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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

LIMIT BEHAVIOUR OF TRAJECTORIES INVOLVING 
SUB6RADIENTS OF CONVEX FUNCTIONS 

Jan PELANT, Svatopluk POLJAK, Oaniel TURZlK 

Abstract; We investigate trajectories - fy^^.1 of mappings h=f©g such 

that y i . f l
= f 9 ( y i , . - - » y i „ q + 1 ) where q > l , tiff—> Rm is cycl ical ly monotone and 

g i s one of the following 

(a) g=g(yt,...»yt„q+1)=i,|if Vt-k+i * i e r e *~l and Wi=Ak ( t h e t r a n s ?° -
sed matrix) for k=l,...,q. 
(b) g=g(yt) where g is cyclically monotone (for q=l). 

We show that there is an integer r such that 

(*) .iU'|L,llyi+r-yi)l =0 provided the trajectory is bounded. 
(Namely, Tt is r=q+l in case (a) and r=l in case ( b ) . 

The paper is motivated by the study of cellular automata. 

Key words: Convex function, subgradient, trajectory. 

Classification: 94C10, 33A70, 26B25 

We investigate trajectories iyJ . , of mappings h=fg such that yi+1f 
^oXy-p-• • .yj^+i), where qZl, f:R —*- R1" is cyclically monotone and g is 
some other mapping. We give some partial answers when there is some r for 
which 

^JWyi1 1 =° 
The considered question arises in the study of cellular automata (cf. 

C3l), used e.g. for modeling of neural networks ( C . U , [ 5 ] ) or social influen­
ce ([2],L8],L11]). For better understanding we will use the following inter­

pretation. 

Consider a group of p members. The opinions of members are represented 

by vectors from R™1. The members change their opinions simultaneously in dis­

crete steps according to mutual influences. The new opinion yi - of the i-th 

member at time t+1 depends on q previous opinions of other members so that 

yt+1=f
igi(yt,...,yt.g+1) where yt=

J(yJ,...,yt) is a concatenation of opinions 

of all members, g1 is an influence mapping, and f1 is an evaluation mapping 
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for i = l , . . . , p . (One may object that considering the transition mapping as a 

composition of two mappings is superfluous. But this can be natural from the 

point of view of some application, and moreover, it enables us to study the 

behaviour of the group according to properties of f1 and g1.) Now, if we put 

f=(f ,...,fp) and g=(g , . . . , g p ) , we get the problem formulated in the begin­

ning of the section. Answering this question, we describe the "limit" opinion 

of the group. 

We assume that the evaluation mapping f is always cyclically monotone. 

Let us remark that if all f1 are cyclically monotone then f is as well.With 

respect to the influence mapping g we consider two particular cases. 

'a) 9=9(yt,...,yt.q+1)=|tf:i A ky t. k + 1 where q^l and 

A. 1=A. (the transposed matrix) for k=l,...,q; 

(b) g=g(yt) where g is cyclically monotone (for q=l). 

We show there is an integer r such that 

(*) .lim By. ^-y. li =0 provided the trajectory is bounded. 
4, ->ce> i+r l 

Namely, it is r=q+l in case (a) and r=l in case (b). 

In particular, if h=fA then r=2 for A symmetric and r=l for A positive 

definite matrix. Presented results generalize [3j,L4J, [63,[7j,£8J where f of 

finite range (i.e. a system with a finite number of states) was considered. 

In this case, ( # ) means the existence of a period on the trajectory of fA. 

1. Some facts on cyclically monotone mappings. The following definiti­

ons and results are due to Rockafellar C10 ] . Let M be a subset of m-dimensi-

onal Euclidean space Rm. A multivalued mapping F:M—>exp Rm is cyclically 

monotone (abbreviated as cm.) on M if 

VnVx1,...,xn<:M Vy1eF(x1),...,yneF(xfl): 

Jr4(VV+U)yi~° 
where £n+13=l and Li+l]=i+l for i<n. If there is a unique value y€F(x) for 

every x, we put f(x)=y and we say that f is cm. if F is. 

