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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,4(1987)

PARABOLIC EQUATIONS WITH DEVIATING ARGUMENT IN ADVANCE
Llubica 5EDOVA

Abstract: The phase space for the equation %% +Au=Lut+b is decomgosed

into the sum Y=Y +Y, of two T(t)-invariant subspaces, where T(t) is the
corresponding semigroup of solutions, L is a linear operator and Ui deno-

tes the deviation of u in advance. Also a nonlinear generalization
%%-+Au=f(t,gn(T)) of the above problem is treated.

Key words: Functional differsntial equations, parabolic equations with
delay in advance, sectorial operator, crdered Banach space, stability.

Classification: 35R10, 34K30

§ 1. Introduction and results

The paper extends the results ‘'of J. Milota [Mil to the problems with
deviating argument in advance. A decomposition of the phase space Y=Y1+Y2
into two T(t)-invariant subspaces is established. This decomposition can be
applied in investigation of the asymptotic stability. Some ideas of [Mil have
beer? used. The results obtained in the linear problem are similar to those
by [Mil provided the norm of L is small.

Solving the nonlinear parabolic functional differential equation,the
existence and uniqueness of the solution have been proved (see Theorem 5).
A result of [5) has been extended from functional ODE to the parabolic prob-
lems.

Moreover, under the monotonicity assumptions on f, restrictions con-
cerning the growth assumptions can be removed. In that case we apply some
techniques from the theory of partially ordered Banach spaces.

In the péper some examples are given which illustrate the special be-
haviour of solutions to the problem with advanced argument.
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The theory of semigroups, the original Banach space X, the power spaces

X% and the estimates from [Mi] and [ He] are used.

§ 2. Assumptions and denotations

Suppose that X is a Banach space and A is a sectorial operator in X (for
the definition see [Hel or [Mi]). Let Re 6(A)> 0 and let « & (0,1). Denote
X% the fractional Banach space of X, following [Hel terminology. .

e

Let 7 >0. Let Y= {ye C((-00,0>,X%); 0S8, e?® |y(e )|, < and
e¥9y(@) is a uniformly continuous function from (-©2,0> to X*}. Clearly,
Y is a Banach space with the norm \!th=sup e"ely(e)loc . Let b>0 and let
L:Y—> X be a continuous linear operator. Further we assume that there ex-
ists a constant C, > 0 such that the following estimates hold for each
t &(0,00):

(a1 A% A gg %t

(A2) ][Ll[:‘f:(t-s)'d'e’a(t'S)dssq, where 04q<1 and LIl is the norm
of the operator L.

The first assumption takes alway$ place (see [Hel).

Let 2= $u CK0,0),X;, spp ), lu(t)| <col and let iHull ssup - u(t)],, for
each ueZ. (Z,-M ) is a Banach space. If ueC((-®,00),X), we denate
u,(@)=u(t+®) for each Oe (-o,00).

Detinition of a mild solution. Let heY be an initial function. We con-
sider the equation

(€) W +pust(u,,,) (the equation with the deviation)
together with the initial condition

(Cu) uy=h on the interval (-00,0).

L]

Any solution u in the space C((-00,0),X*)nZ of the integral equation
- $ _A(t-
(E1) u(t)=e Ath((J)+ j; e ACt S)L(us+b)ds,

which satisfies the initial condition (Co), is said to be a mild solution to
the initial problem (E,Co).

‘ § 3.

Existence theorem 1. Let heY. Then under the assumptioris given above
there exists a unique mild solution of the problem (E,CO) in the class of
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l. l‘—bounded continuous functions.

Proof. Let 5= {xeZ; x is a continuous extension of the function h}.
Clearly, 51 is a closed subset of the Banach space Z. We shall consider the
operator T:5,—> 5, which is defined for each tZ0, by Tx(t)=e™"*h(0)+

+ _/;te"A(t’S)L(xsm)ds.

since |Tx(t)] &Ce™2*|n(0)| +g‘./‘;te'a(t's)(t-s)—¢lLH g, lds£G Ih|y+
+C AL J;te'a(t'S)(t-s)' ds(hlly+UW xW), T maps S into S). Further

T (DT =1 [eAE D0 o xy sl, &

<huc,, f $73(48) (45 %5 i) x, I £ qlix, -, -

Hence lllT(xl-xZ)lI s q lel-xzm and by the Banach fixed point theorem
there exists a unique solution of (El) in 51.
The question arises, when the mild solution is a strong one.

