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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,4(1987) 

PARABOLIC EQUATIONS WITH DEVIATING ARGUMENT IN ADVANCE 

Lubica SEDOVA 

Abstract: The phase space for the equation -rr +Au=Lu. . is decomposed 

into the sum Y=Y,+Y2 of two T(t)-invariant subspaces, where T(t) is the 

corresponding semigroup of solutions, L is a linear operator and u. . deno­

tes the deviation of u in advance. Also a nonlinear generalization 

g r + A u - f ( t , U / . L \ ) of the above problem is treated. 

Key words: Functional differential equations, parabolic equations with 
delay in advance, sectorial operator, ordered Banach space, stability. 

Classification: 35R10, 34K30 

§ 1. Introduction and results 

The paper extends the results *of 3. Milota LMil to the problems with 

deviating argument in advance. A decomposition of the phase space Y=Y,+Y« 

into two T(t)-invariant subspaces is established. This decomposition can be 

applied in investigation of the asymptotic stability. Some ideas of (Mil have 

been* used. The results obtained in the linear problem are similar to those 

by [Mil provided the norm of L is small. 

Solving the nonlinear parabolic functional differential equation,the 

existence and uniqueness of the solution have been proved (see Theorem 5). 

A result of I S3 has been extended from functional ODE to the parabolic prob­

lems. 

Moreover, under the monotonicity assumptions on f, restrictions con­

cerning the growth assumptions can be removed. In that case we apply some 

techniques from the theory of partially ordered Banach spaces. 

In the paper some examples are given which illustrate the special be­

haviour of solutions to the problem with advanced argument. 
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The theory of semigroups, the original Banach space X, the power spaces 

X * and the estimates from £ Mi] and £ He] are used. 

§ 2. Assumptions and denotations 

Suppose that X is a Banach space and A is a sectorial operator in X (for 

the definition see £He] or £Mi}). Let Re «'(A)>0 and let *,6(0,1). Denote 

X00 the fractional Banach space of X, following tHel terminology. ̂  

Let r > 0 . Let Y= i y c C((-oo,0>,X<*); d<sup e y e |y(e>U<«-» and 

e*°y(Q) is a uniformly continuous function from (-©o,0> to X*}. Clearly, 

Y is a Banach space With the norm (ylL^sup e^|y(G)| f l C . Let b >0 and let 

L:Y—•* X be a continuous linear operator. Further we assume that there ex­

ists a constant C* > 0 such that the following estimates hold for each 

t ft(0,ao): 

(Al) lAV^lAq^t-V8* 
.-ot-a(t-s) (A2) J|LllCcJ(t-s) e~ a u~ s ;ds£q, where 0-rq<i and flLII is the norm 

of the operator L. 

The first assumption takes always place (see £Hel). 

Let Z= -iucC«0,aeO,X*): sup Ju(t)l «x> 5 and let IHulll=sup Ju(t>L for 

each u«Z. (Z,»-i ) is a Banach space. If u£C((-oo,oo),XtC), we denote 

ut(©)=u(t+0) for each ©s(-»,co). 

Definition of a «ild solution. Let h«Y be an initial function. We con­

sider the equation 

(E) || +Au=L(ut+b) (the equation with the deviation) 

together with the initial condition 

(C«) u *h on the interval (-oo-0). 
U O 4, 

Any solution u in the space C((-oo,oo),XflC)nZ of the integral equation 

(El) u(t)=e~Ath(0)+ ^V
A ( t _ s )L(u s^ b)ds, 

which satisfies the initial condition (CQ), is said to be a mild solution to 

the initial problem (E,C ). 

S3. 

Existence theorea 1. Let heY. Then under the assumptions given above 

there exists a unique mild solution of the problem (E,CQ) in the class of 
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|.| -bounded continuous functions. 
oC 

Pfcoof. Let S,= -ixcZ; x is a continuous extension of the function hj. 

Clearly, S, is a closed subset of the Banach space Z. We shall consider the 

operator T ^ — * - Sĵ  which is defined for each t2T0, by Tx(t)=e h(0)+ 

Since |Tx(t)|og*4Ce""
at|h(0)|flC + r ^ V

a ( t ~ s ) ( t - s ) ~ % M M Vb , , d s* CaJ n'Y+ 

+CJILH /o
te'a(t's)(t-s)"1js(i1hllY+lllxW), T maps Sx into Sy Further 

|Tx1(t)-Tx2(t)|c, =| / 0 V A ( t - s ) L (x 1 ) b + s - x 2 j b + s )dsU * 

£MC„ j fV a ( t" s ) ( t -s)"° (Js mx1-x2l« -=SrqIHx1->c2W • 

Hence HlT(x,-x2)ll •* q IIx, —x̂ lll and by the Banach fixed point theorem 

there exists a unique solution of (El) in S,. 