A cm. mapping F is maximal if there is no cm. mapping G4-F satisfying 

G(x)lF(x) for all xcR m. 

A real function u:M—> R is a potential of F on M if 

(1) u(z)-u(x)£(z-x)y for each z,x£M and yeF(x). 

It was proved by Rockafellar tlOl that 

(i) F is cm. on M if and only if F has some potential on M; 
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(ii) F is maximal on Rm if and only if F has a unique p o t e n t i a l . 
For a potential u of F define 

u(z)=sup 4u(x)+(z-x)y: xe.M and y € F ( z ) } . 

It follows from (1) that 

(a) u is a convex function with finite values on convex closure of M; 

(b) 0(x)=u(x) for xCM; 

(c) F(x) is a subset of subgradients of u at x . 

It was observed in [7.1 that the statement (i) remains true if the noti­
on of a c m . mapping is defined with respect to an arbitrary binary operation 
instead of the scalar product . 

2 . Limit behaviour of t r a j e c t o r i e s . In this section we give some results 

concerning the limit behaviour of bounded trajectories of discrete influence 

models. 

A sequence iyJ^f-i of points of Rm is called bounded if there is a K> 0 

such that II y..UK for every i (by II yi we denote a norm of y). We adopt the 

following n o t a t i o n . If r, s, r< s are fixed integers then ti] is an integer 
satisfying [i]=i mod(s-r) and r£[i]<s for every integer i . 

Lemma 1 . Let ix-j4? , be a bounded sequence in Rm and f :Rm—-> Rm be a 

continuous cm. mapping. Assume that for every e/> 0 there exists an infini­
te set S of integers such that 

(2) 0 -fe .->- f(x,)(x.-x r . ,-,)< e> for every r . s e S , r < s - l . 
<V m tt 1 1 L l + l J J ' ' 

Then lim lif(x,)-f(x. J l l =0. 

Proof. Let u.R01—> R be a convex function such that the gradient Vu=f. 

Choose an G > 0, and let S be an infinite set given by the assumptions of the 

lemma. Then the following holds for every i^r=min S. 

(3) u(x .+ 1)-u(x i)^(x i + 1-x.)f(x i)+ e. 

(If not, take scS, s . > i . Summing the inequalities 

u ( x o + n ) - u ( x j ) i ( x [ j + i r x j ) f ( x j ) 

for j=r,...,s-l, j4-i, and the inequality 

u(xi+1)-u(xi)> (xi+1-xi)f(xi)+ s ,, 

we get a contradiction with (2).) 

Inequality (3) says that f(x.) is an e-subgradient of u at xi+1« (For 
the definition of e-subradient see 110.1.) The lemma follows from the follow-
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ing claim. 

Claim. Let MCR1" be a compact set. Then for each <f> 0 there is e> 0 
such that the following holds for every xeM. 

If v is an e-subgradient of u at x, then Uf (x)-v II < d> . 

Proof of Claim. Choose </>0. For every xcM define ^?(x) and F(x) by 

<j?(x)=inf-Cs> 0: there is an e-subgradient 6* of u at x such that 

K€f-f(x)i>d'i, and F(x)=inf $lim inf 4 (vn)J: $vR\ converges to x|. 

F is clearly lower semicontinuous and it is easy to see that F(x)>0 for all 

xcM. Hence the compactness of M app l ies . D 

Lemma 2 . Let "tyjl?..! be a bounded sequence in R"1 and q be a positive 
integer. Then for every </>0 there exists an infinite set S of integers sa­
tisfying: 

(*) Nvr-j-ys J < of for every r,seS, j = 0 , . . . , q , 

(ii) r=s mod(q+l) for every r,scS. 

Proof. Let M£R m be a compact set containing all y, and denote by M ^ 

the cartesian product of countably many copies of M. Define a mapping 

s ^ ^ — > M°* which assigns s(z)= 4z2,z,,...} to every sequence z= -Cz-, ,z 2 ...} 

(the shift to the left). Put t°= i y ^ ^ and denote tp+1=s(tp), p=l,2,.!. . 

