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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

PARTITE CONSTRUCTION AND RAMSEYAN THEOREMS 
FOR SETS, NUMBERS AND SPACES 

Jaroslav NESETftiL and Vojtgch RODL 

Abstract: We present several general results in Ramsey theory for set 
systems, parameter sets, vector and affine spaces. We outline our amalgama
tion technique, known as Partite Construction, on a particular case of spar
se Rado-families of numbers. 
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Introduction. The following result is one of the most useful and funda

mental combinatorial statements: 

Finite Ramsey Theorem [24]. For every choice of positive integers t, a, 

b there exists a positive integer c such that c—*-(b).. 

Here the undefined symbol c—>(b)? is a shortened notation (due to Erd-

bs and Rado) for the following statement: 

For every partition of all a-element subsets of a set X of size c there 

exists a b-element subset B of C such that all a-element subsets of B belong 

to the same class of the partition. 

This theorem has been generalized many times and some of these generali

zations are both profound and difficult to prove. Motivated by general results 

due to Rado 125], Graham, Leeb, Rothschild [3] and others (cf. 151), one of 

the main streams of the research was formed by efforts to prove the most gene

ral result which would imply all known (usually difficult) instances. This 

development for set systems culminated with the proof of the Ramsey theorem 

for systems [9],[1] which we state in the next section (after introducing 

the necessary notions). 

Original proofs of these results were difficult and complex. However, so

me special cases were handled more efficiently by a systematic use of amalga

mation of partite systems [15],tl6]. 
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Recently, we adopted this technique known as Partite Construction to 
yield a new proof of Ramsey Theorem for Systems together with its several 
strengthenings which cover virtually all known Ramsey theorems for special 
classes of set systems. These results are stated in Section 1. 

Somehow surprisingly it appeared that the Partite Construction provides 
a proper setting for Ramsey theorems dealing with parameter sets, vector and 
affine spaces. This approach was found in [21 and we developed it to the 
full analogy of set systems. One should remark that although formally these 
results for spaces are similar to those for set systems, the details are 
much more delicate and the validity of these results was an open problem for 
several years (see e.g. [12]). We state some of these results in Section 2. 

While the proofs and further details will appear in [201 and [213, we 
illustrate our technique on a particular case of Rado-families of numbers. 

Section 1. Set Systems 

->•-•• A type A =(n</j 3 e & ) is a sequence of positive integers. A type 
will be fixed throughout this paper. 

A system A of type A is a pair (X,71%) where X is a finite linearly or
dered set, HI =( ?n^; t/ts A ) i and 17L& ( * ). (Here ( *) denotes the set of all 

o 

k-element subsets of X.) We will suppose (without loss of generality) that 
TtW 0 %,t =0 for or* + <-/" . Elements of sets 172/ are called edges of A. 

A *s a subsystem of B=(Y, % ) if X is an ordered subset of Y and M € 7ft-/ 
iff M e ^ for every M £ X and cTe A . 

isomorphisms are just monotone isomorphisms. A subsystem of B is isomorp
hic to A is called a copy of A in B. Denote by (?) the set of all copies of A 
in B. 

Now we can state: 

1.2. Ramsey Theorem for Systems L93,[10],[143: Let t be a positive in
teger A, B systems. Then there exists a system C such that 

C ~ > ( B ) * 

Moreover if A, B do not contain an irreducible system F then C may be chosen 
with the same property. 

Here a system F is called irreducible if every pair of points of F is con
tained in an edge of F. The arrow C —*(B)+ has an analogous meaning as in the 
classical Erdos-Rado case: For every partition ( *) r &i v . . . u flL there exists 
B ' & ( Q ) and an i such that (® ) £ fy. 

The amalgamation technique (Partite Construction) outlined below in Sect-
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ion 3 yields some further strengthenings among which we list the following: 

1.3. Hom-r_amected graphs. The above proof yields immediately the fol

lowing stronger results which we state now. First we give an auxiliary defi

nition. Let B=(X,7tt,) be a set system. A set YcX is called a cut of B if the

re is a partition of X-Y into two disjoint sets Y., Y« such that no pair 

Ay-iyo^* yi&Yi» y2 c Y2* *s coverec- by an eQ,9e of B. We shall also consider 

the cut Y as a subsystem of B determined by Y. 