Theora 2. Let h(0) be an element of X**® for some € > 0 and let
ef h(®) be Holder continuous in (-c0,0). Then the mild solution of (E, C )
is a strong one.

Proof. We shall apply Th. 3.2.2 in [Hel. Put f(s)=Lxs+b. Clearly,
f@ If(s)!xds<w for each @ > 0, because £:{0,c0) —> X is a continuous
o

function. Further, we have to show that f is locally Holder continuous. This
follows from the following two statements:

(1) #%h(e) is a Holder continuous function;

(ii) x(t) as a mild solution is a Holder continuous function in (0,03)
We have

IxCtys0OxCt] -l(e"‘k-ne Lo +| Lt .

. & -A(t, +k-8) -at
A("l S)Lxs+bds| + ‘L’ 17 seely 40k 1lh(u)l

-a(t,-s)
sCeKeg,, f (4-7% 1 dsILHCIhRy+ Wx )

t -
+ALICIRR + B x )G, ft oot

(ii) takes place.

(t,+k-8) s £ Kk © +K1(t1)k1."“' , so that

h(®) is a locally Holder continuous function on (-co 0} because J' h(&)
is Holder continuous. This also implies that the map S —» x_ .. as a map trom
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{0,00) into Y is locally Holder continuous and thus f(s)=Lxs*b is locally
Holder continuous, too.

Apriori estimates for the mild solutions and some properties of those
. solutions

1) Continuous dependence of solutions on the initial condition. Let the
solution x, correspond to @, and x, to @,. Then we have Il x;-x, n=
£ (C+a) g, - ?2"Y+q i xl-xzm , from where it follows ¢

i C1+q "
(1) "Wx -x,ll & T4 hyl— 9,1,
and C
2) Ux ll L—_—-—ﬂqYll

Now we shall consider the operator T(t):Y — Y, which is defined for
each t 30 as follows:

If u(t) is a mild solution of the equation (E) with the initial function
@cY, then T(t)e , similarly as in [Mi] will mean u, €Y. On the basis of
(2), it is clear that so defined T(t) is a semigroup of the class C The
assumption on the uniform continuity of e'fecy(e) is needed in the pronf of
Jéi_n’aoT(,t)q % . For the operator L=0 we denote this semigroup by S(t), simi-

larly as in [Mil.

2) The solution x(t) is bounded on the interval {J,c0) for each >0
also in the space ¥*€ such that £> 0 and o+ ¢ <1, and locally Holder
continuous as a function of s & {d”,@) into X*:

) lus)|,, sle™ %0, +I fAe'A(s't)Lur blrl ‘Ce'ass‘s|q>(0)“+
whe *’(5“)(5 DI oy BuR e £C6°¢] g (O] 40, €2 (a-r) 8 »
-arALI 1+ 1._) Nerl.

® Jutshru)|g =1 ADeM o]+ [ e AP,

o Lugirly o] [PRAGDL gl eonee®s 57 POt
+C .f:e'a(s'r)(s-r)"" drh® HLII(1+ ;%;5 Pl +

peobv_ = - C,+q - 1-a
f e (84D g sh-r) “riLl () Wl 4(Cs w04t Mely.
Now we shall consider the problem, when T(t)-S(t):Y—>Y, is a compact
operator. A similar lemma as in [Mil is true:
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Lemma 1. If A has a compact resoivent, then the operator T(t)-5(t):

:Y—>Y is compact for each t>0.
Proof. We have
(5) (M-8 @) (w-)= [ e Dy ds tor each ze (0,t7

where u is a mild solution of (E) with u =g and ((T(1)-5(1))g)(w -1)=0
for each ® & (~00,-0>

Let, now, ¢ €Y be a sequence of bounded elements of Y. We shall show
that we can extract a subsequence from this sequence such that (T(t%S(t))g’n
converges in Y.

By (5) it suffices to show that there exists a subsequence of the sequ-

T Al -
ence of mappings "*,{, e Ak s)Lu ds, which converges in the space

n,s+b
CK0,t) ,X*). This will be shown as follows: .
I. The seguence of mappings from<0,t)> into X* .

T Ae-
P ——> f e A S)Lun s+bd5 is equicontinuous.