By the compactness of M w there is an accumulation point teM** of the sequ­

ence ^ M T = Q - Consider the following basic neighbourhood 

U - - t t z i U M : Bzi-TiH< *ll for i=l,2,...,q5 

of I. The set S= 4n:t 6*2̂ .1 is infinite and satisfies (i). Clearly there is 

an infinite set S £ S satisfying also (ii). Q 

Theorem 1. Let q>l be an integer and A,,...,A be square matrices of 

order m such that Aj=A k i for k=l,...,q. Let t\\P—>Rm be a continuous c m 

mapping and let ̂ y^T-i be a bounded sequence such that 

yi+rf( J-< Vi-k+P for i 2 "• 

Proof. Let K be an upper bound of ly.l . Denote a* the (i,j)-th entry 
f k * 1J 

of A. and put M=max ta^: i,j=l,...,m, k=l,...,q 1. Choose an & > 0. Put 

«/=(2m2MK(q2+q))"" • Let S be an infinite set which exists by Lemma 2 for the 

given sequence -ty^-p Qt and & . Let r and s, r<s-l, be arbitrary elem­

ents of S. Put xi* .2L^ A yj_ k + 1 for iz q. Let us define the expressions W 
and V by 
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« % # !
 ( f ( x

i>-
f ( x

ti-q-l.»
x
i 

v = i ? « ( ( yu + i]-yci- q ] >jfe^ V t i - k + u > -

We have W^O as f is cm., and it is easy to check that V=0 as A.=A . ,. 

If we substitute y
i + 1

=
-

>
(

x
4) and x,= jj^^ \yi-w

+
i ^

n
*° ̂ »

 w e
 9

e
* 

w= * F * ((yi+rya-q-i]+i>*-*, V i W -

Let us compute the difference W-V. It is a sum of the following four terms. 

( v V i # . Vs-k+ i%* (yi+i & \(*i-k+i-y.i-k+u>>+ 

+(ys-yr>*#< V r ^ i V i f - l ^ u - q ] ^ \(yti-k+iryi-k+i»-
o 

The first and the third terms can be estimated each by </m qMK. The secoqd 

and the fourth terms each by dq m MK. As V=0, we get 0..*W=W-V<. t/ . As s-r 

is divisible by q+1, it is s-r=t(q.+l) for some t^O. We can write 

0*&('(V-f(*[i-q-]J>V 

= Д л .E л ('(^(q+D+jî-^^г+d-Díq+D+jЗ^VKq+D+j * Ь 

% t-4 
1*0 \lo N N r+i 

As f is cm., i t holds 

0 * ̂  ( * ( x r + i ( q + 1 ) + j ) - ^ e 

for each j=0,...,q. Hence we can apply Lemma 1 to each sequence 

^
x
iCa+l)+Y^i-l* •}

s
0,...,q, and the statement follows. D 

Theorem 2. Let G-.R"
1
--* exp R

m
 be a cm. multivalued mapping, f :R

m
----- R

m 

be a continuous cm. mapping, and {yJ*f-i be a bounded sequence such that for 

each i y 4 A l = f ( x . ) for some x . e G ( y . ) . Then .lim .ly<-y
4
 ,li =0. 

1+1 1 1 'l v->oo l 1-1 

Proof. Let ̂ x.l. , be the sequence of points defined in the theorem. As 

i y . l T , is bounded, -tx.J is bounded as well. (Subgradients on a compact sub­

set are bounded.) 

Let K be such that l\x.l.ifK for all i. Let x be an accumulation point of €x.}. 

Choose & £ 0 and define S= «ti*. Hy.-f(x) I < fc \ . Let r and s, r< s-1, be ar­

bitrary elements of S. Define the expressions W and V as follows. 

W= 

and 

W
=iҒ*

( f ( x
i>-

f ( x
ti-Ц»

x
i 

V-ÆІ (
УІ-УU

+
І]

) X
І-

- 461 -



As f and G are cm., both W and V are nonnegative, and hence 

0^W^W+V=(y_-ys_1)(xr-xs)< 4f,k. 

