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COMMENTATIONES MATHEMATICAE UNIVEBSITATIS CAROLINAE 
28,3 (1987) 

LINEAR COMPLEMENTARITY PROBLEM 
AND EXTREMAL HYPERPLANES 

Rudolf SVARC 

Abstract: We prove that certain (n-l)-dimensional hyperplanes in Rn have 
an extremality property w.r.t. the linear complementarity problem. Some ot­
her results about general hyperplanes in Rn are also contained in this artic­
le. The problem is related to the investigation of certain types of nonlinear 
differential equations and variational inequalities. 

Key words: Linear complementarity, hyperplanes, n-dimensional cube. 

Classification: 90C33, 47H15, 05A05 

Introduction. This article is motivated by the investigation of the line­

ar complementarity problem (LCP), which can be formulated as follows: 

Let A be a given nxn-matrix. Let feR n be a given vector. We want to find 

a vector ueR such that 

u -Au~ = f 

where u and u~ are the positive and the negative part of u, respectively. I.e., 

for u=(u.). n e R
n we define u+=(ut). - e R n and u~=(uT). .-. &Rn by means of the 

X X*&I I X X t l i X x̂ ** • 

formulae 
u.=max 4u . ,Q$ , u7=max 4 - u . ,0$ 

for all ie TT (see below for the notation TT). 

There exists a vast literature about the LCP. From the many articles ab­

out the subject, let us notice, e.g., [13,[23 and [33. We do not discuss them 

here, because we are concerned by the LCP from another point of view, than the 

authors of the above mentioned papers. 

The pioneering work of Ambros«rtti and Prodi in the theory of a class of 

abstract nonlinear equations (see 143 and [53) was generalized in the paper 

[63 of Fucfk, Kucera and Necas and in various subsequent papers. It has been 

shown that the problem of the solvability of certain differential equations 

can be reduced to a finite dimensional problem and that the LCP is a typical 

example of such problems. Many references can be found in 173. From the recent 
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related papers let us mention 181. 

There is also the paper [91 of FuCfk and Milota, which shows that the so­

lution of an appropriate LCP can substantially simplify the solution of cert­

ain variational inequalities. For instance, this way we can find the solution 

to the problem 

y"= <*> in 30,1C - <x
jL
,x

2>
...,x

n
l, 

y(0)=y(l)=0, 

y is continuous in [0,13, 

y(x
i
)>0 and y+^

x
i)~y^

x
i)~ °

 f o r a 1 1 ie
rf> 

(y^(x
i
)-y\x

i
)) y(x

i
)=0 for all ic n, 

where cp is a given function and x., ien" are given points of the interval 

30,lC. This is a mathematical model of a loaded string over some one-point 

obstacles. (Cf. 1103.) In this context let us mention also the paper 111]. 

In 1123 it has been shown that the LCP is related to some sort of classi­

fication of hyperplanes in R
n
 in the sense that the existence of various types 

of hyperplanes in R
n
 implies the existence of various classes of LCP's. Hence, 

it is interesting to investigate, which types of hyperplanes q>c R n
 do exist. 

Some partial results are contained in [13], another result is formulated in 

Theorem 4 of this article. 

From this point of view Theorem 4 is our main result, but its proof is 

rather simple after having proved Theorem 1, which seems to be our most comp­

licated result. 

Section 1. Definitions and auxiliary results 

Notation, (i) n= U,2,...,nl. 

(ii) Let <pc R
n
 he any (n-l)-dimensional hyperplane which does not 

contain ti»<- -i» .»-?-+ " , 

Then p
+
 is the open half-space of R

n
 w.r.t. g> which contains the points 

(a,a,a,...,a) for all sufficiently big values of a, J>~ is the opposite open 

of R
n
. 

(iii) [a3 denotes the integer part of a, [a,b3 denotes a closed 

half-space of R
n 

interval. 

Definition 1 . For any <k> c n l e t us define the point c

a > = ( c p i 6 n C R I 1 

by means of the formulae 

(1) c*= -1, if i 6 a>, 

c?=l, if itn-eo. 

гб the 
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All the points C,,, C J C n are the vertices of the n-dimensional cube C
n
c R

n
. 



Definition 2. i-edges are all the (1-dimensional) edges of C n which 

are parallel to the x.-coordinate axis in Rn. 

Definition 3. Let <pcRn be an (n-l)-dimensional hyperplane which does 

not contain any vertex C ^ e C n. For such a hyperplane and any ien we can de­

fine k.(<p ) as the number of all the i-edges which are intersected by f • 
Further we define 

(2) k(<p )=min4ki((T) )|ie"n ? . 

Lemma 1. Let 

(3) . 2 a.x.=b 

be the equation of a hyperplane <j>c Rn. Let k.(<o ), ien* be defined and let 

for some j, men 

(4) 1-jl'l-J-
Then 

(5) k.(<t)Ukm(j>). 