The question arises, when the mild solution is a strong one. 

Theorem 2. Let h(0) be an element of X**+e for some e, > 0 and let 

e*" h(O) be Holder continuous in (-OD,0>. Then the mild solution of (E,C ) 

is a strong one. 

Proof. We shall apply Th. 3.2.2 in tHel. Put f(s)=Lxg+b. Clearly, 

/ |f(s)Lds< <%> for each «j>> 0, because f:<0,eo)—> X is a continuous 

function. Further, we have to show that f is locally Holder continuous. This 

follows from the following two statements: 

(i) e7T»(©) is a Holder continuous function; 

(ii) x(t) as a mild solution is a Holder continuous function in<0,o>). 

We have 
-At 4 

v |xCt1+k)-xCt,)l =|(e"Ak-I)e V o ) L +| f C e ^ - I ) . 
Art O A->*-A(t-*k--8) * * -at, 

./A( trs )Lxs+bdsU + | £ e l Lxs+bds^Ck% lUm\^ 

+C( $ ) k \ + t f^-sy^S"* l~3 dslL«(l|h|.Y+1 x a)+ 
\+h -a(t +k-s) 

+ 4LBdhly +«xMDC^ fti e l (t^k-s^dsiKkc - ^ ( t ^ k 1 " * , so that 

( i i ) takes place. 

h O ) is a locally Holder continuous function on (-OD,0> because 3: h(&) 
is Holder continuous. This also implies that the map s - ^ x . as a map from 
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<0,oo) into Y is locally Holder continuous and thus f(s)=Lx b is locally 

Holder continuous, too. 

Apriori estimates for the mild solutions and some properties of those 

. solutions 

1) Continuous dependence of solutions on the initial condition. Let the 

solution x, correspond to cp. and x« to g>». Then we have .llx̂ -x̂ Hi -£ 

-& (C,+q)|l9?,-<5f2llY-«-qltlx1-x2ill , from where it follows * 

(1) iMx r x 2 IIU^fl f ip r 9 2 t t Y 

a n d C +1 
(2) I x ^ - j l g - l c T y ! -

Now we shall consider the operator T(t):Y -—*• Y, which is defined for 

each t^O as follows: 

If u(t) is a mild solution of the equation (E) with the initial function 

<pcY, then T(t)<3? , similarly as in [Ml] will mean u^eY. On the basis of 

(2), it is clear that so defined T(t) is a semigroup of the class C . The 

assumption on the uniform continuity of e^ e<y(©) is needed in the proof of 

lim TCt)o>-s<3p . For the operator L=0 we denote this semigroup by S(t), simi-
t-*Q 7 

larly as in [Mil. 

2) The solution x(t) is bounded on the interval <cT,oo) for each cT>o 

also in the space X*4"6, such that s > 0 and oc+ s < l , and locally Holder 
continuous as a function of S6.<cf,a>) into X**: 

• (3) l u t o ^ , * ! . - * 8 * . ) ^ •l/ eV«-"'5Lu p 4 t odr|^Ce-»8-
8|^(0)U* 

+cXV
a(s-ff)(s-r)--:-<»L»( II s?»v+ »'" • )dr*C<r€| «(0)l +clV

a(s-t)(s-r)"*-*' • 
C +q 

•drlL«(l+Il^-)lq^ 

(4) |u(s+h)-u(s)UH(e~
Ah-I)e-As9(0)|tf& *| / / e ^ ^ V ^ I ) . 

• u ^ L -I r ^ A ( s + h " r ) L W r U ^ * • • - s-
e| »(0)U * 

•C jf V ^ - ^ s - r ) ^ * drh* J.LIK1+ ̂ ) l̂ ly + 

+C //* V ( > ^ r H 8 4 h . r ) - 1 j r W ( ^ ) l*lY ACW-V^tfhMSh
1-* )1»IY-

Now we shall consider the problem, when T(t)-S(t):Y—* Y, is a compact 

operator. A similar lemma as in tMil is true: 
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Lemma 1. If A has a compact resolvent, then the operator T(t)-S(t): 

:Y—*-Y is compact for each t>0. 