A system B is called horn A-connected iff no cut Y of B has a homomorph-

ism into A. Here a homomorphism is an edge preserving mapping. (Horn K.-con

nected graph coincides with the notion of chromatically k-connect§d graph, 

see [16].) It is also convenient to recall the following notion [93: Given a 

(possibly infinite) set *$ of systems denote by Forb(#0 the set of all those 
systems A which do not contain any system F e $ as a subsystem. Now we have 

Theorem (Ramsey Theorem with Forbidden Subsystems). Let 3f be a set of 

Horn A-connected systems. Then for every positive t and every BeForb(y) the

re exists CeForb(^) such that C — > (B)J. 

The Partite Construction is very convenient for constructing sparse Ram

sey graphs. This is not surprising as one of the byproducts of the partite 

construction is a new easy construction of highly chromatic graphs without 

short cycles til 3, cf. [7j,[63. There are various ways how to define the spar-

seness and we list two of them. 

1.4. Sparse Ramsey Theorems - Ramsey Families. We say that 3 ft f k j 

is a Ramsey family-if for every partition 

there exists B'e.3^ such thatf? J&d^ for some i. We denote this by C ~-MB)J. 

We associate with ̂  a uniform hypergraph HJL =(X,E) where X= f V ] and 

We have* 

Theorem (Sparse Ramsey families). For every A, B and positive integers 

t, i there exists C and a system (B £ («) such that 

1) C-i-U(B)A 

2) The hypergraph H ! has no cycles of length ^ i . 

1.5. Sparse Ramsey theorems - Cycles in copies. We have the following 

Theorem (sparse copies). Let B be a Horn A-connected system. Let t, JL be 
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positive integers. Then there exists a set system C with the following proper

ties: 

1) C—*(B)* 

2) The hypergraph H rx has no cycles of length •£ i . 
Ш 

1.6. Linearity. We say that a system B is A-linear if every two copies 

of A in B intersect in at most one vertex. Typical examples of linear systems 

are Steiner systems. In [181 we proved Ramsey theorem for Steiner systems. Mo

re generally we have: 

Theorem. Let A be a system, t a positive i n t e g e r . Then for every A-line

ar B there exists A-linear C such that 

C-*(B)A 

Section 2: Spaces 

2.1. Let A= K a,,... ,a \ be a fixed finite set (alphabet), let B£A be 

non empty. For non-negative integers k--n we will define special subsets P. , 

called k-parameter sets, of the cartesian product A in the following way (cf. 

Ul,t3}: 

For disjoint, non empty subsets 4>,,... ,c.,v of ln]=-j.1,2,... ,n }, define 

P. as the set of all those (x,,...,x k A such that 

(i) If u,v $ co. for some j then x =x ; 

( i i ) I f u ctn3 - V co. then x i=a i i - a fixed element of B. 
£ J u u 

In a certain sense, P. is the combinatorial analogue of a k-dimensional affine 

space over a q-element field (at least, when q is a prime power). Observe that 

| P. |=q for k20. A set X£A n is said to be an i-parameter subset of P. if X 

is an i-parameter set in An and Xcp A discussion of various properties of 

k-parameter sets can be found in 143. 

When q is a prime power and A=GF(q), a more common substructure of An is 

that of a k-dimensional affine (or vector) space over GF(q). Since, similarly 

as in [23, we will be treating both k-parameter sets and k-dimensional spaces 

in An simultaneously, we will call them both k-spaces in A (although when we 

use this term, we will always have one particular interpretation in mind). 

We shall denote the set of k-spaces in A by V / and their number by ]. ]. 

X will be called a subspace of An if X e f k Jfor some k, in which case k is 

called the dimension of X, denoted by dim X. 

The following is the space analogy of Ramsey theorem (first conjectured 

by Rota): 
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2.2. Theorem (Ramsey theorem for spaces L3]>[4]): For all integers t, 

/ Anl 
a, b with Osia^b there exists an integer N such that if ( I = #. u ... \j 0,. 

ia an arbitrary partition of all a-dimensional subspaces of A into t clas

ses, then there is always a b-dimensional subspace X of A with I J £ &. for 

some i. 