Proof. If a.=0, then p is parallel to the x.-coordinate axis and cannot 

intersect any j-edge. Hence kA<p )=0 and (5) holds. 
Let a.4-0, then a 4F 0 according to (4). Let us look at the 2-dimensional 

o 3 m 

faces ci of C n which are contained in the parallel planes fr . The equations 

of (D,. are 

x.= -1, if i c § , 
(6) 

4^=1, if ien-g- 4j,mł, 

ç c ñ- 4j,mì . 

Because a . a * 0, j m r 

P§ A ? =p§ 
is a straight line in <pp and we can define k.(pu) and km(p-g) as the number of 

the j-edges and the m-edges of C^ which are intersected by pc • These numbers 

are well-defined, because C w c p.=-> C ^ e p , hence in the opposite case k.^) 

would not be defined. Further 
(7) ¥?NJF-^W' 
(8) ^>" *-£*.. ^V* 
hence it is sufficient to prove that for every § c n- ij,m\ 

W k^Uk^), 

(5) then follows from (7) and (8). 
The equations of pc are (6) and (3), (3) can be rewritten as 
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J J m m te m,-ij.,A*l i i 

Using (6) we have 

b-. J-̂ f. , a.x.=b+.-Sl a.-. 21,,. ,a.=br , 

thus the equations of Pc are (6) and 

(10) a4x-.+am
x„.=bt • 

•j J m m % 
2 

Let Pg intersect a j-edge of C| . Then p* must intersect some other ed­
ge of Ce . If it were the other j-edge, there would exist two numbers x. and 

2 J 
x. such that (see (10) ) 

(11) | x j | < l , | x* |< l , 

(12) a j*K = V 

(13) YfW 

Subtracting the equation (13) from (12) we obtain 

2|V;.|.3l|x3-x5U|.j|(|x5Mx5|)<2|.il 

hence 

according to (11). This is a contradiction, because we suppose (4). Hence p P 

2 ^ 
cannot intersect two j-edges of CP and if it intersects a j-edge, it must al-

2 so intersect an m-edge of Cc . This implies (9). 
Lenwa 2. Let (o(t)c Rn be the hyperplane 

(14) ^ x.=t. 

( i ) Let p e n u i O ^ and t=n-2p . Then k . ( r t 3 ( t ) ) , i e n are not defined , 

( i i ) Let p e n and te3n-2p,n-2p+2C . Then 

hence 

k . ( < o ( t ) ) = ( n " 1 \ fo r a l l i e n , 
1 * Vp-lt 

P 

( i i i ) Let t e > a , - n [ u ] n ,+ <3o£ . Then 

k ^ W M ) fo r a l l i e n , 

hence 

k((Q ( t ) ) = 0 . 
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Proof. For any vertex C^ =(cf^ )ie---( €. C
n we have 

(15) ~£ c? = S c? + , S c? =(-D cardeo +1 (n-card co)=n-2 card a) 

according to (1). card co e nu-tOS, hence k.(̂ > (t)) are not defined iff t=n-2p 

and penu-CCf*. This is (i). 

(15) implies: 

(a) If te3-co,-n[ , then .?« cf> t for any C « Cn. 

Thus C^ e <j> (t)+ and Cnc ?> (t)x. 

(b) If te3n,+a>- , then J 2 ^ c£>-<: t for any C^e. Cn. 

Thus C^ c (p (t)" and Cnc f>(t)~. 

(iii) follows from (a) and (b) (using the convexity of C n). 

Let 

te3n-2p, n-2p+2C , perT. 

According to (15) 

(16) co> e ? W + » i f c a r d w ^ p-1 , 

(17) co> fe ? W> i f c a r d G > e P 

and ki(^> ( t ) ) i s defined. Two points C^ , Cg e Cn with cardw 4k card § are the 

end-points of an i-edge of C i f f i 4 GO and £ = c«>u{ii. This i-edge is in ter ­

sected by p ( t ) , i f f C0>cg>(t)+ and C~ e f ( t )~ . Combining the last facts with 

(16) and (17), we see that 

k ^ f (t))=card { (o>, § )|coc n, %c n, i 4 co , g = cou-£i^, cardco^ p-1, 

card ^?p]=card-{co |coc n, cardco=p-l , i 4 o>f = / n " " i \ 
l p -U , 

which, is ( i i ) . 
For the convenience le t us formulate a simple consequence of Lemma 2. 

Leon 3. Let j> ( t ) cR n be the hyperplane (14). Then k ^ p (t))=k(^> ( t ) ) 

for any i e n . I f lt-J.fi | t 2 | And k ( ( ? ( t 1 ) ) , k(<p ( t 2 ) ) are defined, then 

(18) k(5D(t x ) ) .?k(? ( t 2 ) ) . 

The maximal value of k ( *p ( t ) ) , teR is 

(Й) 
which is attained in the interval 3-1-1C , if n is odd, and in the set 

]-2,0[ u]0,2L , if n is even. 

Proof. The combinatorial identity 
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(sMU 
and Lemma 2 imply 

(19) k(y>(t))=k(p(-t)). 

(19) can be alternatively proved using the central symmetry of C
n
 w.r.t. 0. 