Proof. We have 

(5) ((T(t)-S(t))^)(^-t)=/VA(r"s)Lus+bds for each <cf€ (0,t> 

where u is a mild solution of (E) with u «= cp and ((T(t)-S(t))9p)(T -t)=0 
for each •?« (-00,-0 > -

Let, now, <$n 6Y be a sequence of bounded elements of Y. We shall show 

that we can extract a subsequence from this sequence such that (T(t)-S(t))gn 
converges in Y. 

By (5) it suffices to show that there exists a subsequence of the sequ­

ence of mappings t ? — * ^ e~ ̂ ~s'Lu _ds, which converges in the space 

C«0,t) ,X*). This will be shown as follows: 

I. The sequence of mappings from <0,t> into X06 

rx -A(r-s) X — > j ^ e Lun s+fads is equicontinuous. 

II. For each rt<0,t > there exists a subsequence of 9? such that 

//e- A (*- s\u ns+b
d s ^verges in X*. 

From I, II the compactness follows. 

To prove I we consider 

i r V A ( T + h " s ) L u n > s + b - - - / r e - A ^ \ u n > s + b d s U , 

from where the equicontinuity by (2) follows. 

Further, 

From this inequality as well as from t.-u t mpactness of the embedding 

The compactness of the operator A is a sufficient but not necessary con­

dition (even when the right-hand side of the equation (E) is different from 

0), for the operator T(t)-S(t) to be compact, as the following example 

shows. 

2 
Example 1. Let X=L0(-09,00). Let Au^-u+u and D(A)=W«(R). According to 

Z XX - 1 / 0 « 

[Hel A is a sectorial operator, ff(A)= <l,eo), 06 =1/2 and Xx/ = W,J(R):rX* 
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Hence the operator A has no compact resolvent. Let us take the equation. (E), 

where L:CK-b+ (i ,0>,X a C >)— * X is a linear and continuous operator, for some 

fixed (5 > 0 such that -b+/3<0. Further we suppose that there exists a sequ­

ence L , for r=l,2,..., such that: 

(i) each Lr:C«-b+/3 ,0>, W£ (-r,r))~* X is a continuous and linear 

operator, 

(ii) Lr-l-»-*0 for r—>oo in the space CC«-b+/3,0>,X
oc'),XJ. 

Since W^i-co^co) is continuously embedded into W2°
<:(-r,r), it is clear 

that L :C((-b+I3 ,0>,X*)—*• X is also linear and continuous for each r€>il,2, 

Hence, we consider.the problem 

crT " uxx=Lut+b~u(t); u ( 0 ) = u
o>

 where uoeX
1/2=W^(R). 

We can extend the initial function to the interval (-ec?,0>- as a const­

ant function. We shall show that under (i) and (ii) T(t)-S(t):Y~> Y is a 

compact operator for each t > 0 . 

We have to prove the statements I and II from the previous proof under 

the assumption that the sequence <y in Y is bounded. 

The statement I has been already shown in the previous proo f . 

Now we prove the statement II: First we shall show that for each r € 

€ 4 1,2,...,^ there exists a subsequence of y such that the corresponding 

u (s) converge in the space W2(-r,r) for each s e{/3,t+b>, uniformly with 

respect to s. Choose an arbitrary, but fixed r>0. On the basis (4) we have: 

(6) u are equicontinuous as the mappings from </3,t+b> into X06 ^ 

<-»W*(-r,r). 

Further, (3) gives us that lUn^L+j.*-- K % n^ and s0 lun^
s)l 2*+2&~

C 

w2 
for each s©</3,t+b>. Hence ' 

(7) |un(s)| «, « £ C for each s e</3,t+b> . n w 2 ^ 2 6 G r j r ) / 

As W 2 f l t + 2 & ( - r , r ) c # < . v W 2 ( - r , r ) , from (6) and (7) the existence of a subsequen­

ce u uniformly converging in the space W2(-r,r) with respect to s follows. 

Now, step by step, we put r=l,2,... and we construct a subsequence of 

<y such that the corresponding u will converge uniformly' with respect to 

s 6></3,t+b> in the space W9(-r,r) for every r>0. (This does not imply the 
1 convergence in Wi(-oo,oo).) 