(Note that a=0, b=l, A=B is the well-known Hales-Jewett theorem 183.) 

2.3. Let a type (n ̂  ; o f e A ) , be fixed. 

A space system A is a pair (V,^) where V is a space, <£=(&#; <fe&) and 

^-r -= ( n J *ne se^ °^ al* n T ~^--mens-ona-- subspaces of V. 

Elements of V are called points, elements of U tP^ edges of A. 
cf 

A system will be always considered with a canonical linear ordering of 

its points (such as lexicographic, see [22] for details). 

We say that the system A is a subsystem of the system B=(U,.T) if V is 

an (ordered) subspace of U and 0^ O / j = ̂  for every i/e A . Denote by 

iB\ 
( . J the set of all subspaces of B which are isomorphic to A. 

Using these concepts, we may formulate our main result: 

2.4. Theorem (Ramsey theorem for space systems): Let t be a positive 

integer, A, B systems. Then there exists a system C with the following proper

ties: 

(i) C~-*-(B)^ 

(ii) C contains an irreducible system F if B contains F as a subsystem. 

Here the undefined notions have the following meaning: 

C — K B ) , is the classical Erdbs-Rado partition arrow which is a shorten

ed notation for the following statement: For every partition ( . } = CLu... 

(P\ / R \ \ A / 1 

o \ such that ( A jsft. for an i. 
A system F is irreducible if every pair x,y of points belongs to an edge 

of F. 

The amalgamation technique (Partite Construction) outlined below in Sect

ion 3 yields some further strenghtenings among which we list the following: 

2.5. Hom-connected systems. First we give two auxiliary definitions: 

Let B=(V,(T) be a system. A space R is called a cut of B if there is a 

partition of V-R into two disjoint sets V, and V« such that no pair •£ v, ,v2l, 

v,e V,, v2 e V2 is contained in an edge of B. 

We shall consider R together with all edges of B contained in R; this 

will be denoted by R - thus R is a system. 
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B is said to be lin A -connected if there is no cut R of B for which the

re is a linear map R -> A. 

It is also convenient to recall the following notion I91: Given a (pos

sibly infinite) set # of systems, denote by Forb(?/) the set of all those 

systems A which do not contain any system F E ? as a subsystem. Now we have: 

Theorem (Ramsey theorem for forbidden subspaces). Let $ be a set lin-A 

connected systems. Then for every positive t and every BfeForbC?') there ex

ists C*Forb(#) with C — K B ) * . 

2.6. Sparse Ramsey Theorems - Ramsey Families. We say that fts ( -J is 
a Ramsey family if for every partition 

(S) -a 1 u. . .ua t 

there exists B e CB such that (? ) &CI. for some i. We denote this by 

C J--> (B)A 
A 

Recall the definition of the hypergraph H ^ introduced in Section 1. We 
have: 

Theorem (Sparse Ramsey Families). For every systems A, B and positive 
integers t,Z there exists a system C and family 3Jfc / ijj such that 

1) C-^(B)*. 

2) The Hypergraph H* contains no cycles of length & £ . 

2.7. Sparse Ramsey Theorems - Cycles in Copies. We have the following: 

Theorem (Ramsey theorem with forbidden cycles in copies): Let t,i be 

positive integers , p £ a * b . Put A= ( A 8 , [t))> B= \Ab, (* ))and exclude the 

possibility a=0, b=l, |A|=2. Then there exists ̂ c f « ) such that the system 

C=(AX,SO satisfies 

1) C~~»(B)* 

2) The hypergraph II * J, H?Cv) contains no cycles of length £ I . 
(A) 

Remark. The theorem fails to be true for a=0, b=l and |A|=2, as, in this 

case we deal with a perfect graph. 

A special case of this theorem for A* ̂ 0,1^, B» ̂ 0} and p*a=l has been 

conjectured in 1191. This case corresponds to the Finite Union Theorem which 

is known to be equivalent to Finite-Union-Theorem L25]. We prove trjis particu

lar case directly in Section 3. 
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Another particular case is the existence of sparse Van der Waerden sets. 
This case corresponds to A= 40,1,2,...,k\, B=A, p=a=0, b=l. It follows that 
there are infinitely many minimal Van der Waerden sets, thus generalizing 
[261. 

