Małgorzata Wójcicka A remark on the weak topology of the Hilbert space

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 3, 437--440

Persistent URL: http://dml.cz/dmlcz/106557

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,3 (1987)

A REMARK ON THE WEAK TOPOLOGY OF THE HILBERT SPACE Malgorzata Wójcicka

<u>Abstract:</u> V.V. Uspenskii [A] asked if every χ_0 -space can be embedded in an χ_0 -space with property k_R . It is shown that the Hilbert space l_2 endowed with the weak topology provides a negative answer to this question.

<u>Key words:</u> Hilbert space, weak topology, γ_o -space, k_R -space. Classification: 46C05, 54E20, 54D50, 54C25

1. <u>Introduction</u>. Let us recall that a regular space X is an χ_0 -space if X has a countable k-network \mathcal{R} , i.e. a collection of subsets (not necessarily open) such that whenever KCU with K compact and U open in X, then Kc Pc U for some Pe \mathcal{R} ; the class of χ_0 -spaces was introduced by E. Michael [M1], where we refer the reader for the basic properties. A completely regular space X is a k_R -space if arbitrary function f:X \rightarrow R, whose restriction to every compact Kc X is continuous on X, see [M2].

V.V. Uspenskii [A] asked if every χ_0 -space can be embedded in an χ_0 -space with property k_R . In this note we shall show that the Hilbert space l_2 endowed with the weak topology (which is an χ_0 -space, see [M1, Cor. 7.10]) provides a negative answer to this question:

<u>Theorem 1.</u> The infinite-dimensional separable Hilbert space equipped with the weak topology cannot be embedded into any χ_0 -space being a k_R -space.

Let us notice that our reasoning shows also that a well-known space V considered by Varadarajan LV, p.98]: the natural numbers extended by the filter of the complements of density 0 sets, provides another example of this kind. x)

x) This example was considered also by P. Uryson (see P.S. Aleksandrov, P.S. Uryson: Memuar o kompaktnych topologičeskich prostranstvach, 3rd edition, Moscow 1971 (pp. 119-120)). (Referee's remark)

We shall denote by N the natural numbers and by $\left|A\right|$ the cardinality of the set A.

2. <u>The Fernique's space</u> F. We shall denote by l_2 the Hilbert space of the square-summable sequences of the real numbers. Let e_1, e_2, \ldots be the standard orthonormal basis in l_2 . Following Fernique [HJ, p.268] we shall consider the following subspace of l_2 :

equipped with the topology induced by the weak topology of l_2 , i.e. the points ne_1 are isolated in F and basic neighbourhoods of the point 0 in F are of the form:

(*)
$$V= ine_i: |n\alpha_i| < 13 \cup \{0\}, \text{ where } \sum_{i=1}^{\infty} \alpha_i^2 < \infty.$$

We shall need the following observation about the space F:

Lemma 2. Let $W_1 \supset W_2 \supset \ldots$ be a sequence of open sets in the space F such that $\sqrt[\infty]{\Omega_1} W_i = \{0\}$. Then there exists a set Y c F satisfying the conditions: $0 \in \overline{Y}$, $|Y-W_i| < \infty$, for i=1,2,... and no sequence of points of the set Y converges to 0.

<u>Proof:</u> Choose inductively for each n=1,2,..., pairwise disjoint sets $A_n \subset N$ such that $|A_n| = n^2$ and $Y_n = f \cap e_i : i \in A_n \stackrel{1}{\to} \subset W_n$. We shall show that $Y = \bigcup Y_n$ has the required property. Each set $Y - W_n \subset Y_1 \cup \ldots \cup Y_{n-1}$ is finite and obviously no sequence from Y converges to 0, so it is enough to show that $0 \in \overline{Y}$. Aiming at a contradiction, assume that there exists a neighbourhood V of the form (*) with $Y \cap V = \emptyset$. Then, for each $i \in A_n$, $|n \propto_i| \ge 1$, but then $\sum_{v \in A_{nv}} \alpha_i^2 \ge |A_n| \frac{1}{n^2} = 1$, which contradicts the fact that the sequence $\alpha_1, \alpha_2 \dots$ is square summable.

3. <u>Proof of Theorem 1.</u> Let X be any χ_0 -space containing the space F defined in sec. 2. We shall show that X is not a k_p -space.

The point 0 is a G_d-set in X hence there exist sets in X such that

 $W_1 \supset \overline{W}_2 \supset W_2 \supset \dots$ and $\{0\} = \bigvee_{i=1}^{\infty} W_i$.

By Lemma 2 we can find a set YcF such that $0 \in \overline{Y}$, $|Y-W_{\underline{i}}| < \infty$ for $i \in \mathbb{N}$ and no sequence of points of Y converges to 0.

