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DISTRIBUTIVITY IN FINITELY GENERATED
ORTHOMODULAR LATTICES

Ladislav BERAN

Abstract: The purpose of this paper is to characterize the distributi-
vity of a Iinitely generated orthomodular lattice F by the semiprimality of
the ideal determined by the lower commutator formed from generators of F.
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1. Preliminaries. In (3] Rav introduced the concept of a semiprime
ideal which is an ideal I of a lattice L satisfying

xAyel & xazel = xA(yvz)el

for every x,y,zel. Here we use this notion as a principal tool for our inve-
stigation.

Let L be an orthomodular lattice and let X1Xgs oo e s X € L. Recall that
the upper commutator of Xy, X9y e sXy i8 defined by

— €1 %2 €n
EToM(X Xy, . oy X )= A (X TV x5y vx)
where the superscripts e,,e,,...,e, run over {-1,1} and xi:xi, x;1=x1'.
is defined the lower commutator

Dually

i P n
g=;m(x1,x2,...,xn)= v (x1 A Xy AL AX )
(c£. 121,011).

As usual, we write aCb if and only if a=(aAb)v(aAb’).
Any undefined terminology in this paper will generally conform with 1].

2. Distributivity criterion

Lemma 1. Let X11Xgye ey Xy be elements of an orthomodular lattice L and
let (E°_"'.("1"‘2’ - ,xn)] be semiprime. Then
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XA Dx(v (oA o AX DT =X A Xp AL A X
Proof: Let
x=x;A T, y=x1, 2=(xpA...AX IV E.
Since EC(xyA ...A x,) and TCc,
x A Z=2ATALGA LA XY _C_]=x1A TA(A .. AX) £
L0 A XpA LA XA (xg v xz' V...v X2)=0.

Now, I=(c] is semiprime and xAy=0¢I. Hence xA(yvz)eI. Since ECxi,
EC(xpA ...Ax.) and TCc, we have

xA(yvz)=x1AEA[x1'v(x2A...Axn)vE]=
=X1AEA[xi vixgA...ax)].
From x A(yvz) €I we conclude that

X ATA [xi v(sz oA xn)]éc/\g=0.

Thus
xlA‘GA[xl' V(XA ...A xn)] =0.
But
xlAEA[xl'v(sz...A xn)]=
=x1A(x1'vx2'v...vxr;)A[xl'v(sz...A X))
Let
s=xlA[x1'v(x2A ceeax)d, t=(x1'v xz'v Y x';).

Then sAt=0 and s2t’, so that s=t’, by orthomodularity of L.

Corollary 2. If (gx_n_(xl,xz,...,xn)] is semiprime in an orthomodular
lattice, then e e,
xlc(x2 ALAXy )
for any e,,...,e ¢ {-1,13.

Proof: By symmetry it suffices to prove that XIC(X2/\...A xn). However,
aCb if and only if aA (a’vb)=aAb, by[l; Theorem II.3.7]. Conseguently,
Lemma 1 gives the required result.

Proposition 3. Let (_t_:_un_(xl,xz,...,xn)] be a semiprime ideal of an ortho-
modular lattice. Then

com(xy,...,x )=com(x,, ..., x )=...=com(x ,,x )=1.

e e
Proof: By Corollary 2 we have xl‘C(xzzA. . .I\Xnn), so0 that
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€. n o E2 €y~ _
Pﬂ(xl’xz"""‘n)=\/[x1"(x2 AccAaxy Vv VI AlAAx )] =

e e e e
= [x1 /\V(xzz"\ ...Axnn)] v [xl'/\ \/(xzzA LA xnn)] =

. €2 n
=(xyv x))A V(% A L. A X )=com(xy, - ..y X)
The remainder follows by induction. Especially,
x)=com(x )=x v x=1.

m(xn-l ’

Corollary 4. Let X1yXgy« o0 Xy be elements of an orthomodular lattice
such that (_z_:gn_(xl,xz,...,xn)] is semiprime. Then xiij for every i,jefl,2,...

...,nkL
Proof: From symmetry and from Proposition 3 we infer _C_q_n(xi,xj)=1 for

every 1&€i<j£n. However, ﬂ(xi,xj)ﬂ is equivalent to Ec'in’(xi,xj)=
= [ggn_(xi,x.)l' =1" =0 and this is equivalent to x;Cxy (cf. [1; Theorem
I11,2.111).

Theorem 5. Let F be a finitely generated orthomodular lattice, F=
=(x1,...,xn). Then F is distributive if and only if (com(x;,...,x )] is se-

miprime.
Proof: 1. If F is distributive, then every ideal of F is semiprime.
2. Suppose, conversely, that (ggn_(xl,...,xn)J is semiprime. By Corol-

lary 4, xiCx. for every 1€ i, j£n, and the proof is completed by applying
[1; Theorem II.4.51].
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