[\mathrm{fg}]_{\nu}$, where $\nu=\mathrm{f} \cdot \mu$. Observe that, under this convention, $\mathrm{FG}=\mathrm{GF}$ does not hold in general. - B) Let $\mu, \nu \in \mathcal{M}(Q)$, let μ be finite, let $\nu \leqslant \mu$ and let $f \in \mathcal{F}(Q)$ be $\bar{\mu}$-measurable. Then $\int[f]_{\nu} d \mu$ is defined as follows: let X be a support of ν with respect to μ (i.e., (1) $\nu \leq X . \mu$, (2) if $\nu \leq$ $\leq Y . \mu$, then $\bar{\mu}(X \backslash Y)=0)$; we put $\int[f]_{\nu} d \mu=\int X^{f d} \mu$. $-C$) If $\mu \in \mathcal{M}(Q)$ is finite and, for $n \in N, \mu_{n} \leq \mu, \mu=V\left(\mu_{n}: n \in N\right), F_{n} \in \mathcal{F}\left[\mu_{n}\right]$ and $F_{n} \geq 0$, then we put $V\left(F_{n}: n \in N\right)=\left[V\left(f_{n} i_{X(n)}: n \in N\right)\right]_{\mu}$, where, for each $n \in N, f_{n} \in F_{n}$ and $X(n)$ is a support of μ_{n} with respect to μ. - D) If $\mu_{i} \in \mathcal{M}\left(Q_{i}\right), F_{i} \in$ $\in \mathcal{F}\left[\mu_{i}\right], i=1,2$, then we put $F_{1}+F_{2}=[f]_{\mu}$, where $\mu=\mu_{1} \times \mu_{2}$ and, for some $f_{i} \in F_{i}, f$ is the function $(x, y) \mapsto f_{1}(x)+f_{2}(y)$.
4.3. Proposition. For any φ and any $P=\langle Q, \rho, \mu\rangle \in 220$, if $S=s . P \leqslant P$, then $\varphi-U W(S)=\int s \nabla_{\varphi}^{U}(P) d \mu, \varphi-L W(S)=\int s \nabla_{\varphi}^{L}(P) d \mu$.

Proof. It is easy to see that there are sets $X(n) \in$ dom $\bar{\mu}$ and reals a_{n} such that $\Sigma\left(a_{n} i_{X(n)}: n \in N\right)=s(\bmod \mu)$. Then $\varphi-U W(S)=\Sigma\left(a_{n} \varphi-U W(X(n) . P): n \in\right.$ $G N)=\sum a_{n} \int_{X(n)} \nabla_{\varphi}^{U}(P) d \mu=\int\left(\sum a_{n} i_{X(n)}\right) \nabla_{\varphi}^{U}(P) d \mu=\int s \nabla_{\varphi}^{U}(P) d \mu$. For $\varphi-L W$, the proof is analogous.
4.4. Proposition. For any Q and any $P=\langle Q, \rho, \mu\rangle \in \mathcal{L})$, if $S=s . P \leqslant P$, then $\nabla_{\varphi}^{U}(S)=(\operatorname{sgn} s) \cdot \nabla_{\varphi}^{U}(P), \nabla_{\varphi}^{L}(S)=(\operatorname{sgn} s) . \nabla_{\varphi}^{L}(P)$.

- 408 -

Proof. Put $\nu=s . \mu, t=\operatorname{sgn}$ s. Let $f \in \nabla_{\varphi}^{U}(P)$. If $X \in \operatorname{dom} \bar{\mu}$. then $\int_{X} \operatorname{tfd} \nu=\int_{X} \operatorname{tfsd} \mu=\int_{X} \operatorname{sfd} \mu$, hence, by 4.3, $\int_{X} \operatorname{tfd} \nu=\varphi-U W(X . s . P)=$ $=\varphi-U W(X . S)$. This proves that $\operatorname{tf} \in \nabla_{\varphi}{ }^{U}(S)$, and therefore (see 4.2, A) $\nabla_{\varphi}^{U}(S)=t \nabla_{\varphi}^{U(P)}$. The proof for ∇_{φ}^{L} is analogous.
4.5. Theorem. For any φ and any $\left.P=\langle Q, \rho, \mu\rangle \in \operatorname{JQN}_{\Omega}\right), \varphi-\operatorname{UDim}(P)=$ $=\sup \nabla_{\varphi}^{U}(P), \varphi-\operatorname{LDim}(P)=\sup \nabla_{\varphi}^{L}(P)$.