Let y_1, y_2, \ldots be an enumeration of the elements of Y. We shall choose an open neighbourhood V_i in X of the points y_i satisfying the following conditions:

- 438 -

(i)
$$V_i \cap F = \{y_i\}$$

(ii) $\overline{\langle \mathcal{Q}_1 \rangle}_i = V_i \subset \langle \mathcal{Q}_1 \rangle_i = \{v_i\}$
(iii) $\overline{V_i} \cap \overline{\langle \mathcal{Q}_1 \rangle}_i = \emptyset$.

(iv) no sequence of points of the set $\bigcup_{i=1}^{\infty} V_i$ converges to 0.

To this end we define inductively open sets $U_1, U_2, ...$ in X such that $U_i \cap F = \{y_i\}, U \notin \overline{U}_i$ for every i $\in \mathbb{N}, \ \overline{U}_i \cap \overline{U}_j = \emptyset$ for $i \neq j$ and if $y_i \in W_m$ then $U_i \subset W_m$. It is easy to check that $\overline{\sqrt{U_i} \cap U_i} \subset \overline{\sqrt{U_i}}, \ \overline{U}_i \cup \{0\}$. Indeed, if $q \neq 0$ then there exists $m \in \mathbb{N}$ such that $q \notin W_m$ and the open neighbourhood $X - \overline{W}_m$ of the point q intersects only finitely meny sets U_i . In a similar way one can verify that $\overline{U_i} \cap \overline{\sqrt{U_i}}, U_i \cap \overline{\sqrt{U_i}}, U_i \in W_m$.

Let us consider a k-network in X consisting of closed sets, let S_1, S_2, \ldots be an enumeration of the elements of the k-network containing 0 and let

 $V_i = U_i - \bigcup \{S_i : j \neq i \text{ and } y_i \notin S_j \}.$

Obviously, the conditions (i)-(iii) are satisfied. We shall check that (iv) holds as well. Assume on the contrary that there exists a compact set $Z \subset \sqrt[4]{} V_i$ homeomorphic with a convergent sequence, 0 being the limit point, and let $P = \{y_i \in Y: V_i \cap Z \neq \emptyset\}$; since $0 \notin \overline{V_i}$, the set P is infinite. By the choice of Y, no sequence from Y converges to 0, hence there exists a neighbourhood W of 0 such that P-W is infinite. The set Z-W is finite, so $Z-W \subset \sqrt[4]{} V_i \vee_i V_i$ for some i_0 , and the set $Z \cap W$ is compact, so $Z \cap W \subset S_j \subset W$ for some j_0 .

Consider $y_n \in P-W$ with $n_0 > \max(i_0, j_0)$. Then

۷_{no} (Z-W)=Ø and ۷_{no} (Z - W) د ۷_{no} S_{jo}=Ø as y_{no}¢ S_{jo}.

Therefore $V_{n_0} \cap Z = \emptyset$, a contradiction with the definition of the set P.

Now, for every $n \in N$ we define a continuous function $f_n: X \longrightarrow R$ equal to 0 on the set $X-V_n$, and 1 on $\{y_n\}$. Put $f=\max f_n$. In particular, f equals 1 on Y and f(0)=0 and since $0 \in \overline{Y}$, f is not continuous at 0. By conditions (i)-(iii) it follows that 0 is the unique point of discontinuity of f.

We shall show that f is continuous on each compact set KCX, just violating the kp-property. Let KCX be a compact set containing 0. Since compact sets in any χ_0 -space are metrizable, condition (iv) implies that $0 \notin \overline{K} \cap_{\substack{i \in \mathbb{N}\\ i \notin \mathbb{N}}} V$. It follows that for some neighbourhood W of 0, the function f vanishes on the set W \cap K. Hence the restriction $f_{\mathbb{K}}$ is continuous at 0 and f being continuous at any other point in X, $f_{\mathbb{K}}$ is continuous.

References

- [A] A.V. ARHANGELSKII: On R-factor mappings of spaces with countable base, Dokl. Akad. Nauk SSSR 287(1986), 14-17.
- [HJ] J. HOFFMANN-JÖRGENSEN: The theory of analytic spaces, Aarhus Various Publ. Series,no. 10, 1970.
- [M1] E. MICHAEL: 2, -spaces, J. Math. Mech. 15(1966), 983-1002.
- [M2] E. MICHAEL: On k-spaces, k_R-spaces and k(X), Pacific J. Math. 47(1973), 487-498.
- [V] V.S. VARADARAJAN: Measures on topological spaces, Mat. Sbornik 55(97) (1961), 35-100. Amer. Math. Soc. Transl. (2)48(1965), 161-228.

Warszawa 00-149, ul. Karmelicka 3c m. 16, Poland

(Oblatum 17.3. 1987)