II. For each ©e<0,t > there exists a subsequence of @, such that
f -Ale-s)

Lun5+bds converges in X™

From I, II the compactness follows.

To prove I we consider

|f'z+3é—A(~c'+h—s)L bdh‘-/ e -A(z- S)Lu

0 n,s+ dsl, =

n,s+b

T
-Ah_;y ~AG-5) ted _pesh-s)
&l Jo eM-De Lun,s-rde'ac +| _/; e Lu

from where the equicontinuity by (2) follows.

n,s+bd5|uc ?

Further,
| j‘" ~Ae- s)Lu ds| fw" -a('r—s)( —s)""EILb\ i
n,s+b u+g c¢+; o © 3 “n,s*b”Ydsé
-a(e-g) ~o~¢
PERUAL (-s) ds(l L % g, by <c.

From this 1nequallty as well as from ti-. ‘ ‘mpactness of the embedding
X €5 XF the statement II follows.

The compactness of the operator A is a sufficient but not necessary con-
dition (even when the right-hand side of the equation (E) is different from
0), for the operator T(t)-5(t) to be compact, as the following example

" shows.

Example 1. Let X=L2(-oo,a>). Let Au-.-u Hu and D(A)= W (R). According to
[Hel A is a sectorial operator, 6(A)= <l,oo) o =1/2 and x 12, wl(R) x"‘
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Hence the operator A has no compact resolvent. Let us take the equation. (E),
where L:C&-b+ 3,0>,X*) —» X is a linear and continuous operator, for some
fixed (3 >0 such that -b+(3 <0. Further we suppose that there exists a sequ-
ence L for r=1,2,..., such that:

(1) each L :C(<-b+ (3,07, W2°°( -r,r)) —» X is a continuous and linear
operator,
(ii) Lyl 0 for r —» o0 in the space [C(<-b+(3,0>,X%),X].

Since w%“(-oo,m) is continuously embedded into w%"‘(—r,r), it is clear
that Lr:C((-b+[3 ,0>,X¥) —> X is also linear and continuous for each re{l,2,
Hence, we consider ,the problem

g—% - uxx=Lut+b'U(t); u(0)=u0, where u e X1/2=w%(R).

We can extend the initial function to the interval (-ep,0)> as a const-
ant function. We shall show that under (i) and (ii) T(£)-S(t):Y— Y is a
compact operator for each t>0.

We have to prove the statements I and II from the previous proof under
the assumption that the sequence cyn in Y is bounded.

The statement I has been already shown in the previous proof.

Now we prove the statement II: First we shall show that for each r e
€ {1,2,...,% there exists a subsequence of ¢ such that the corresponding
u (s) converge in the space W (-r,r) for each s €{A3,t+b>, uniformly with
tespect to s. Choose an arbltrary, but flxed r>0. On the basis (4) we have:

(6) u, are equxcontmuous as the mappings from {f3,t+b> into X
qwz( r,r).
Further, (3) gives us that Iun(s)lo“agK\\g: nlly and so 'un(S)wax«»ZaﬁC

for each se {[3,t+b). Hence ’ ! 2

M ly, (s)] )é C for each s e {f3,t+b> .

2&23( -r,r

As wg‘”u(-r,r) C.er%(-r,r), from (6) and (7) the existence of a subsequen-

ce u, uniformly converging in the space w;(—r,r) with respect to s follows.
Now, step by step, we put r=1,2,... and we construct a subsequence of
¥n such that the correspondmg Uy will converge uniformly with respect to
s e{f3, t+b) in the space wz( -r,r) for every r>0. (This does not imply the
convergence in wz( ©,00).)
Let v >0, 0< ~ «t, be arbitrary and let Pa be such a subsequence
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constructed above that the corresponding subsequence u,, converges in
w%(q‘,r) for each re{l,2,...%. Then

T -
HSO-TN g - g -1)] [ e A S)Lr(un,sm—um,sm)dsk +
+Ufe’M¢_5)(Lr—L)(un,sm—um,sm)dsL‘/ A

LS -
Z el ce a('r"S)('L'—s) dslu -u It +
el & M8 T seb c(<-b+/s,o>.w§°‘(-r,r))

+ L, f:e'a(f'S)('r—s)'“(lun’smn»« My supl £

£C,supliL lhu_-u |
1Pl c(<p,t+b>,w§’f-r,r))

+ IL-LIC,,
where we have used (2).