Let f > 0 , 0 < ^ < t , be arbitrary and let y * be such a subsequence 
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constructed above that the corresponding subsequence u converges in 

W^-r,.:) for each r € . f t , 2 , . . . j . Then 

| (S( t ) -T( t»(cpn - %KV - t ) ^ * | fe V
A ( r ' s ) L r ( u n > s + b - u m ) S + b ) d s ^ + 

< e - A ( - s ) ( L r - L ) ( u n ) S + b - u m > s + b ) d s L ^ 

£ sup II L j f \ e - a ( ^ s ) ( ^-s)-°Cdsllun . -u |j 2flC 
vJa * n ' s + b m,s+b C«-b+/5,0>.W*e(-r,r)) 

* | L r - L i q , / V a ^ s ) ( r - s ) - a ( J u n ) S + b l | , «um>s+bfl) -

^sup i iL i l f c j -u | ^ + I1L -LI1C2, 
1 * n m C«/3,t+b>,W*t-r,r)) r Z 

where we have used (2). 

Then to each £ > 0 there exists an r such that 11L -Li < 4 - . 
o rQ ii2 

To this r there is an,n_ such that for each n,m>n : o o r ' o 

|u -u 1 ~ <7r- HI—nroso that 
n m (C«/3,t+b ,wf(-r0,rQ))

 Cl * * • - . . - • -

|(S(t)-T(t))(o> - » J ( T - t ) L < 6 for each n,m>n„. Hence S(t)-T(t); 
* 11 j ni CK o 

?Y —* Y is certainly a compact operator. 

An example of an operator L satisfying the conditions (i), (ii) above, 

is the operator CLul(x)=a(x)u (0,x), where a(x) is a continuous function 

defined on (-co.oo) such that lim a(x)=0. Then we can take (L u)(x)= 
oc -» oo r 

=a (x)u (0,x), where a is a sequence of continuous functions such that 

supp a c(-r,r) and a r = g a on (-oo,co). 

An estimate for the essential spectrum of the operator L under the as­

sumption that T(t)-S(t) is compact, is the following one: 

(8) 6-es(T(t))^Ce-
min(a»r)t-

For the proof see [Mi], who estimated | 6,(S(t))UCe""min(a,r)t and since 

S(t) here and in [Mil have the same meaning, we have that 6_ (T(t))= 

-= «res(S(t)+T(t)-S(t))= 6res(S(t)), by C4.1, MiJ . 

Now, we shall deal with the relation between 6"(B)- e*es(B) and 

6*(T(t))- 6oS(T(t)), where B is the infinitesimal generator of the semigroup 

T(t). 

We shall extend the result of [Mi, Lemma 21 to our case. 
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2. 
( i ) I f By**? , then 0>Re a>~<y *-nd U t ) ^ - ^ where $> (e)=e^d 

for 6 ^ 0 and d&D(A) and d solves the characteristic equation 

(9) %(0 )+Ao / (0 )«e * \ ( e A %(0) ) . 

(ii) If 0&H& A > - T and (9) has a nontrivial solution, then A € P^(B) 
(point spectrum of the operator B). 

(iii) If fW€rV(T,t)> and p»±0, then there exists at least one & 
ftt 

such that a € P$<B) and e* = <«. and there are at most finitely many such 
<*• 

Proof, 

(i) In the same way as in imi we can show that <p (# )=e4^(0) and hen­

ceRe & * - f and TT(t)^3(0)=e:tto;(0). By the bounoedness of T(t)<p this im­

plies that R e ^ ^ O . Further the function f(s)=Lug+b=L(e
?l(s+b+e)9(0))= 

*e^s+b\(ea0o;(O)) is locally Holder continuous on the interval <0,a?) into 

X and so u(t)* lT(t)<p}(0) is a strong solution from where e**<p(Q)€ 0(A) for 

each t>0. This implies o/(G)«5D(A) and for each t>0 it is true that 
du A , 
dl + A ^ t + b ' 

From this it follows that aeato;(0)+eAtAo/(0)=L(e4(t*fb+^y (0)). Hence 

*o/ (0)+A<*CO)*e*\(eaVo>>-

(ii) Analogously as in I Mil. 

(iii) By I Hi, Phi I, similarly as in £Mi3, as the semigroups of C are 

the semigroups of the class A, the existence of such a & already follows. 