We apply Lemma 1 to the sequence -Cx.]"? , and the statement follows. O 

Theorem 3. Let \Y\^TLi be a bounded sequence, A be a positive definite 

matrix of order m, and F:Rm-> exp ff1 be a cm. multivalued mapping, such that 

the sequence satisfies y< .-€. F(Ay.s) for every i. Then lim Hy4-y^ i U =0. 
x*("1 A 4-*fX> -• 1 ~ i 

Proof. Let K be such that . . y ^ K for all i. Choose an €.•> 0. As the 

sequence iyA is bounded, there exists an infinite set S such that 

|(y -y )Av|< e holds for every s,rcS and every vector v with l|v!i._;2K. Let 

r and s, r<s-l, be arbitrary elements of S. Define the expressions W and V 

W= i ^ y i + l
( A y i - A y U + l ]

) 

and 
V= Un yU+l](Ay[i+lTAyi)= i t:li(y[i+i]-yi)A(y

ti+i]-yi)-'0-
The first equality holds as A is symmetric, V is nonnegative as A is positive 

definite. As F is cm., we have W>0. For the sum V+W we get the inequality 

0_ V.-V+W=(ys-yr)A(ys_1-yr)< €, . 

This gives 

*fl(y[i+iryi)A(y[ i+i]-yi)<2€' 
and the statement immediately follows. D 

3. Connections to finite models. Theorems 1, 2 and 3 have a common pat­

tern: under some assumptions on the sequence {y.s}?_i there is some r such 

that lim lly. _-y_il =0. It follows that accumulation points of any of sequ-
i-*oo 1+r r 

ences ^ ^ ^ 7 - 1 - f° r m a connected closed set in R111. This connected set dege­

nerates to one-point set provided that the corresponding discrete influence 

model has a finite number of states. This finite case was solved in 173. In 

this section we show: 

(a) how the results of the present paper generalize the results for fi­

nite models; 

(b) an example of a strongly cyclically monotonous mapping for which 

the sequence {y. J?_i is not c o n v e r g e n t . 

We say that a mapping f:Rm—• R"1 is strongly cyclically monotone if it 

is cyclically monotone and 
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f(x^)=...=f(xR) whenever 

Mappings with this property were used in 161 and £73 for describing pe­

riods of systems with a finite number of s ta tes . (The period of a sequence 

i y . } is the least positive integer r such that yi+r=yi *
or a H - greater than 

some n .) These results are covered by the theorems of Section 2 as the fol­

lowing holds. 

Theorem 4 . Let M be a finite subset of Rm, and f:M-* Rm be a mapping. 

Then f can be extended to some continuous c m . mapping T:R — > JPr if and only 

if f is strongly cm. 

Proof. The "only if part" follows from the following observations. 

(i) To each convex function u:Rm-* R there is some strongly cm..map­

ping g:Rm—> Rm such that g(x) is a sub-gradient of u of x for each x. 

(ii) If g:Rm—> Rm is a continuous cm. mapping, then g is maximal. 

Proof of (i). Take some good ordering -tf of Rm and define g(x)=min^{y: 

y is a sub-gradient of u at x) # 

Proof of (ii). It is easy to see that (ii) holds for m=l. When m>l, we 

can use the following reduct ion . Let G:Rm~-*- exp Rm be a c m . multivalued 

mapping. For each i = l , . . . , m and each x=(x,, . . . ,x ) e Rm let us define a multi­

valued mapping G?:R -*> exp R by G?(t)= «fz: z is the i-th component of some 

y£G(Xp...,x._pt,x.+1,...,xn))}. Then the mappings G? are cm. 

Now, if F is a continuous cm. mapping, then it is maximal by (ii), and 

thus T coincides with the strongly cm. mapping g given by (i) (for the po­

tential uof ! ) . 

The "if part". We show that there is a potential u* of f satisfying 

(4) u*(x)~u*(y)=(x-y)f(y) iff f(x)=f(y). 