N

Then to each €>0 there exists an r, such that I)Lr L < 7%— .

To this T, there is an.ng such that for each n,m>n:

lu_-u | <————E|‘l——l—— so that
" m (C&B,teb Wo(-r,r )y Oy SuPlL N2

[(S()-T(t)) (@ - g ) (T -t)| < € for each n,m>n,. Hence S(t)-T(t);
¥ —> Y is certainly a compact operator.

An example of an operator L satisfying the conditions (i), (ii) above,
iz ‘he operator [Lul(x)=a(x)ux(0,x), where a(x) is a continuous function

defined on (-eo0,50) such that lim a(x)=0. Then we can “dke (L _u)(x)=
X ~» 00 r

Xy -0
=ar(x)ux(0,x), where a, is a sequence of continuous functions such that

supp arc.(—r,r) and a,.=raon (- o0,00).
An estimate for the essential spectrum of the operator L under the as-
sumption that T(t)-S(t) is compact, is the following one:

®) 6, (1) 4ce™N@ VL,

For the proof see [Mil, who estimated l6’(S(t))Is[:e"“i"(a’a')t and since
S(t) here and in [Mi] have the same meaning, we have that Ges(T(t))=
= g (S(+T(1)-5(1))= & (5(1)), by [4.1, Mi] .

Now, we shall deal with the relation between 6&'(B)- s‘es(B) and
6(T(t))- S'es(T(t)), where B is the infinitesimal generator of the semigroup
T(t).

We shall extend the result of [Mi, Lemma 21 to our case.
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Leomme 2. °
(1) 1 Bg=Ag , then 02Re A2 -7 and T()g=e"t where (& )=e”
for © & 0 and d6D(A) and d solves the characteristic equation

(9 A(0)+Ag(0)=e"L(e?® ().

(ii) If 02Re A2- % and (9) has a nontrivial solution, then A € Ps(B)
(point spectrum of the operator B).
(ii1) If o ePs(T,t)) and @ +0, then there exists at least one A
such that A6 Pg(B) and e“t= & and there are at most finitely many such
* Proof.
(1) In the same way as in [Mﬂ we can show that @ (@ )= e"@(o) and hem-
ce Re Az - 7 and [T(t)g1(0)=e™ ¢(0). By the boundedness of T(t)g this im-
plies that Re A 4 0. Further the function £(s)=Lu_, =L(e*(5*9*®) ¢ (0))-

A(5"t’)t.(e @(0)) is locally Holder continuous on the interval (0,c0) into
X and so u(t)= [T(t)@l(0) is a strong solution from where e’“cy(o)s D(A) for
each t>0. This implies ¢(0)sD(A) and for each-t>0 it is true that
-g% + M=Lu‘t+b'
From this it follows that de”t ¢ (0)+e*'A g(0)-L(eX ¥ Oy, (0)). Hence
Aq (0)+Acp(0)=¢"L (e *OxK0)).

(ii) Analogously as in [Mi).

(iii) By [Hi, Phi), similarly as in [Mil, as the semigroupsof C, are
the semigroups of the class A, the existence of such a A already follows.
We shall show by contradiction that to each w+0 ‘there exist only finitely
many A6 Pg(B) such that e*t= e .

Let there exist to some «#0 infinitely many such é\nsP,(B) so that
i29rk i
e*nt= @ . Then an=t‘llog ®+ T where k, is an integer. Hence | A | con-
verge to 0o , whereby Re A =Re A for each a;, n,. Sifice A is a sectorial
i 1 2

operator, from certsin g all an belx to the resolvent set of the operator
~A. Thus we can take

d=( I Te ML ")

by (9}, where dn are the eigenvectors. We can normalize them in such a way

that Iunl‘= ne"“%l, =1 and then

> w
g LR w‘(wm)d:nbu‘ d)l& . 1% j—nlli‘c \3:+a|‘n-'£c
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where the estimate from [Mi] was used. The right-hand side goes to 0, and
this gives the contradiction.

Corollary 1. Clearly, the space N (A ,B)= {x; (J\I—B) x=0} is T(t)-inva-
riant and N (A,8) N (X, T(1).