We shall show by contradiction that to each JU,+0 there exist only finitely 

many A c P^CB) such that eAt= p* -
Let there exist to some <a4-0 infinitely many such A ePAB) so that 

e"*n « (*> . Then ^n=t"*1log ft + — | —" where kR is an integer. Hence \&n\ con­

verse toco , whereby Re & R =Re .^n for each a^, n2. Siilce A is a sectorial 

operator, from certain n all .51 belo* to the resolvent set of the operator 

-A. Thus we can take 

. 3Lb & fr 

V ( V+A)~ e Ue n dn } 

by (9}t where CL are the eigenvectors, we can normalize them in such a way 

that 1 ^ 1 ^ * lie c^ly ml and then 
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inhere the estimate from [Mi, was used. The right-hand side goes to 0, and 

this gives the contradiction. 

Corollary 1. Clearly, the space 1^(^,8)= <£x;(ai~B)kx*0J is T(t)-inva-

riarrt and ^(^,B)c^,(e A t,T(t)). 

Theorem 3. Let T(t)-S(t):Y -—>Y be a compact operator. Then to each 

S > 0 the set P^(B)nG, where G=$3 & C;Rea.?-min(a,3r)+e ? , contains fi­

nitely many points only. Moreover, all these points are of the finite multi­

plicity. 

Proof. First we show by contradiction that the set MBP^CBVI G is isola­

ted. Let there exist a sequence i^.M such that /A converges to A , 4 n 4 - A m 

ant at 
for n4m. Then e € Pg(T(t)) according to Lemma 2. Thus e converges to 
e ^ c 'CT(t)). Moreover, e A t« 6*eg(T(t)) for each t>0. At the same time 

Re3_r -min(aty)+e which implies that \£X\>e^1^*'^1^1 wd tence 
^-miKa.yjt >.ere.%>e-min(a,3-)t+£t 

But this does not hold for sufficiently great t. Thus, the set M is cer­

tainly isolated in G ant it has no point of accumulation. 

If there were infinitely many p s 3 6.M, the sequence A should be 

unbounded. Thus, since Re 3 is bounded for A n € M , the set M should have 3 

with fjr&oufided imaginary part. Then there would exist a sequenmce d such 

that 

I v a | 

where the right-hand side again tends to zero. That is a contradiction. 

Now, we shall show that all points of the point spectrum B in the set G 

are of the finite multiplicity. This follows from Corollary 1 and from the 

fact that the value er is for Efficiently great t a normal point of the o-

perator T(t). 

Corollary 2. If S(t)-T(t);Y — • Y is under the assumptions above a com­

pact operator and Re A < 0 for each solution of the characteristic equation 

(9), then 0 is an asymptotically stable solution to (E) in this class of 

raild, !•)<£-*bounded solutions of the equation (E), and 

tTWl-feCe-^ for some <f>0. 

Proof. The proof is based on the estimate for* the essential spectrum 

and on the fact that 
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. sup 4 U h aeP^Kt))! =esuP Re ̂ "V*, w h e r e * < 0 . 
-d:t 

Thus |T(t)UC(cf1)e
 l , where Q<cfx< min-f-^,min(a,9> )?. 

Corollary 3. Let T(t)-S(t):Y-~>Y be a compact operator. Then the fol­

lowing statements are true: 

Y can be decomposed into the sum Y=Y,+Y2 such that: 

(i) The spectrum of B|v contains the finitely many eigenvalues of the 
Yl 

finite multiplicity, whereby Re£=0 for 3 e «^(B|V ), 
Yl 

(ii) Y,, Y2 are T(t)-invariant. 

(iii) The zero solution is asymptotically stable for T(t)L . 
Y2 

(iv) Y, cD(B) and B|Y is a continuous linear operator generating a 
1 Tl 

group which is an extension of T(t)L in I Mi, Cor. 23 . 
1 

Proof. The proof is similar to that one of the corresponding theorem 

in LMi3. 

Example 2. Let us take X=L2(0,or), X
1/2=§2, Au=-u", D(A)=W2nW2 and 

the problem 5~ +Au=Lu. . ; u =h . 

We shall consider the assumption A0, that means, let us calculate C,/2 

of this operator. 
0i 2 °° 

Let us take ueW0r»W0, u= .XL. b- sin nx. Then 
0 2 2' flv&A n 

co 2 -n t 
A«-At,= -Sl.n e~ b sin nx, from where we have 
Ae u /JV» A n ' 

Now, Re 6(A)?-d", where c f < 1 . After some calculations we get that 

|Al/2e-Atu|^ ̂  ( 2e^l
l_cr^)l/2t""l/2e'^t\u\l for each usD(A) and by the den­

sity of D(A) in X, also for all u&X. Thus, 

l-K ( 2 B ) 1 / 2 rfel^ ] 1 / 2 forStmecr6(0)l). 
Hence, 

1/2 

When dealing with equations with advancing argument, we meet many dif­

ficulties. Consider the following example: 
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Example 3. 