For a potential u of f define a number N(u)=[{ (x,y):u(x)-u(y)=(x-y)f(y) 

and f(x)4-f(y)3|- Clearly (4) is equivalent to N(u*)=0. Let u be a potential 

with N(u) minimal. Define a digraph G with the set of vertices M and with 

the directed edges (x,y)cE(G) if u(x)-u(y)=(x-y)f(y). Consider a partition 

of G into components of strong connect iv i ty . If N(u)>0 then there exist some 

edges between distinct components. Let S be a component for which there is 

some edge from S to M-S but no edge from M-S to S. Put s =min{u(y)-u(x)-

-(x-y)f(x): xfeS, ycM-S}. According to the choice of S we have € > 0. Defi­

ne a potential u'by 

u ' ( x ) = < u ( x ) + 7 * f o r x * s > 
X u(x) for x&M-S. 
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Obviously, it holds N(u')<N(u) which contradicts the choice of u. Thus, let 

u* be a potential satisfying (4). Define G:Rm—> R by 

u(x)=max*u*(y)+(x-y)f(y):y£M* 

(i.e. u is a maximum of a finite number of linear functions). Clearly, u is a 

convex function on R*11, and u(x)=u*(x) for each xfcM. It follows from (4) that 

for each xfeM there is a neighbourhood U in which u is linear. It holds that 

there is a differentiable convex function u such that u(y)=u(y) for yeU , 

x*M, and u(y)zu(y) for all yeR m. 

Let M be a finite subset of Rm and f : R " W M be strongly c m . . Then we 

get the following corollaries. 

Corollary 2. Let A,,...,A be square matrices of order m such that A.= 

=A . , for j=l,...,q. Then the period of the sequence ^ y ^ - i where y^i = 

=f ( . i£A A.y. . .) for i> q and y.j,...,y„ arbitrary, is a divisor of q+1. D 
-£* i j l-j+i l q 

Corollary 2. Let G:M—>exp Rm be a cm. multivalued mapping. Then the 

sequence ty^T-i where y ^ i ^ x * ) for sorne xj£G(y.), is eventually constant. 

An important case of Corollary 1 is when q=l and A is a symmetric matrix 

(the period is then 1 or 2); moreover, if A is positive definite then the pe­

riod is 1 by Corollary 2. 

Remark 1. We give an example of a cm. mapping f for which the trajec­

tory 

(5) tt^V1!^! 
where f (A,)=f(f1(A1)), is not convergent (A, is the starting point of the 

trajectory). 
2 

We will construct f on a~olscrete subset of R only. Let us define A = 

=(xri,y„), n=l,2,..., where x =l/(2n"1), y =0 for n=4k+2 or 4k+3, and y =1 ot-
"VI-I."'. 9 

herwise. Put tn=An+1-An and choose integers P n> 2 Wtn\\ . Set C(n,j)=An+ 

+ i- t for j=0,...,Pn-l, n=l,2,... . Then the mapping f defined by 
f(C(n,j))=An+ iji tn (i.e. =C(n+l,0) for j=pR-l and =C(n,j+l) for j<P n~l) 

Hi 
is strongly cm. and the set of accumulation points of the trajectory (5) is 

the set <(0,y):0^y-ili. 

For the proof it is sufficient to check that a function u defined by 

u(C(n,j))= \ HC(n,j)l\2+ 3 ^ lit.H2/(2pi)+jlltnli2/(2p
2) 

is a potential of f. We omit the proof. 
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Remark 2. The following construction of some strongly c m . mappings 

was given in £6). 

Let 9]». — >g- be nondecreasing real functions such that g,(x)>g2(x)> 

Z ...>grn(x) for all xcR. We define f(x,,. . . , x _ ) = ( y 1 , ... ,y_) so that every 

yi=9-,(xi) for some j, and every Q± is applied to one component. The rule is 

that g, acts on the greatest x., gj acts on the greatest component but one, 

etc. Ties are solved so that y ^ y ^ provided x.=x. and i ^ j . 
-* J 1 J 

Mappings constructed as above are often used as "social welfare functi­

ons" (see e.g. 19)). 

Remark 3. The problem of extensions of cyclically monotone mappings re­

lated to Theorem 4 is further studied in t121. 

Remark 4. The results in the present paper can be extended to the infi­

nite dimensional domain. t 
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