Theorem 3. Let T(t)-5(t):Y —»Y be a compact operator. Then to each
€ > 0 the set Pg(B)NG, where G=42 6 C;Re A 2 -min(a, 3 )+£ ¥, contains fi-
nitely many points only. Moreover, all these points are of the finite multi-
plicity.

Proof. First we show by contradiction that the set M=Py(B)n G is isola-
ted. Let there exist a sequence ] &M such that an converges to A, A # A,

a.t a.t
for ndm. Thene " € Ps(T(t)) according to Lemma 2. Thus e N converges to

e F1(1)). Moreover, eMe &, (T(1)) for each t>0. At the same time
Re A2 -win(a, )+ £ which implies that |e t’>e-m1n(a,7)t+et and hence
De-mn{a,y)t reat -min(a,y)het

But this does not hold for sufficiently great t. Thus, the set M is cer-
tainly isolated in G ant it has no point of accumulation.

If there were infinitely many p s }neM, the sequence .ﬂn should be
unbounded. Thus, since Rg-ﬂ is bounded for aneM, the set M should have an
with unbounded imaginary part. Then there would exist a sequermce dn such

that -'ih "
aAb S Re ] biiL
_ o n -1, 2O e
1= Hd K =le " | {A4A 1) LCe dn)lg-————-m =
n

where the right-hand side again tends to zero. That is a contradiction.

Now, we shall show that all points of the point spectrum B in the set G
are of the finite multiplicity. This follows from Corollary 1 and from the
fact that the value e‘2 t is for ‘sufficiently great t a normal point of the o-
perator T(t).

Corollary 2. If S(t)-T(t):Y~»Y is under the assumptions above a com-
pact operator and ReA < 0 for each solution of the characteristic equation
(9); then 0 is an asymptotically stable solution to (E) in this class of
mild, |+|_ -bounded solutions of the equation (E), and :
]T(t)lsﬁ:‘e’d-t for some J > 0.
Proof. The proof is based on the estimate for the essential spectrum
and on the fact that
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. sup £]a152aePUT(+)} =5 Re PeB)-t ot hore 0.
ot .
Thus IT(t)!é.C(d"l)e 1 » where 0<d < min{-a ,min(a, 7 )$.

Corollary 3. Let T(t)-S(t):Y—>Y be a compact operator. Then the fol-
lowing statements are true:

Y can be decomposed into the sum Y=Y1+Y2 such that:

(i) The spectrum of B|Y1 contains the finitely many eigenvalues of the

finite multiplicity, whereby Re A=0 for Ae C"(BIY ),
1

(ii) Yy» Y, are T(t)-invariant.
(iii) The zero solution is asymptotically stable for T(t)IY .
2
(iv) Y, cD(B) and B|Y is a continuous linear operator generating a

group which is an extension of T(t)lY in IMi, Cor. 2].
1

Proof. The proof is similar to that one of the corresponding theorem
in [Mil.

2

1/2 @ . o
/ =, Au=-u", D(A)=RLn W2 and

Example 2. Let us take X=L2(0,or), X
du _ . N
the problem ot +Au~Lut+b, uo'ho'
We shall consider the assumption A2’ that means, let us calculate Cl/2

of this operator.

Let us take usﬁ%nwg,

-At = %. n%e™ % sin nx, trom where we have
Ae "u mTA n ’

2
1/2-at 2 _ € 2 -2n‘t . 2
|A* “e uILz- m'zz,'n e Ibn sin n)<|L2 .

(<]
u= X b_ sin nx. Then
m=41Nn

Now, Re 6(A)» d°, where d < 1. After some calculations we get that

1/2_-At 1 \1/2.-1/2_<%t
|A* “e uleé ( EE(T:—~7) t e iu‘Lz

sity of D(A) in X, also for all ueX. Thus,

for each ueD(A) and by the den-

1/2 1/2
JLl< (2e) [r((lf/‘;))d] for some J€ (0,1).

Hence, /
1/2
It Rty -} -2

When dealing with equations with advancing argument, we meet many dif-
ficulties. Consider the following example:

- 622 -



Example 3.

gﬂ -u"=u(t+1),

u(t,0)=u(t,ﬂ)=0.
u(0,x)=0 for each x & (0, ).
Clearly, this problem has for example these two solutions:
(€D u1=0,
(2) uy(t,x)=kt sin x.
However, under certain assumptions and in some classes, the unigueness
takes place.