Another well-known fact is the inequality 

( s ) ~ ( s - l ! » wheneveг S Є І Г / 2 ] -

From this inequality and Lemma 2 (ii) follows (18) for O^t, -£t2. Recalling 

(19) we have (18) in general. The last assertion of Lemma 3 follows also from 

Lemma 2 using the fact that 

max K 3 ) |scr u^O^J = (^/2i) • 

Lenroa 4. Let <p c Rn be the hyperplane ( 3 ) . Let k(<p ) be de f ined . Let 

oC=min i I a. | \i& n ? . 

Let (o c Rn be the hyperplane 

(20) .-£. c. , a . x .+bx .=a . . 
^ » - W 1 1 J J 

Then k((p) is defined and 

( i ) i f | b |>o& and | a . | = oc , then k(jp ) > k(<*> ) , 

( i i ) i f |b|>oc and |a^|>oc, then k ( ^ ) = k ( < p ) ; 

( i i i ) if |b| = cc , then k(j5 )=k(p)5 

(iv) if |b|<oc , then k($)&k(q>). 

Proof. We shall prove only (i), the proof of the other assertions of Lem­

ma 4 is very similar. Cn can be identified with the (n-dimensional) face 

C^Mx £C
n + 1|x n + 1=-l^ 

of the cube C . Then <p and g> will be identified with the ((n-1)-dimensional) 
hypeгplanes 

(21) 

and 

X n+Г - 1 , ,S__ a.x.=b 
- ľ Ê U 1 1 

(22) X n , п= - 1 , . SL c . , a.x.+bx.: 

-<и 
respectively. (Cf. (3) and (20)). f and f are contained in the hyperplane 

S=-ixeR
n + 1

|x
n + 1

= -licR
n + 1

. Let^>' and $' be the hyperplanes in R
n + 1

 which 

3re spanned by 0 and tf> and by 0 and m , respectively. Their equations will be 

(23) . :£__ a.x.+bx„ ,=0 
к C /rv 1 1 П+l 
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and 
(24) i t l - ^ a i x i t b Y a j V f 0 -
respectively. (Cf. (21) and (22).) 

0 e<p' , hence <v' is invariant w.r.t. the central symmetry of C . Thus 

f1 does not contain any vertex of Cn . Else <p would contain a vertex of Cn 

and k(<p ) would not be defined. For ie n any i-edge of C n + is contained eith­

er in Cn or in Cn= { x€.Cn+ |x ,=1 \ . £>' intersects just all the i-edges in 

Cn which are intersected by <z> , and all the i-edges in Cn which can be obtain­

ed from them by means of the above mentioned symmetry of C . Hence 

(25) ki(^>')=2ki(^>) for all ie n . 

Using the same argument, we can prove that 

(26) k.(^)=2ki((^) for all i e n , 

whenever one side of this formula makes sense. 

Now we shall use Lemma 1. From the assumptions | b | > oc , | a. | = oc together 

with (3), (2) and (23) it follows that 

(27) k((?)=kj(c?), 

(28) minfk^^licnjrk^')*^^). 

Let us interchange the variables x. and x ,. C is invariant w.r.t. 

this change of coordinates, the equation (23) is transformed onto the equation 

(24) and vice-versa, hence <*>' is mapped onto cp and vice-versa, k. and k , 
will be also interchanged, the other k.'s remain unchanged. Thus 

k.((?')=ki(f') for all ien- fjl, 

(29) k3^')=kn.l(?')> 

(As well we see that <$' and thus also j> cannot contain any vertex of C , 

else <p' would contain some vertex of Cn+ . ) 

From (29) and (28) i t follows that 

min J k ^ O . U nl =min J k ^ O l U n+1- { jH.?k.(tV)=min i ki((t>')|i€ n 5» 

hence according to (2), (25) and (26) 

2k(<j> )=2 min { k^f ) I i c n \ =min { k ^ ' ) | i d n U min { k^*) | i e n \ = 

*2 roinik^f ) | i € n l =2k(<3 ) 

and we have proved ( i )» 
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Section 2. The theorems 

Theorem 1. Let psn-1. Let ^>0<-R
n be the hyperplane 

( 3 0 ) ^ ^ V i c ^ V i ^ 

where 

(31) V l ? ' a p > 0 > 

(32) ai2: a ^ for a l l i t n-p. 

Let k(<p0) be defined. Let Ntef-1,1], i f p is odd, and NcC-2,23, i f p i s even. 

Let j e n - p . Let T>0 be the maximal value, for which 

(33) a
p

+ T ^ a i for a l l i s n-p-{ j } > 

(34) a +T^a,+NT-

Let p ( t ) , tc£0,TJ be the hyperplane 

(35) ( a n + t ) i ? ^ * i + - <lfx ^ t a i x i + < a i + N T ) x ^ b -
p U f 1 i>£.S£-fv--i^t 1 1 "J J 

Let 

M=i te£0,T3 |k(?>(t)) i s not defined I . 