Section 3. Sparse Rado Sets 

3.1. The following theorem was proved by R. Rado l25l. 

Theorem . For all positive integers t, n there exists a set of integers 
A such that for every partition 

A =A Ai 
there exists a , , a 0 , . . . , a „ and an integer j such that 21 a.eA . for every 

J- £ n i/ea> x J 
04o>c [ l , n 1 . 

If A= A'a 1,a2,...,af1l is a set of integers we put 

Z A= - i . 2£ a, , 0 + o > a L l , n ] } • 
V 6. W JL 

For the sake of brevity we call the set I A an n-gon. 
A 

Definition. Let A be a set of positive integers, t>l. Denote by H" the 
set system (A , *M n ) where M ̂ --Hn if and only if M is an n-gon. 

3.2. We prove the following generalization of [193 which is a particu
lar case of Theorem 2.7. 

Theorem (Sparse Rado Se ts ) . For every t,n> 2, JL* 2 there exists a set 
of integers A such that the following holds: 

1) For every partition of A into t classes one of the classes contains 
an n-gon; 

A a 
2) the hypergraph H does not contain cycles of length * Z ; 

A 

3) every triple x,y,x+y in A is a subset of some H e l J . 
3.3. Let 9C be a family of pairwise disjoint sets. Let I X denote the 

family of all sets of the form X ^ X , X ; £' c 3C . If \X |=n, we shall call 
the set X 9C n-gon. Using this notion we can formulate 

Theorem (Finite Union Theorem) C5J. For every positive integers n, t 
there exists a positive integer N such that for every partition of all subsets 
of LN1=*U,...,N$ into t classes one of the classes contains a monochromatic 
n-gon. 

3.4. Finite Union Theorem is known to imply Rado Finite Sum Theorem by 
a simple coding; 
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Fix K a large number and to every subset MclN] assign the number K(M)= 
~~ . trim - - r \ « O C X 

* f c M 
K[N]=4K(M), McAN]}, 

It appears that the set KCN] has for every K £ 2 the following properties: 

Theorem (Rado Finite Sum Theorem) . For every positive integers n, t, s 

there exists a set X of positive integers with the following properties: 

1) For every partition of X into t classes one of the classes contains 

an n-gon. 

2) If a, b, c are positive integers smaller than s and x, y, z are dis

tinct elements of X, then 

ax+by=cz iff either 

(^c) a=b=c and x+y=z or 

a+b=c and x=y=z. 

Proof: Put K=2s and X=KCN]. Observe that the size of X depends on n, t 

only. Also for K4=K' the sets KCN] and K'tNJ have the same additive structure. 

3.5. A similar comment applies to the fact that it suffices to prove 

Rado Finite Sum Theorem for vectors with integral entries and also for vectors 

with rational coordinates. These conventions make our constructions easier to 

formulate. 

The rest of the paper is devoted to the proof of Theorem 3.2. 

3.6. We construct sparse Rado sets by a variant of our Partite construc

tion. First fix n, t, £ positive integers. Choose X as in the above Theorem 

3.4 (for s=2). Put X= *fx,,...,x x. We shall construct certain sets of vectors 
» L " o 1 k a 

with rational coordinates. These sets will be denoted by P ,P ,...,P ,...,PH; 

we call these sets pictures (cf. tl6]). 

The construction proceeds by induction on k. 

3.7. Construction of picture P°. Let i'Xp. ..,X \ be the family of all 
n-gons in X (as s > l sets Xi are in 1-1 correspondence with (set-system) 

n-gons in INJ, with X= KIN]). 

1 2 г 
(x, e

i ( 1 )
, e

i ( 2 )
,..., e

i ( г )
) 

where x«.X and all e^ entries are zero with exception of one entry, say 

^1(1) which belongs to the set X. and Zwiy** 
For x*=(x,"e*)e>P

0
 we write 3r(x*)=x. 

k k 
3.8. In the induction step let P be given. Assume that P consists of 
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k ~> 

positive integral vectors. Let again the elements of P be of the form x= 

=(x, eO, x= :7r(x*). 

Consider the set Y="£x*e P ; ?r(x*)=x.J. Now we invoke Theorem 2.6 speci

alized to Hales-Jewett theorem (note that this special case may be proved by 

probabilistic means, see [27j): •. 