§ 4.
In the present section we study a nonlinear problem with a rather gene-

ral nonlinear deviation. Of course, to prove the existence of a solution it

is necessary to put stronger assumptions. We shall use the following assump-
tions and denotations:

A is a sectorial operator with Re 6(A)>0.
@« :<0,00) —>R is a continuous function.
heC((-,02,X® is a uniformly continuous function.
v :<0,0) — (0,00) is a nondecreasing continuous function. lx(t)|
F will mean the space C(0,o0),X*) with the norm Il x ll=sup —(-)-—
C=4yeC((-80>X*),y be a bounded function in X4}is a Banach space with
the norm liyuatgl;pmlo)ly(t)L,q
£:40,00)xC —»X is a continuous function.
uz(6)=u(z+9) for each 8 4 0.
We shell consider a mild solution of the problem (EZ’CO)'

du

(E2) gt HAu=t(t,u (t))

(CO) ug=h,
that means, a continuous solution of the integral equation
u(t)=e Ath(o)+ f At-5)5(s,u 1 (s) 08 for each t>0
which satisfies the initial condition u0=h.

Solving (E2, Co) we shall assume (Bl - B5) where

t -

(B1) fo e 2(1-8) (4 ) dlf(s,0)|xds£K\y(t) for each t20,
(82) lf(t,zl)—f(t,zz)lﬂn(t) Nz)-2, |l for each te<0,00), where

n(t) :{0,00)—>R is a continuous function.
(83) j; )y % 'a(t's)n(s)ds is a y -bounded function on the interval

(D,oo)
- 623 -



(B4) Gy f (t-5)"%e -a(t- S)n(s) sgn ' (s) y(co (s))ds £q y(t) for each
tZ 0 where 0£q<1, c'(s)=max £0,(s)} and C. means the constant
from (Al).

Theorem 5. If Bl -B4 are satisfied then there exists a unique mild V-
bounded solution of (E2, Co) on the interval<0,00).

Proof. The idea of the proof is due to [ 3], whereby the conditions here
are analogous to those in that paper. The proof is based 'on the Banach fixed

point theorem.
Put §)= {ye&F;y(0)=h(0)}, whereby we extend yg §, for A £0 by y(@)=
=h(& ). We define the operator T:Sla* S1 as follows:

(Ty)(8)=h(@) for @ 40,

(Ty) ()= Ath(0)+ f: e'A(t”S)f(s,yw(s))ds for tZ0.
Now we show that T:5,—> Sl We have that
|Tx(t)LﬁaCe"atlh(0)l+C f e'a(t S)(t 8)"%|£(s,x (s))ldsé(:e at Ih(U)L"
+G, f g (18D (¢ s)"‘lf(s 0)|ds+C, f e (18D ()" % (s lx (e l0s <
ecéatlh(o)l ., [Fer a9 gy (s, 0)|ds+, f e 2t8) (4 _5)™%(s) i+
+Mxltsgn w*(s)y(aa(s))ds,
Thus there is a C>0 such that

|Tx(t)L “Cy(t) for Dét< oo .

T is a contraction. In fact,

[Tx,=Tx, (1) | £ _aci. '
l\y(t§ % e 'C le At S)(f(s’Xl,m(s))'f(S’XZ,a(s))[cc ds &
t - . -a(t-
é-;W-)—lt L (‘u(t—s) "e‘_a(t S)n(s) Rxl,w(s)'xz,a)(s)ﬂ ds &

t - . '
‘o, Ge(t-9)* e 2 (e M xg-x, M sgn w3 (s)y (@ (8))ds &gl -,

for 0st < 0o .

Thus I!Txl-szﬂl %q Mxl—xzﬂ .

Now we shall prove an existence theorem in the partially ordered Banach
space X*. The Tarski fixed point theorem is here of ne use, because X in

general is no conditionally complete lattice, as e.g. w% does not. Instead
of the assumptions Bl - BS from the previous theorem, an assumption on the
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monotonicity of f as well as some special growth assumption of f are used.
Suppose that (X, &) is an ordered real Banach space (for the definition
see [He].

Let A:X —a X be a sectorial operator with the compact resolvent and let
(AL+A) 1 be 1ncraesmg for all A such that Re A 2 Q. According to Exerciee
6 in LHe, p.60], e At>0 for each 120.