Then 

( i ) O^M, 

( i i ) M is f i n i t e , 

(iii) k(f>(t)) is a nondecreasing function on C0,T]-M. 

Proof. f(0)=f>
o
 a°d we assume that k( f>Q) is defined. Hence 0 4 M. 

tQ€ M iff f(tQ) contains some C w 6 C
n. That means 

(36) an .SL cf+. S^.a.cSa.c^b- -tC^L cf ̂-Nĉ ) 

(cf. 35)). Because of our assumption C ^ + <?Q
 anc- 0°) implies that the left-

hand side of (36) is not equal to 0. But then (36) has at most one solution 
t . Thus for every C^ there exists at most one value tQe [0,TJ, for which 
co>* P^ tn ) and k ^ ^ to ) ) is not ^B^ne^' Hence M is finite. 

Let teC0,TJ-M be fixed. For any x cC0,T3 sufficiently close to t the 
hyperplanes p(t) and f ( v ) intersect exactly the same edges of Cn, thus 
k(*> (tr ))=k(̂ > (t)). Hence k(^(t)) can change its value only in the points of 
M. 

Let t be such a point and let y(tQ) contain C w e C
n.The equation of 

<x>(t) can be written in the form 

•^zr xi=(D- • ? - r . ,a 1x.-a .x . - tNx . ) / (a+t ) 

and for C,, we obtain the equation 
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(37> • ? * cr = ( b- • S - 4". aicr-aicT-t
0
NciT)/(an+tn)-

Let §= co n (n-p- -Ljt) and pc be the (p+1)-dimensional hyperplane 

(38) xi = cf' i*"-p--ejj-

Then fgnCn=cP+1 is a (p+1)-dimensional face of Cn and f^ e tf+1. A n p C t ) -

= <Oc (t) is a p-dimensional hyperplane in fc • C ^ c fv (t ) and g>c (t) 
does not contain any C^ for t4-t sufficiently close to t , because M is fi­

nite. For such t we can define k,(^(t)) as the number of 1-edges contained 

in C? and intersected by jv (t). Of course, ^ ( { ^ ( O ) is not defined. 

We want to find conditions which ensure that k,( @fc(*)) is nondecreasing, when 

t passes through t . 

Let c^=l. From (37) we obtain 

(39) vff^/VvV^VV' 
where 
(40) &=b-. X .̂̂ .cf 

is a value which is constant on C? according to (38). Clearly, 

(41) Z , c%p-2q, 

where q is the number of negative coordinates in the ordered p-tuple (cf>^£p» 

because 10^1=1 for every ieTl and a>cn. Hence for some qepuCOl 

(42) (p-2q)(ap+tQ)= fi -a.-tQN 

According to (39) and (41), fr(t0) is given by (38) and 

a * v< h -a
J-

toN>/(vto> 
and w.r.t. Lemma 3 ^(^(t)) is increasing in t , if the function |<y(t)l is 

decreasing in t , where 

<y(t)=( t3§ -aj-tN)/(ap+t). 

Thus we only need to find conditions which ensure that 

(43) < # ( y ?'(to)<0. 

Using (42) we obtain 

*<V <*'(V=( ^ -aj-toN)(-Nv/3s
+aj)/(vto)3= 

=(p-2q)(ap+t0)(-N(ap+to)-(p-2q)(ap+t0))/(ap+to)
3= 

= -(p-2q)(p-2q+N)/(ap+t0). 
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Because a D
+t o>0 according to our assumptions, the condition (43) is fulfil­

led, if 

(44) (p-2q)(p-2q+N)>0. 

If c = -1, we can proceed similarly as in the previous case and we obt­

ain instead of (44) the condition 

(45) (p-2q)(p-2q-N)>0. 

Let p be odd. Then p-2q is an odd integer, i.e. |p-2q|2*l. Hence p-2q 

has the same sign as p~2q+N and p-2q-N (and (44) and (45) are fulfilled), if 

(46) |N|<1. 

If N=l, then (44) is not fulfilled only if p-2q= -1. But then (42) imp­

lies that 

(p-2q)ap-tQ= /J5-art0, 

(p-2q)ap+a^= ^ , 

hence according to (40) 

(47) (p-2q)a +a.+ . §._ a.c* =b. 
P J -V6 fn-ip-fyl 1 1 

But c. =1, a^a.ct' and (47) together with (41) implies that 

. . r r CO CO «-— Ct> i_ 

a .>-— c +a.c + 5E. a.c =b, 

i.e., C G $> , which is a contradiction. 

Similarly we can show that for N= -1 (44) is always fulfilled and that 

for |N|=1 (45) also holds. Hence (44), (45) hold for every Net-1,1L 

Let p be even. Then p-2q is an even integer. If p-2q=0, then according 

to Lemma 3 (applied to C?+ ) the value k,( (pc (t)) remains unchanged, if t 

passes through t . Hence the behaviour of | p(t)| in the neighbourhood of t 

is not important in this case. If p-2q4-0, then |p-2q|i2 and we can repeat 

the above written argument (for p odd) with the value 2 instead of 1. (Of co­

urse, instead of (46) we obtain the condition |N|<2 etc.) 