Proof. Put $a=\varphi-\operatorname{UDim}(P), b=\sup \nabla_{\varphi} U(P)$. For any $S=s . P \leq P$, we have $\varphi-U D(S)=\int s \nabla_{\varphi}^{U}(P) d \mu / w S$, hence $\varphi-U D(S) \leqslant b$. This proves $a \leqslant b$. - Let $c<b ;$ let $f \in \nabla_{\varphi}^{U}(P)$. Then there is an $X \in$ dom $\bar{\mu}$ such that $\bar{\mu} X>0, f(x) \geq c$ if $x \in X$. Clearly, $\varphi-U D(X . P)=\int_{X d} f(\mu / \bar{\mu} X \geq c$. This proves $a \geq b$. - The proof for φ-LDim is analogous.

Remark. There are examples (not quite simple) of W-spaces P satisfying $\nabla^{L}(P)=\nabla^{U}(P)$ and such that $\operatorname{UDim}(S)$, where $S \leqslant P$, assumes all values from a* certain interval.
4.6. Theorem. For any φ and any $P \in$ 朷 , if $P=\sum\left(P_{n}: n \in N\right)$ or $P=V\left(P_{n}\right.$: $: n \in N)$, then $\nabla_{\varphi}^{U}(P)=V\left(\nabla_{\varphi}^{U}\left(P_{n}\right): n \in N\right), \nabla_{\varphi}^{L}(P)=V\left(\nabla_{\varphi}^{L}\left(P_{n}\right): n \in N\right)$.

Proof. We only prove the first equality. Clearly, it is sufficient to show that the equality holds if $P=\vee P_{n}$. Let $P_{n}=f_{n} . P$. Put $g_{n}=\operatorname{sgn} f_{n}$. Then, by 4.4, $\nabla_{\varphi}^{U}\left(P_{n}\right)=g_{n} \cdot \nabla_{\varphi}^{U}(P)$. Since, clearly, $\mu=V\left(g_{n} \cdot \mu: n \in N\right), V g_{n}=1(\bmod \mu)$, we get $V\left(\nabla_{\varphi}^{U}\left(P_{n}\right): n \in N\right)=\nabla_{\varphi}^{U}(P)$.
4.7. Definition. For any φ, a W-space P will be called φ-dimensionbounded (or merely " φ-bounded") if φ-udim $P<\infty$. It will be called fully φ-exact if $\varphi-\operatorname{ud}(S)=\varphi-\ell d(S)$ for all $S \leqslant P$. If $\varphi=E$, we of ten omit the prefix " φ " in " φ-dimension-bounded" and "fully φ-exact".
4.8. Remark. It is easy to prove that, for any φ and any $P \in \mathcal{O S}$, there is exactly one partition ($P_{1}, P_{2}, P_{3}, P_{4}$) such that $\nabla_{\varphi}^{L}\left(P_{1}\right)=\nabla_{\varphi}^{U}\left(P_{1}\right)<\infty$, $\nabla_{\varphi}^{L}\left(P_{2}\right)<\nabla_{\varphi}^{U}\left(P_{2}\right)<\infty, \nabla_{\varphi \varphi}^{L}\left(P_{3}\right)=\nabla_{\varphi}^{U}\left(P_{3}\right)=\infty, \nabla_{\varphi}^{L}\left(P_{4}\right)<\nabla_{\varphi}^{U}\left(P_{4}\right)=\infty$. The spaces P_{1}, \ldots, P_{4} can be characterized as follows: (1) P_{1} has an ω-partition consisting of φ-bounded fully φ-exact subspaces, (2) P_{2} has an ω-partition consisting of φ-bounded subspaces and contains no fully φ-exact subspace, (3) every non-null subspace $S \leqslant P_{3}$ contains subspaces T with $\varphi-\ell d(T)$ arbitrarily large, (4) if $S \leqslant P_{4}$ is non-null, then it is neither φ-bounded nor fully φ-exact.
4.9. Fact and definition. For any φ and any $P=\langle Q, \rho, \mu\rangle \in \partial D$, if - 409 -
there exists a function $(\bmod \mu) F$ such that $(*) \int_{X} F d \mu=\varphi-u w(X . P)=$ $=\varphi-\ell w(X . P)$ for all $X \in \operatorname{dom} \bar{\mu}$, then this F is unique. It will be denoted by $\varphi-\nabla^{R}(P)$ or $\nabla_{\varphi}^{R}(P)$ and called the exact φ-dimensional density for P. If there is no F satisfying $(*)$, we will say that $\varphi-\nabla^{R}(P)$ does not exist. If $\varphi=E$, we of ten omit the prefix " φ ". - Remark. If f is an Rw-density function for P in the sense of $[4], 3.12$, then $\nabla^{R}(P)=[f]_{\mu}$; conversely, if $\nabla^{R}(P)$ exists, then every $f \in \nabla^{R}(P)$ is an Rw-density function for P.
4.10. Proposition. For any φ and any $P \in \partial \rho$, if $\varphi-\nabla^{R}(P)$ exists, then P is fully φ-exact and $\nabla_{\varphi}^{U}(P)=\nabla_{\varphi}^{L}(P)=\nabla_{\varphi}^{R}(P)$.