Let £sf(x,y):0,00)%xC —> X bs a continuous function, where C and the
norm N+l have the same meaning as above.

The space X* and hence C((-,0»,X® ) is again an ordered Banach space
with natural ordering in C.

Let two following assumptions hold:
(1) For each z,,2,&C, 7,42, implies t(s,2)) £ 1(s,2,).
(ii) There is a continuous function fl:(o,oo)xc——» X such that

ﬂf(s,z)!lxémax{Ifl(s,zl)lx, {fl(s,zz)lxk for all z&L, 2 £2£2,.
Definition. A continuous function ul:R--b X* will be called a lower
solution (an upper solution) of the equation (£2) if it satisfies

- ~t -
u(t)se Atuo)+ Jo e A(t-s) CHINPRROL.R
(u (0z e Mu)+ fn‘ e_A(t_S)f(s,ul’ds))ds) for each tz0.

Theorem 6. Let uy and Uss reapactively, be a lower and an upper soluti-
on, respectively, of the equation (E2) such that u (9) h (0) and u2(9)-
=h (9) for each ©<0, where h;shy&C, h (Q)Qh (=) tor each Q@ €0,
h1(0)=h2(0)s)f‘+" for some, € >0, for which ac+e <1.
Let h'&C be a function such that h(@ Y&h'(@)4 h,(®) for each &£ 0.
" Then there exists. at least one mild solution of the problem
g-% +Au:t(t,uo(t)),
u0=h
and such that ul(t) ‘.u(t)(.uz(t) for each t>0.

Proof. We shall define the mapping T:5,~ §,, where sl={ y& C({0,00),
X%); y(0)=h"(0)¥ such that: . .

1) y is an extension of the function h’,
2) (Ty)(t)=e” Aty (0)+ _f 8 -ACt- ﬁ’)f(s,y Y. \(s ))ds for each 120,
(ry)(@) h @ for sach 940.
Because & ?.0 and t is increasing, the operator T is increasing on 5.
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Since u & u,, we have Tul‘ l'u2 By hj&h 6h2 we have Tu,&£u, and u £
‘Tul' Thus ulf.Tu1 6T2u1 . &7 uzﬁTuzéuz.

If we denote Vh =" u;, then there ex1st u eC0,00),X¢ and a subsequence
of Vh (without 1055 of generality we denote this subsequence again as {vnﬁ)
such that v_ converges to u in the space C%0,T),%%) for each Te (0,00). To
prove this we show two facts:

(i) To each T>0 there exists a C(T)>0 such that

|vn(t)L:ﬁéC(T) for each te<0,T>.
(ii) {vn7; is on the interval {0,T? equicontinuous in X*.

Then from (i), (ii) and from the compact embedding ¥**® into X% the exist-
ence of a ueC(<0,T>,X% and of the subsequence vV such that v, converges to
u in the space C({0,T),X*) follows.

If we take, step by step, f=1,2,... and by the Cantor diagonalization
process we get the existence of such a subsequence that v, converges to u on
CK0,T>X® for each Te(0,e). Then for this sequence the following is true:

i 'vml(t):e'Ath'(O)*» f: e'A(t'S)f(s,vn’w(s))ds for each t= 0.

We can take a limit, because

1 :

- nw(s) converges to u .y in C for each se<0, co) and hence
£(s,%, s)) Converges to £(s,u,,.)) for each se<0,c0).

2) (s, Vo, os ))Ixémax $ity (s, Uy, c(s))IX’ £, (s, Y2 ols
|£(s, Ve w(s)lx is a bounded functlon for s€€0,1).
Thls implies that
t _-At-s) t -a(t-s) -
| Jo 5785105,y oyl e ) e (t-5) %, (s)ds.
By the Lebesgue theorem we have
oAt t _A(t-s)
ut)=e™ "h(0)+ fy e £(s,u,5))ds for each t€<0,0).
We have to prove (i) and (ii) by the standard way:
(1) v (©)], 4Ce b InCO)] , + .

))lxﬂ,from where

Lo

fte'a(t"S)(t-s)"’tlf(s,Vn ws)|x 954 ce M InCo) |, ¢ +

f g-a(ts) (4 _g)w-s max | £ (s,u; sl 1£,(s,u, w(s))lldséc(t)
-A -At -Av -A(t-s)

(WD) |y, (v, (D €] “De M @) | (e De .