Now we only need to notice that 

(48) k-(»(t))-r 2EL k-U(t)), 

because every 1-edge belongs to just one C? , £ c n-p- {j^;, and that a sum of 

nondecreasing functions is a nondecreasing function. Hence k,((t .>(t)) is nonde-

creasing on [0,T3-M. 

The assumptions (31), (32), (33) and (34) imply that for every tsC0,T3 

and all ie n-p-I3} 
a +t-^a.+Nt and a +t^a.. 
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Thus (2) and Lemma 1 imply that 

(49) k(
?
(t)=k

1
(f(t)) 

for all tetOJJ-M. (iii) follows from (48) and (49). 

Remark 1. Let us drop the assumption 

(50) k( p ) is defined 

of Theorem 1. Then (i) and (ii) is not necessarily true, because then the equ­

ation (36) can have infinitely many s o l u t i o n s . But this can happen only if 

and 

a
п ^ * c ľ + • S. „a.cf+a.cf-b=0 
P vefv 1 л, ьř -ï, 1 1 J J 

21 cf+Ncf=0. 
v 6. fx- 1 J 

Then every toeC0,T3 solves (36), C^ e f (t ) for every tQ€C0,T} and M= C0,TJ-

So if we assume only that 

k(^>(t)) is defined for some tet0,T3 

instead of (50), we cannot prove (i), but (ii) and (iii) remain to be true. 

Theorem 2. Let pe n-1. Let p cR n be the hyperplane (30), let (31) and 

(32) hold and let k( <pn) be defined. Let Nel-1,13, if p is odd, and NeC-2,2] 

if p is even. Let jcn-p. Let T>0 be the maximal value, for which (33) and 

(34) hold. Let e ^ O . 

Then there exists a number b, a continuous path £>(t), t 6CO,11 in the 

space of (n-D-dimensional hyperplanes of Rn and a set Mc[0,l] such that 
(i) |b-b|<€,, 

(ii) f(0)=fo, 

(iii) f (1) is the hyperplane 

(51) ( V T ) J ^ V - ^x ..Ax^a.+NDx^b, 
p vfe^v 1 A,s,m,J$,-fy\ l l J J 

(iv) 04M, 

(v) 1#M, 

(vi) M is finite, 

(vii) k(m(t)) is not defined iff t eM, 

(viii) k(^>(t)) is a nondecreasing function on [0,13 -M. 

Proof. Let us define the continuous path j>(t) of the hyperplanes by 

means of the formulae 

(52) an .21. x.+ . S. a,x.=b+2t(b-b) for tc[0,1/2], 

(a +(2t-l)T) . X _ x.+ . 21 _ r la.x,+(a,+N(2t-l)T)x,=B 
P a e ̂ v 1 i/«m,-^v-(^ 1 1 J J 
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for t €[1/2,13. 

Then (ii) and (iii) hold. Let 

M=tte[0,ll|k(^(t)) is not defined*. 

Then (vii) holds and because we assume that k(p Q) is defined, (ii) implies 

(iv). 

For w e n let us define 

b° =a„ ̂  C ? + X a.cf. 

Then for t cCO,1/21 (52) implies that 

(54) C M 6 f (t) <*=» b ^ b - b ) - * ^ • 

Because ( iv ) holds, bc=fcb for every o)c?i , hence 

m in* |b c -b||<<> c n * .-d*>0. 

Let 

(54) |o-b|<<f. 

Then b+2t(B-b)4tbc]> for every w e n and every te [0,1/21 . That means accord­

ing to (53) that C ^ ^ f (t) for any t€ [0,1/2], hence k(§>(t)) is defined for 

every tet0,l/23 and k(g>(t)) is constant (thus nondecreasing) on [0,1/23. 

Especially 

(55) k(^(l/2)) is defined and Mc (1/2,13. 

Now we can use Theorem 1 with £>(l/2) instead of p and (2t-l)T(t e 

& [1/2,13) instead of t(teC0,T3). Taking into account also (55), we obtain 

(vi) and (viii). 

Let 
b l = (VT) •?* cf+ - ¥ - x,aicr+(ai+NT)ci • 

W.r.t. (51) k (p ( l ) ) is defined and l£M, i f 

(56) ^ * D L for all o> c fi. 

Hence (v) follows from (56). 

Thus in order to prove Theorem 2 we only have to choose b so that (54), 

(56) and (i) hold. But this is always possible. 

Reaark 2. In the generic case b + bj., for all a c n, hence we can choose 

l^b. 

Reaark 3. The choice of % can be subjected to some other requirements, 

e.g., we can require that ^ 
|b|>|b|. 
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Theorem 3. Let X c Rn be the hyperplane (3). Let k(x) be defined. Let 

6* c Rn be the hyperplane 

Let us assume that 

(57) a.rO for all ien, 

(58) a.6a., whenever i-£j, ien, jen. 