Proof. If $\varphi-\nabla^{R}(P)$ exists, then, for any $S \leqslant P, \varphi-u w(S)=\varphi-\ell w(S)$ and if $S=\Sigma\left(S_{n}: \cap \in N\right)$, then $\varphi-u w(S)=\Sigma\left(\varphi-u w\left(S_{n}\right)\right)$. This implies that P is fully φ-exact and $\varphi-U W(S)=\varphi-u W(S)=\varphi-\ell W(S)=\varphi-L W(S)$ for each $S \leqslant P$.
4.11. Proposition. For any φ and any $P \in M D$, if there are fully φ exact P_{n} such that $P=\Sigma\left(P_{n}: n \in N\right)$, then $\nabla_{\varphi}^{U}(P)=\nabla_{\varphi}^{L}(P)$.

Proof. If P is fully φ-exact, then φ-uw $(T)=\varphi-\ell W(T)$ for all $T \leqslant P$, hence $\varphi-U W(S)=\varphi-L W(S)$ for all $S \leqslant P$ and therefore $\nabla_{\varphi}^{U}(P)=\nabla_{\varphi}^{L}(P)$. If $P=$ $=\sum\left(P_{n}: n \in N\right)$ and P_{n} are fully φ-exact, apply 4.6.
4.12. Remark. Let $P=\left\langle R^{n}, \varsigma, f . \lambda\right\rangle$, where ρ is any usual metric on R^{n}, λ is the Lebesgue measure and $\mu=f . \lambda$ is a finite measure. Then (1) P is fully exact, (2) for any non-null $S \leqslant P$, UDim(S) $=\operatorname{LDim}(S)=n$, (3) $\nabla^{U}(P)=$ $=\nabla^{L}(P)=n$. [sgn $\left.f\right]_{\mu}$; this follows from [4], 2.9. However, if e.g. $n=1, f(x)=$ $=|x|^{-1}|\log x|^{-3-2}$, then $\operatorname{Rd}(P)=\infty$, whereas $\operatorname{Rd}(X . P)=1$ whenever $X \in$ dom $\bar{\mu}$ is bounded and $\bar{\mu} X>0$; thus $\nabla^{R}(P)$ does not exist.
4.13. Fact. For any $P \in \mathcal{N D}$) and any $P_{n} \leqslant P$ satisfying $\sum\left(P_{n}: n \in N\right)=P$, (1) $\sum\left(\ell w\left(P_{n}\right): n \in N\right) \leq \ell w(P)$, (2) if P is dimension-bounded, then $u w(P) \leqslant$ $\leq \sum\left(u w\left(P_{n}\right): n \in N\right)$.