‘

©_-A(1+T-s)
18,9, )8l "f» (Fe(a,v nexXs ))dSJ“Clc eyt
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where we have used that

1205,V ) Ix€max 2121 (5,01 og)) o 1£1(8,up sy IxFe

Remarks. 1. In the case of ordinary differential equations and hence
when X®=R and X% is a conditionally complete lattice, we could use the Tar-
ski fixed point theorem and omit the assumption (ii) of the theorem.

2. Also, in the general case, the assumption (ii) could be replaced by
various others, e.g. |f(s,z)|xi C(s), where C is a real continuous function,
or this assumption can be replaced by

lf(s,z)lxékl(s,hll,Izzl), where k; is a real continuous function.
Then we should need neither an upper solution nor a lower solution. In this
case each sequence u, =" Uy contains a subsequenbe converging tuv a solution.
3. Since in the theorem we have shown that there is a subsequence of
Vn which is convergent in the space C(0,T>,X*® and since the sequence v,
is nondecreasing, we have that the whole sequence Y is convergent to the
limit function, which is 3’1'48 v (t) 0f course, this 11m1t process could be
proceeded also with ™ Uy«

The following examples illustrate the last theorem.

Example 4. We shall consider the problem

C W ye/2)e(-1/2)

u(0,t)=u(or,t)=0
with the initial condition u =0.

Hence f(t,u)=u(0)+u(-1-t), @(t)=t+1/2 and f(t,ut+1/2)=u(t+1/2)+u(—1/2).
Then we can construct a lower solution u(t)=0 and an upper solution

u1(9 )=-©. sin x for each @&0 and ul(t)=t sin x for each t=0.

Hence the assumptions of the previous theorem are fulfilled.
Example 5. We shall consider the problem

g—t- -u, =min { sin’ X,u (t 1)} +u(- 1/2) which can be written as dt “Uyy=
=£(t,uy,,), where £(t,u)= {min sm3x u’(0)% +u(-3/2-t).

It is easy to see that this function fulfils the assumptions of the pre-
vious theorem. .

Now, we can take u(t)=0 for all te (-o00,a) as a lower solution ang
v(t)=2ctetsin x for all t20, v(-1/2)=x sin x for some c >1.
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we extend v(t) into (-o0,-1/2) v(-1/2,0) such that v be a nonnegative conti-
nuous function on (-00,00).

We shall show that v(t) is an upper solution of our problem and hence it
suffices to show that

vtz e Atv(o)+ fat e At-8) ping sin3x,803(s+’1)3e}5‘351n3x § ds+
+c j;te'A(t"S)a'in x ds
so that
V(t)z'j;t e A(t-8)g503 ds+c./;t e Mt-)gin x ds=3/4 f: e (t)gin x ds-

- l:e-g(t-s)(sin 3x)/4 ds+c Lte’(t‘”sm x ds=3/4(1-e )sin x«
-t t _9(t-s) sin 3x
+c(l-e” ")sin x—J; e s ds.

- From the fact that sin xZ-sin 3x for each x €0, it suffices to show
that

2ctetsinx=v(t)z(l—e"t)sin x(1+c), thus 2ct etZ(l-et)(hc)
for each tZ0.

But this is true for all sufficiently large c (c>1). Hence the assumptions
of the previous theorem are fulfilled.

References

[He)l D. HENRY: Geometric Theory of Semilinear Parabolic Equations, Lecture
Notes in Math. No 840, Springer-Verlag, 1981. -

(Hi,Phi] E. HILLE and R.S. PHILLIPS: Functional Analysis and Semigroups,
Amer. Math. Soc, Providence, 1957.

[Mil J. MILOTA: Stability and saddle point property for a linear autonomous
functional parabolic equation, Comment. Math. Univ. Carolinae
27(1986), 87-101.

L51 v. 5EDA: Functional differential equations with deviating argument,
Preprint,

[Ta) A.E. TAYLOR: Functional Analysis, John Wiley and Sons, Inc., New York
1967 (Czech translation: Academia, Prague, 1973).

UAMaVT UK, Mlynskd dolina, 842 15, Bratislava, Czechoslovakia

(Oblatum 22.6. 1987)

- 628 -



		webmaster@dml.cz
	2012-04-28T14:55:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