^-u"=u(t+l), 

u(t,o)=u(t,5r)=o, 
u(0,x)=Q fo r each xe(0,3T). 

Clea r l y , this problem has fo r example these two solutions: 

(1) u^O, 

(2) u2(t,x)=kt sin x. 

However, under ce r ta in assumptions and in some classes, the uniqueness 
takes place. 

§ A. 

In the present section we study a nonlinear problem with a rather gene­

ral nonlinear deviation. Of course, to prove the existence of a solution it 

is necessary to put stronger assumptions. We shall use the following assump­

tions and denotations: 

A is a sec to r i a l operator with Re6'(A)>0. 

co ' <0,co)—.*R is a continuous function. 

heC((-oo,0>,XcC) is a uniformly continuous function. 

y :<0,oo)—* (0,oo) is a nondecreasing continuous function. jx(^.)| 

F will mean the space C«0,oO),Xoc) with the norm HlxHI=sup / ^ — 

C=4y6C((-c^0>,Xc*'),y be a bounded function in X*]is a Banach space with 

the norm liylU sup Jy(t)L \ 

fi<0,oo)x.C —*X is a continuous function. 

u2(0)=u(z+G) fo r each 9 4 0. 

We shall consider a mild solution of the problem (E«,C ). 

(E2) & « A u - « t , u w ( t ) ) , 

<Co> V h -
that means, a continuous solution of the i n teg ra l equation 

u(t)=e~Ath(0)+ / e*A(t"s)f(s,u^(s))ds fo r each t>0 

which satisfies the initial condition uo=h. 

Solving (E2, C ) we shall assume (Bl - B5) where 

(Bl) /te"a(t"s)(t-s)"ci|f(s,0)lxds^Ky(t) fo r each « 0 , 

(B2) |f(t,z1)-f(t,z2)|«6n(t) I z ^ H fo r each t«<0,op), where 

n(t):<0,oo)—>H is a continuous function. 

(B3) / (t-s)"* e"a^t"S^n(s)ds is a y-bounded function on the interval 
<0,oo). 
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(B4) C^ f (t-s)""oCe"a(t""s)n(s) spno>+ (s) y(a>+(s))ds-£q y{X) for each 

t*>0 where Q j . s q < l , <^>+(s)=max -C0,<a(s)$ and C ^ means the constant 

from (Al). 

Theorem 5. If Bl -B4 are satisfied then there exists a unique mild un­

bounded solution of (E2, C ) on the intervaK0,oo). 

Proof. The idea of the proof is due to L§3, whereby the conditions here 

are analogous to those in that paper. The proof is based on the Banach fixed 

point theorem. 

Put S1= -tysF;y(0)=h(0)S, whereby we extend y t S x for 8-.0 by y(0)= 

=h(©). We define the operator T;S,—*• S, as follows: 

(Ty)(8)=h(e) for 9.60, 

(Ty)(t)=e^AVOH/o
te~A(t"s)f(s,y<i>(s))ds for t>0. 

Now we show that T.S-,—> S,. We have that 

|Tx(t)^4Ce~ a t|h(0^ 

+C* X* e~ a ( t - s ) ( t - s r * | f ( s .W lds+q , jT te~a( t-s )(t--S)-aC.n(s)l lxw(s ) i lds * 

i C ^ l K O L +C £V a ( t ~ s ) ( t ~s )~ * jKs ,0 ) | ds+C. r te~ a ( t " s ) ( t -s ) "°n(s)a ih i )+ 

+ lllx||lsgn a>+(s)*{r(6>+(s))d8. 

Thus there is a C>0 such that 

|Tx(t)[A ACy(t ) for 0 4 t < o o . 

T is a contraction. In fact, 

|Tx,-Tx2(t)| , t. -Aft-O 

Vw * * ik> £ le ( s ) ( f ( s > x i , c i > ( s ) ) - f ( s ^ 2 , o < s ) ) L d s * 

6w/> ( t-s)"" ,-"8(^s)n (s ) • ^ s r ^ s ) ' * * 
^ - ^ J ^ V ^ 8 ^ ' " ^ * - 8 ^ ^ * V x 2 , l l 8 o n ^+(s)Y(a>+(s))ds^q«xrx2})| 

for OAt < oo -
Thus «lTx1-Tx2W 4 q M x - ^ i . 