Then there exists a continuous path §>(t), tetO,T3 in the space of (n-l)-di-

mensional hyperplanes of Rn and a set McC0,TJ such that 

(i) (j>(0)=t.*, 

(ii) (p(T)=6
,
1 

(iii) k(<t>(t)) is defined iff tetO,T3-M, 

(iv) O^M, T#M, 

(v) M is finite, 

(vi) k(s> (t)) is a nondecreasing function on tO,Tj-M. 

Proof. We can apply Theorem 2 -with x instead of <p , N=0 and p=l. Deno­

ting the value b as b, and M as M,, Theorem 2 ensures the existence of §>(t), 

tet0,l3 s.t. (i) holds,k(<t>(t)) is defined iff t eC0,lJ -Mp Mx is finite, 

k(p(t)) is nondecreasing on 10,13 -M and <t>(l) is the hyperplane 

a9(x,+x9)+, Z. __ a.x.=b, . 
I l l .v€.m,-2 ------

Because l^M, k(p(D) is defined. 

Now we can apply Theorem 2 with p(l) instead of p , t-1 (teCl,23) ins­

tead of t(tet0,13), b, instead of b, M« instead of M, b„ instead of b, N=0 

and p=2. We obtain (p(t) for tetl,23, p(2) will be the hyperplane 

a 3 ( x l + x 2 + x 3 ) + ^ _ , a i x r b 2 

and k(<p(2)) will be defined, because we obtain 2<£M2. 

This way, by means of the repeated use of Theorem 2 (for all p€ n-1 in 

general) we can construct <o(t), tet0,n-l3 and the set M=. U M. ct0,n-13 
» <* tnt-1 -• 

so that all the assertions of Theorem 3 hold with n-1 instead of T, W instead 

of M and the hyperplane tj>(n-l) with the equation 

(59) an .21« x.=bn , 
n 1/ e «rv 1 n-i 

instead of 6* . 

t isa hyperplane, hence at least one of the coefficients a , ien is 

positive, (57), (58) then implies that a > 0 and (59) can be rewritten in the 

form 
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л?tЯ 1 П-Г П 

Let us define (t>(t) for tefn-l,nj by means of the equation 

.2:.. x.=(n-t)b
n
 ,/a+(t-n+l)/2. 

vfim. 1 n-i n 

Lemma 3 then implies that k(<p(t)) is nondecreasing on Cn-l,n3-M , M is fini­

te etc. So we obtain Theorem 3 with T=n, M=MuM . 

Theorem 4. Let X c Rn
 be a hyperplane, let k(t?) be defined. Then 

k(%)±( n
 V 

U(n-l)/23i 

Proof. Let (3) be the equation of x . We can assume (57). If it were not 
the case, we could use the reflections of R w.r.t. some coordinate hyperpla-

nes in order to obtain the equation 

• 2L laj f^b 

in the new coordinates § . W. r.t. the symmetries of C
n
 such a transformation 

does not change the numbers k.(tr). 

We can also assume (58). In the opposite case a suitable permutation of 

the coordinates transforms (3) (satisfying (57)) so that (58) is fulfilled 

w.r.t. the new coordinates. On the other hand, a permutation of the coordina­

tes can change only the order of the k. s, the value k(-c) remains unchanged. 

Now we can apply Theorem 3 and we see that 

k(*Uk(tf). 

According to Lemma 3 

U(n-1)/23І 

which completes the proof. 

Theorem 5. Let % c Rn
 be the hyperplane (3), let us assume (57) and 

(58). Let me75-4 be odd and 

(60) p=(..X-. a.-2 .£ a9, ,)/(n-m+l). 
Let 

(We define a .=a , if n is even.) 

(i) If |b//3 j€[n-2p,n-2p+2[ for some pen, then k ( * ) ^ u l i ) * 

(ii) If |b//3 J r n , then k(*)=0. 
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Proof. The proof of Theorem 3 was based on Theorem 2 with N=0. But we 

can apply Theorem 2 or Theorem 1 with N= -1 for p odd, and N= -2 for p even. 

Let men-T be odd. Let /5«. ̂ am*am-»-l̂  ** sucn *na* 

(61) CV ai)+2( a3-a 2)+(
a^^ 

i.e., 

(62) A-P.-

Let us apply Theorem 1 with p=l, N= -1, j=n and p = t . Then ro(t) are 

the hyperplanes 

(63) (a,+t)x,+ . ? ^ - r a . x . + ( a - t ) x = b . 

l i \ € Ju-i i i n n 

Now either a,+t attains the value a- before a -t attains the value ft or 
not. If not, we stop the path (63) in the value t, for which an-?=/*

 and then 

we apply Theorem 1 with p=l, N= -1 and j=n-l. (With t-t instead of t.) a,+t 
grows further and a,+t either attains the value a9 before a_ ,-(t-t) attains i i pa n-i % 

the value ft or not. If not, we stop in the value t , for which a , -
-(t-?)= ft and then we apply Theorem 1 with p=l, N= -1 and j=n-2 etc. 

