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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

DISTRIBUTIVITY IN FINITELY GENERATED 
ORTHOMODULAR LATTICES 

Lad is lav BERAN 

Abstract: The purpose of th is paper is to characterize the d i s t r i bu t i -
v i ty of a f i n i t e l y generated orthomodular la t t i ce F by the semiprimality of 
the ideal determined by the lower commutator formed from generators of F. 

Key words: Commutativity re lat ion, commutators, d is t r ibu t i v i t y c r i t e ­
rion ,"^IHnomooTilar l a t t i ce , semiprime ideal. 

Classif ication: 06C15 

1- Preliminaries. In C31 Rav introduced the concept of a semiprime 

ideal which is an ideal I of a la t t i ce L satisfying 

X A y c I f i . xAze I -==>XA(yvz ) f c . I 

for every x,y,zeL. Here we use this notion as a principal tool for our inve­

stigation. 

Let L be an orthomodular lattice and let x,,x2,...,x(a6 L. Recall that 

the upper commutator of x,,x2,...,x is defined by 

e, e 2 e 

CsconKXj^,... ,xn)= A (x.^ v x2 v ... vx R ) 

where the superscripts e,,e2,...,e run over{-l,ll and x.=x,, x7 =x/. Dually 

is defined the lower commutator 
e, e 2 e 

£=.a.m(x1fX2,...,xn)= V(x 1Ax 2
tA...Ax n ) 

(cf. 121, [11). 

As usual, we write aCb if and only if a=(aAb) v(aAb'). 

Any undefined terminology in this paper will generally conform with 111. 

2. Distributivity criterion 

Lemma 1. Let x«_,x2,...,xn be elements of an orthomodular lattice L and 

let (cgm(x,,x2,...,xn).3 be semiprime. Then 
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X,A[X|V(x2A.. .AXn ) ]=X1A X 2 A. . .A Xp,. 

Proof: Let 

x=x-Ac, y=Xp z - ( x 2 A . . . A X n ) v c . 

Since C C ( X 2 A . . . A xn) and cCc, 

x A zsXjAc A [ ( X 2 A . . . A xn)vc3=x1A C*A (X 2A . . . A xn) £ 

4 ( X , A X 2 A . . . A x ) A ( X J V X 2 V . . .v xn)=0. 

Now, I=(£3 is semiprime and xAy=QeI. Hence xA(yvz)eI. Since cCxj, 

C C ( X 2 A ...A x ) and CCc, we have 

XA(yvz)=X,AC"AtxJv(x2A.. .AX n)vC 3 = 

=X,A C*A[xj V(X2A.. .AX )]. 

From XA(yvz)tI we conclude that 

Thus 

But 

X , A C A [ X J V ( X 2 A . . .A X )3áCAC=0. 

X, A£A[X-^ v(x2A . . . A X n ) ] = 0 . 

x, A C A [ X J V ( X « A . . . A xp) l = 

=X, A(x(vX« V. . . Vx')AtXif V(X2A .. .A X )3 . 

Let 

S=X, A [ x| V (Xj A . . . A X )3, t=(x|V X« V . . . V X') . 

Then SAt=0 and sit', so that s=t', by orthomodularity of L. 

Corollary 2. If (com(x,,x2,...,xn)l is semiprime in an orthomodular 

lattice, then 
e0 ? n 

XjC(x2 A ...AXn ) 

for any e2,...,en* {-1,1}. 

Proof: By symmetry it suffices to prove that X , C ( X 2 A . . . A x ) . However, 

afcb if and only if aA (a'v b)=aAb, byll; Theorem II.3.73. Consequently, 

Lemma 1 gives the required result. 

Proposition 3. Let (com(x1,x2,...,xn)3 be a semiprime ideal of an ortho-

modular lattice. Then 

com(Xp... ,xn)*com(x2,... ,xR)=.. .=com(xn pXR)=l. 

e2 en 
Proof: By Corollary 2 we have x^C(x2 A...AX n ) , so that 
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e« 
c p m ( x 1 , x 2 , . . . , x n ) = V [ x 1 A ( x 2

2 A . . . A X n
n ) 3 v V [ X X ' A ( X 2

2 A ...Axn
n)] = 

60 e_ e*-» e _ 
= [Xj A V ( X 2 A . . . A X n ) ] V Lx^A V ( x - A . . . A Xn ) ] = 

e 2 e n 
= (x-^ X - ^ A V ( x 2 A . . . A x n ) = c o m ( x 2 , . . . , x n ) . 

The remainder follows by induction. Especially, 

£2!_(xn-l. xn)=com(xn)=xnv xn=l. 

Corollary 4. Let x,,x2,...,x be elements of an orthomodular lattice 

such that (com(x,,x-,...,x )] is semiprime. Then xXx- for every i,j€fl,2,. 

. ..,nl. 
Proof: From symmetry and from Proposition 3 we infer com(xi<xJ=l for 

every l^-i^g 6n. However, com(x,,x.)=l is equivalent to com(x,,x.)= 

= Ccom(x. ,x.)]'=l' =0 and this is equivalent to x.Cx. (cf. fl; Theorem 

1.1,2.113). 

Theorem 5. Let F be a finitely generated orthomodular lattice, F= 

- ( x , , . . M x ) . Then F is distributive if and only if (com(x, , . . . ,x )] is se­

miprime . 

Proof: 1 . If F is distributive, then every ideal of F is semiprime. 

2. Suppose, conversely, that (com(x,,...,xR)3 is semiprime. By Corol­

lary 4, x.Cx. for every l_=i, j»n, and the proof is completed by applying 

[1; Theorem II.4.5J. 
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