Now we shall prove art existence theorem in the partially ordered Banach 

space X**. TheTarski fixed point theorem is here of no use, because X*0, in 

general is no conditionally complete lattice, as e.g. wi does not. Instead 

of the assumptions Bl - B5 from the previous theorem, an assumption on the 
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monotonicity of f as weii as some special growth assumption of f are usee*. 
Suppose that (X,i) is an ordered real Banach space (for the definition 

see [He]. 
Let A:X—* X be a sectorial operator with the compact resolvent and let 

CXX+A)"1 be increasing for all a such that Re &»&Q, According to Exercise 
6 in tHe, p.60], e~AtrO for each t>0. 

Let f~f(x,y):<Qtoo)xQ —* x be a continuous function, where C and the 
norm R • ft have the same meaning as above. 

The space X** and hence C((-a->,0>,X°* ) is again an ordered Banach space 
with natural ordering in C. 

Let two following assumptions hold: 

( i ) For each ZpZ2€C, 2^422 implies f (s ,z 1 ) jg f (s ,z 2 ) . 
(ii) There is a continuous function f, :<O,0p)xC-*» X such that 

Bf(s,z)! lx- imax-[ | f1(s,z1) |x , | f 1 ( s , z 2 ) l x l for a l l z *C, zx£z&zr 

Definition. A continuous function u,:R~-* X1* will be called a lower 
solution (an upper solution) of the equation (E2) if it satisfies 

u1(t)-Se-
Atu(0)+X

te"A(t"9) -Ks.u^gpdB, 

(u1(t)>e~
Atu(0)+^ e"A(t"s)f(s,u1 ^ s))ds) for each t>0. 

Theorem 6. Let u, and u2, respectively, be a lower and an upper soluti­
on, respectively, of the equation (E2) such that u,(Q)=h,(©) and u2(<9)= 
=h2(9) for each © < 0 , where h ^ h ^ C , h 1 ( © ) . 4 h 2 ( 0 ) for each 0-60, 

h 1 (0 )=h 2 (0 )s . ) f c + & fo r some^ e > 0 , for which o6+e<l. 
Let h'&C be a function such that h1(9 )^h'(9 ) * h 2(0) for each ®6 0. 

Then there exists,at least one mild solution of the problem 
dy §!+Au*f(t,u^t)), • 

Vh' 
and such that u^t) *u(t) £u2(t) for each t>0. 

Proof. We shall define the mapping TiS^—^S,, where S^i ye C « 0 ^ D ) , 

X 0*); y(0)*h'(Q)J such that: « { 

1) y is an extension of the function h'f 

2) (Ty)(t)*e~AV(Q)+ ^VA(t~s)f(s,y^(f|))ds for each t*0, 
(Ty)(Q)-ti'(€» for each 0 * 0 . 
-At * «•% 

Because e £ 0 and f is increasing, the operator T is increasing on S^. 
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Since Uj£u2, we have Tu,^Tu2. By n,* h'*h2 we have TU 2JSU 2 and u, <£ 

^Tu^ Thus U J A T U J A T 2 ^ * . . . .&T2u2 * Tu2* u2. 

If we denote vn
=Inu1, then there exist u «C«0^o),X

fiC) and a subsequence 

of v (without loss of generality we denote this subsequence again as iv~l) 
such that v converges to u in the space Ct<0,T>,X*) for each Te(Q,oo). TO 

prove this we show two facts: 

(i) To each T>0 there exists a C(T)>0 such that 

|vn(t)j>c+&-6C(T) for each t€<0,T>. 

(ii) {v \ is on the interval<0,T> equicontinuous in X**. 

Then from (i), (ii) and from the compact embedding X***6* into X * the exist­

ence of a ueC«0,T>,Xoc) and of the subsequence v such that v converges to 

u in the space C«0,T>,X'c) follows. 

If we take, step by step, T=l,2,... and by the Cantor diagonalization 

process we get the existence of such a subsequence that v converges to u on 

C«0,T>,X*) for each T&(0,oo). Then for this sequence the following is true: 

. 'Vl ( t ) = e" A t h (0>+/te"A(t"S)f(s»vn<i)(s))ds for each t 2 ° * 

We can take a limit, because 

1) v
n ̂ (g) converges to u , x in C for each sts<0,co) and hence 

f^s,-n,w(s)) converges to f(s,u /s) for each se<0,co). 