Let H be a large number and ££ a family of lines & £ {, J such that 
H 

(i) for every partition Y into t classes CL.U... o &. one of the clas

ses contains a monochromatic line L e ©6 ; 

(ii) oi contains no cycles of length == & . 

Let sk be larger than any entry of a vector from P . Now assume that we 

(possibly) change the set X so that it satisfies the condition (*) of Theorem 

3.4 for sk. (This we may assume as we change neither the additive structure of 

X nor the size of X.) 
k+1 Now define the picture P to consist of all vectors of the form 

X = v X , Xi , . . • , Xi_j J 

where x* satisfies one of the two possibilities 

1) x=xk and (^....xpe Y
H . 

2) There exists a line L * & determined by 0=*. cas lH3, elements 

x. eY, ie[H]-o and x.eP , j-#k, such that the following holds: 

jrCS^x.-x 

-)?.= i i "x° for i e [ H ] - o l xk 1 

"x*. = "?• for i e a) . 
k+1 

This concludes the definition of P 

We claim that Pq has the desired properties. This follows from the follow

ing four claims. 

5-9« Claim 1: In the induction step (construction of P ) the following 

holds: 

(x,^,... ,"x* )+(y,y|,... ,yp=(z,z|,... ,z*.) 

iff x+y=z and there exists a line L t S& determined by o> and constant coordi

nates ~x?, i 4 o> such that ^+V^=z1 for i e co. 

Thus any sum ( x , x ^ , . . . , l ^ ) + ( y , 7 ^ , . . . , " y ^ ) = ( z , z j , . . . , * . l * ) in P corres

ponds to the uniquely determined sums Xj+V^z"! in P . 

Proof of Claim 1. We check the definition of P 1 . Note that for j ̂  *> 
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--» x ~-»o —> y '-•o —> z ~»o 
we have x.= — x., y.= --*• x., z-= — x.. 

J
 x

^ J J k J J k ^ 
It follows that the above condition is sufficient. The necessity follows from 
the property (Z ) of Theorem 3.4- , i.e. from the assumption on X: 

Assume that for some i none of the above possibilities occur. Then we ha

ve one of the following four cases: 

1) __ -V?+ JL ~Ї%Y. 

2) __ -50 y> = __ -J? 
xk V i xk Ч 

3) —* -î» z - * o 

4) ЪiЪ<-
In each of these cases we get a contradiction with the choice of X. 

3.10. For a line L e t i denote by P. the set of all vectors x*eP
 +
 of 

the form (x,x\,... ,x?,) where "x*.= -7^ ~x? for i k co and x.=x. for i,j e co . It 

x n 1 X. 1 1 J 

follows from Claim 1 that the additive structure of P. is the same as that of 

p k . 

Claim 2. |P.n P., |<~1 and P.n P., £ Y for any pair of distinct lines 

L.L'e it. 

Proof. Check the construction. 

Claim 3. The family -. P,;L e &} does not contain cycles of length £ £ • 

Proof: Use the fact that ££ does not contain short cycles. It follows 
Pq 

from Claim 3 by induction on k that the hypergraph H does not contain cycles 
of length <_ I . 

3.11. It remains to be proved that for every partition of Pq into t clas

ses one of the classes,contains an n-set together with all sums. This is pro

ved (as usual for the Partite Construction cf.Ll63) by the backward induction 

k=q, q-l,...,l,0: Using the construction of Pq there exists a line L such 

that the set P. (with the same additive structure as p^""1) has all vectors 

with projection x in one class of the partition. 

Continue this argument for P, (i.e. P^~ ) . This leaves us with a subset 

P of Pq with the same additive structure as P° such that all vectors with the 

same projection are in one class of the partition. Now we use the choice of X 

to get an n-gon in one class of the partition. 

This finishes the proof of Sparse Rado Sum Theorem 3.2. 
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3.H. Remark. The above proof is a typical^ example of the Partite Const

ruction . The details of the amalgamation procedure are similar. However, if 

we do not decompose singletons then we need a more complicated argument, known 

as Partite Lemma, to establish the Ramsey object for the subobject induced by 

sets with the same projection. See papers Ll5],[l6],C20j,[21] for more details. 
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