During these continuous changes of coefficients in (3) the first coeffi­

cient grows by (a2-a,). N= -1, hence the coefficients a., ien-m decrease al­

together by the same value (a2-a,). In fact, (58) and (61) imply that 

.-£ -.(a.'-B)2-(a7-a,), 

thus after some steps we obtain for some T,, some r,e n-1 and some ©c, as 

p(T,) the hyperplane 

(64) a2(x1+x2)+ ^ a.xi+ c^x • /3 £ *r bm 

and $>(t) is defined for teCO-l^l. (Cf. (63).) 

Now we can apply Theorem 1 with p=2, N= -2, j=r,+l, p = p(T,) and t-T, 

instead of t. We proceed in the construction of $o(t) as above, i.e., we be­

gin with j=r,+l, if oc decreases to ft before a2+t-T, attains the value a-,, 
we continue with j=r, etc. This way a2 grows by a,-a2. Because N= -2, the sum 

(65) . 2 . _(a,-A)+(oc1-/5), 

simultaneously decreases by 2(a,-a2)- In tacty (65) is equal to 

• ̂  «(ai-^)-(a?-ai) 

and (58) and (61) imply that 
V 

-£- (a^ ft )-(a2-a1) > 2(a3-a2). 
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Thus after some steps we obtain for some T2, some r2cF, and some oc2 as 
ro(T2) the hyperplane 

(66) a3 ( W x 3 ) + * . ^ - ? aiV*2Xr2+l+ / * . u f ^ X i = b 

and f (t) is defined for tcCOJ-,]. 
Now, we can apply Theorem 1 with p=3, N= -1, j=r2+l etc. to the hyperpla­

ne (66). 
We can easily see that after some such steps we obtain for some T as ^o(T) 

the hyperplane 
(67) / 3 X x.=b. 

In fact at first the coefficient a, grows by a2-a,. Then a2 in (64) grows by 
a,-a2 etc, in the end a grows by ft-a . This implies that simultaneously the 
sum 
(68) .-f.Jar(J) 

decreases at first by (a2-a,), then by 2(a-j-a2) etc., in the end by (/3-am). 
But the sum of all these values is just (68) according to (61). Hence, if all 
the coefficients a,, ic"m attain the value /3 , the other coefficients a., 
ien-i must attain the same value. 

Let us remark that in some instants of this construction it can be neces­
sary to change at first by a small value the value of b. Hence in general we 
obtain as y(T) instead of (67) the hyperplane tf , defined by means of the e-
quation 
(69) /5X ax.=B 

with some suitable b arbitrarily close to b. (Cf. Theorem 2.) 
This way we have constructed a continuous path £>(t), teC0,Tl, which be­

gins in t and ends in 6* . This path consists of finitely many straight line 
segments. According to Theorem 1 (or Theorem 2) the function k($o(t)) is defi­
ned for all points of these segments except of some finite set and it is a 
nondecreasing function on any of these segments. In the end-points of these 
segments k(j>(t)) is defined and continuous. Hence, k($& (t)) is defined and 
nondecreasing on C0,TJ-M, where M is a finite set, which contains neither 0, 
nor T. Thus 

(70) k(<r) .*k(f?) . 

Inserting (62) into the equation (69) of $ , we see immediately that we 
have proved the following assertion. 
A: Let m*r>-I be odd. Let 

am*<*m* am+r 
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Let tf be the hyperplane (69). Then (70) holds. 

Similarly we can prove: 

B: Let men-1 be even. Let 

(71) ft =(.-E.-a.-2 . IS-,-—.. a«. ,)/(n-m+2), 

let 

m ' m m+1 
Let 6 be the hyperplane (69). Then (70) holds. 

If m is tidd, then m+1 is even and we can insert the value m+1 instead of 

m into the assertion B. Comparing then (60) and (71), we see that ftml calcu­

lated according to (71) coincides with pm of (60). Hence, the assertions A 

and B can be unified as follows: 

Let meir-I be odd. Let us define ftm as in (68). Let a m £fim**m2' 

Let 4 be the hyperplane 

2 x.=b/Ara 

(withID arbitrarily close to b and such that (b|> |b| - cf. Remark 3). Then 

(70) holds. 

Now we can apply Lemma 2 in order to calculate k(6 ) and we obtain the 

assertion of Theorem 5 (we also use the inequalities \b\< |b|< |b|+e ). 

Remark 4. Let * be the hyperplane (3), satisfying (57) and (58). Then 

the assumptions of Theorem 5 are always satisfied for some odd integer me n-1. 

Renark 5. To any hyperplane t with the equation (3) there always exists 

a symmetry of Cn which transforms (3) so, that the transformed equation satis­

fies (57) and (58). (See the proof of Theorem 4.) 

Section 3. The examples. The continuous path f(X) which was constructed 

in the proof of Theorem 3, is rather complicated and one can seek for some mo­

re simple path with analogous properties. The most simple path joining tr with 

£ of Theoxem 3 is the path J>(t), t eC09ll defined by means of the equation 

( 7 2 ) ^(ai+t(l-ai))xi=b+t(l/2-b). 