,, 2 ) |f(s'Vn,W(s)
)lx-ra8)<ilfl(s>ul>o,U)

:>lx> lfl^'u2rW(s)
)lx^fromwhere 

'f ,vn «*K»)'x is a DOunded function for s€<0,t>. 
This implies that 

I /**4(t-S)f<s,vn/!)(s))dsi<* / V ^ W ^ s ) * , 
By the Lebesgue theorem we have 

u(t)=e~Ath(0)+ f€j e~
A(t~s)f(s,u (s))ds for each t€<0,co). 

We have to prove (i) and (ii) by the standard way: 

(І) 
-ati 

W + ) U * C e | Һ ( 0 ) U 
+
U ť-"'(^)Ct-в)-,C

-«l«в.v
rl>в(в)

)l
x
 tei Ce- A +

|h(0)
U + e
 • 

(iì) |vn+1(t+«)-vn+1(t)i6^l(e-^I)e-
Ałh-(0)|:l/;(в-A*I

)e-A(
+
-

)
. 
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where we have used that 

|f(s,vn,«(S)
)lx*max-ilfl(s'lJl>U(s))lx' lfl(s>u2,o<s))lx}-

Remarks. 1. In the case of ordinary differential equations and hence 
when X06=R and X * is a conditionally complete lattice, we could use the Tar-
ski fixed point theorem and omit the assumption (ii) of the theorem. 

2. Also, in the general case, the assumption (ii) could be replaced by 
various others, e.g. |f(s,z)|x*C(s), where C is a real continuous function, 
or this assumption can be replaced by 

| f ( s , z ) L . 4 k 1 ( s , |z1|, |z«|), where k1 is a real continuous function. 
Then we should need neither an upper solution nor a lower solution. In this 

case each sequence U =Tnu, contains a subsequence converging to a solution. 

3 . Since in the theorem we have shown that there is a subsequence of 
v which is convergent in the space C«0,T>,Xoc) and since the sequence v 
is nondecreasing, we have that the whole sequence v is convergent to the 
limit function, which is sup v (t). Of course, this limit process could be 

n *v n 

proceeded also with T u?. 

The following examples illustrate the last theorem. 

Example 4. We shall consider the problem 

m -u"=u(t+l/2)+u(-l/2) 

u(0,t)=u(<rr,t)=0 

with the initial condition u =0. 
o 

Hence f(t,u)=u(0)+u(-l-t), o>(t)=t+l/2 and f(t,ut+1/2)=u(t+l/2)+u(-l/2). 

Then we can construct a lower solution u(t)=0 and an upper solution 
Uj(8 )=-0. sin x for each 0.6 0 and u1(t)=t sin x for each t2:0. 

Hence the assumptions of the previous theorem are fulfilled. 

Example 5. We shall consider the problem 

•gl -uxx=min { sin x,u (t-1)} +u(-l/2), which can be written as ~rr -U.^= 
=f(t,ut+1), where f(t,u)=-Cmin sin

3x,u3(0)^ +u(-3/2-t). 

It is easy to see that this function fulfils the assumptions of the pr^-
vious theorem. 

Now, we can take u(t)=0 for all ts(-e*>,<») as a lower solution and 
v(t)=2ctetsin x for all t£0, v(-l/2)=x sin x for some o l . 
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We extend v(t) into (-OD,-1/2) u(-l/2,0) such that v be a nonnegative conti­

nuous function on (-430,00). 

We shall show that v(t) is an upper solution of our problem and hence it 

suffices to show that 

v(t)*e-Atv(0)+ J*e-A<t-s) ainisin3X,8c3(s+l)3e3s+3sin3x 1 ds+ 

+c / ^ ^ s i n x da 

so that 

v ( t ) * j r V A ( t - s W x ds+cjf e~A(t~s)sin x cte*3/4 j ^ V ^ s i n x ds-

- J^e"9(t-s)(sin 3x)/4 ds+c ̂ V ^ ^ s i n x ds-3/4(l-e"*t)sin x+ 

•cU-e^sin x - j £ V 9 ( t ~ s ) i f U * ds. 

From the fact that sin x£~sin 3x for each xe<0,ar> it suffices to show 

that 

2ctetsinx=v(t)2(l-e~t)sin xU+c), thus 2ct etZ(l-et)(l+c) 

for each t£0. 

But this is true for all sufficiently large c ( o l ) . Hence the assumptions 

of the previous theorem are fulfilled. 
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