Proof. The assertion (1) follows at once from [4], 3.1. For (2), see [4], 3.4.
4.14. Fact. For any $P \in \lambda_{\Omega} \cap$, (1) $L W(P) \leq \ell W(P)$, (2) if P is dimensionbounded, then $u w(P) \leqslant U W(P)$.

This is an immediate consequence of 4.13.
4.15. Proposition. Let $P \in \ln)$ be dimension-bounded. Then the following conditions are equivalent: (1) P is fully exact, (2) $\nabla^{R}(P)$ exists, (3) $\nabla^{L}(P)=\nabla^{U}(P)$.

Proof. I. If (1) holds, then $u w(T)=\ell w(T)$ for all $T \leqslant P$. Hence, by 4.13, if $S \leqslant P, S=\Sigma\left(S_{n}: n \in N\right)$, then $\Sigma\left(R w\left(S_{n}\right): n \in N\right) \in R w(S) \leq \Sigma\left(R w\left(S_{n}\right): n \in N\right)$. This
proves that $X \mapsto R W(X . P)$ is a measure, hence $\nabla^{R}(P)$ does exist. - II. By 4.10, (2) implies (3). - III. If $\nabla^{L}(P)=\nabla^{U}(P)$, then, for any $S \leq P, U W(S)=$ $=L W(S)$ and hence, by 4.14, $u w(S)=\ell w(S)$.
4.16. Theorem. For any W-spaces P_{1} and $P_{2}, \nabla^{U}\left(P_{1} \times P_{2}\right) \leqslant \nabla^{U}\left(P_{1}\right)+\nabla^{U}\left(P_{2}\right)$.

Proof. Let $P_{i}=\left\langle Q_{i}, \rho_{i}, \mu_{i}\right\rangle, P=P_{1} \times P_{2}=\langle Q, \rho, \mu\rangle$. Let $A \in \operatorname{dom} \bar{\mu}, B \in$ ϵ dom $\bar{\mu} ;$ put $C=A \times B$. Then, by 3.9 , UD(C.P) $\leq U D\left(A . P_{1}\right)+U D\left(B . P_{2}\right)$, hence $U W(C . P) \leq$
 - $\mu_{2} B=\int_{B} \int_{A}^{d} \nabla^{U}\left(P_{1}\right) d \mu_{1} d \mu_{2}$, UW $\left(B \cdot P_{2}\right) \cdot \mu_{1} A=\int_{A} \int_{B} \nabla^{U}\left(P_{2}\right) d \mu_{2} d \mu_{1}$. This proves that $\int_{A \times B} \nabla^{U}(P) d \mu \leq \int\left(\nabla^{U}\left(P_{1}\right)+\nabla^{U}\left(P_{2}\right)\right) d \mu$ for all $A \in \operatorname{dom} \bar{\mu}_{1}$, $B \in$ ϵ dom $\bar{\mu}_{1}$, and therefore $\nabla^{U}(P) \leqslant \nabla^{U}\left(P_{1}\right)+\nabla^{U}\left(P_{2}\right)$.

Remark. The equality $\nabla^{U}\left(P_{1} \times P_{2}\right)=\nabla^{U}\left(P_{1}\right)+\nabla^{U}\left(P_{2}\right)$ does not hold, in general. For instance, for U and V from 2.10, we have $\nabla^{U}(U \times V)<\nabla^{U}(U)+\nabla^{U}(V)$.

References

[1] J. BALATONI, A. RÉNYI: On the notion of entropy (Hungarian), Publ. Math. Inst. Hungarian Acad. Sci. 1(1956), 9-40. - English translation: Selected papers of Alfred Rényi, vol. I, pp. 558-584, Akadémiai Kiado, Budapest, 1976.
[2] M. KATĚTOV: Extended Shannon entropies I, Czechosl. Math. J. 33(108) (1983), 564-601.
[3] M. KATĚTOV: On extended Shannon entropies and the epsilon entropy, Comment. Math. Univ. Carolinae 27(1986), 519-543.
[4] M. KATĚTOV: On the Rényi dimension, Comment. Math. Univ. Carolinae 27 (1986), 741-753.

Matematický ústav, Univerzita Karlova, Sokolovská 83, 18600 Praha 8,
Czechoslovakia
(Oblatum 6.4. 1987)