We can formulate 

Conjecture 1. Let x c Rn be the hyperplane (3). Let us assume (57)% (58) 

and b>0. Let f(t) be the hyperplane (72). Let M= -ft *!»0,D|k(.j> (t)) i5 not 

definedi. Then k(j>(t)) is a nondecreasing function on [0,13-M. 

This conjecture can be proved for n=l and n=2, but for n£3 it is false 

as the following example shows. 



Example 1 . Let t f c fr be the plane 

(73) x1+2x2+3x3=5. 

Let oC&30,ll. (e.g., oc =1/2). Then (72) implies that p(t) is the plane 

(74) x1+(2-t)x2+(3-2t)x3=5+t(oC -5). 

Theorem 5 implies that k ( o O . & l , because l .£ ( l +2+3 ) / 3 - *3 and 1-6 5/2-63, 

On the other hand, the vector (0,1,1) solves the equation (73), hence k(ir)=l. 

Let t=(l+n)/(2-«0, where ^ > 0 is sufficiently small. Then t&C0,D 

and (74) can be rewritten in the form 

(75) (2-oc)xx+(3-2oC-ri)x2+(4-3oc-2^ )x3=5-4«J +(oC - 5 ) ^ . 

If x2=l, x,=l, then (75) implies x,= - 1 - ^ . 

If x2=l, x3= -1, then (75) implies x1=(6-5oc+(oC-6)->2 )/(2-oc). 

If x2= -1, xy-l, then (75) implies x1=(4-3oc+(oc-4)^)/(2-oc). 

If x2= -1, x3= -1, then (75) implies x1=(12-9oc+(oc-8)^)/(2-«t). 

In the first case ^ > 0 implies that x,<-l. Because oce(Q,l), we have 

12-9oC> 6-5oc > 4-3<* > 2-oc > 0, 

hence in the other 3 cases x,>l, if i^> 0 is sufficiently small. Thus for 

t=( 3+i2)/(2-o{>) with such an \ we have proved that 

k(£>(t))=0 

and k(j>(t)) is not a nondecreasing function. 

In the proof of Theorem 3 we have constructed a continuous path <p(t) 

which passes through the hyperplanes f defined by the equations 

(76) m a x - U A i c p } .21 x.+ 2: ^x^o,., 

where all the b' s are close to b. The path j*(t) is "almost linear" between 

f p and f>p4l, for all pcrT-T. 

Let e be the hyperplanes 

v i e > i £•£ i -u*T.f i i P' 

where b' s are close to b. We can ask, whether it is possible to define a con­

tinuous path e*(t) which passes through all the hyperplanes tf and such that 

k(6*(t)) is a nondecreasing function of t on its domain. 

Using Theorem 1 with p=l, j=2 and N= -I we can construct the first part 

of € (t) namely the part between €>. and c 2̂. Using Theorem 1 with p=2, j=3 

and N= -2, we can then construct the second part of 6(t) between &2
 and ̂ 3* 

For the construction of the third part between 6T.. and €. we would need 
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Theorem 1 with j=4 and N= -3. But such a theorem is false and in fact the 

construction of the third part of 6Xt) is impossible, if we require the mo-

notonicity of k(€f(t)). Namely, it can happen that k( 6A)-*k( €^) as the fol­

lowing example shows, thus we cannot substitute the arithmetic mean for the 

maximum in (76). 

Example 2. Let £,cR be the hyperplane 

(77) x,+x2+x,+5x.=5. 

Then 6u is the hyperplane 

(78) 2(x1+x2+x3+xA)=5. 

The vectors (0,1,-1,1) and (0,-1,1,1) satisfy the equation (77), hence 

k^GjZl and k(€?3)*2. (In fact k( ̂ 3)=k1( 6\-)=2.) From (78) we obtain ac­

cording to Theorem 5 or Lemma 2 that k( 6.)£l. (In fact k( €f . )= l . ) Thuswe 

see that k( efA)-*-k( #,). 

The last example illustrates the use of Lemma 4 and Theorem 5. 

Example 3. Let trcR4 be the hyperplane 

x,+3x2+4x,+12xA=2. 

Theorem 4 implies only the estimate 

k(<e)£3. 

Using Lemma 4, we obtain 

(79) k( r)dk( ? 1), 

where <v. is the hyperplane 

(80) x,+2x3+3x3+4xA=12. 

Proceeding as in the proof of Theorem 3 we can show that 

(81) W p ^ - f t f ^ ) , 

where rt>2 is the hyperplane 

According to Lemma 2 

k(p2)=l. 

Hence (79) and (81) imply that 

k(*).*l. 

But we can also apply Theorem 5 to (80). In this case 

-3F* ai/4=2-5> a i = 1 ' a 3 = 3 ' 
hence 
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a, £..S:_ a./4^a,. 
1 + e H 1 J 

Further 12/2.52 4, hence k ( p - > 0 and (79) implies that k ( * )=0. 
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