Commentationes Mathematicae Universitatis Caroline

Lajos Soukup
On chromatic number of product of graphs

Commentationes Mathematicae Universitatis Carolinae, Vol. 29 (1988), No. 1, 1--12

Persistent URL: http://dml.cz/dmlcz/106592

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

on chromatic number of product of graphs
 Lajos Soukup*

Abstract: It is shown that if ZFC is consistent, then so is ZFC + GCH + "There are two graphs, B and W, with cardinalities and chromatic numbers ω_{2} such that the product of B and W has chromatic number ω ".

Key words: Chromatic number, product of graphs, consistency result.
Classification: 03E05, 03E35

1. Introduction. The aim of this paper is to prove a theorem about the chromatic number of product of infinite graphs. Our set theoretical terminology is the standard one as can be found, e.g. in [5]. For example, we identify a cardinal number with the smallest ordinal having that cardinality, and use ω_{0}, ω_{1}, etc. instead of $\boldsymbol{N}_{0}, \boldsymbol{\mu}_{1}$.

Let us recall that given graphs $B=\langle U, E\rangle$, and $W=\langle V, F\rangle$ (for black and white, respectively) their product is defined as
$B \times W=\left\langle U \times V,\left\{\left\{\left\langle g_{0}, h_{0}\right\rangle,\left\langle g_{1}, h_{1}\right\rangle\right\}:\left\{g_{0}, g_{1}\right\} \in E,\left\{h_{0}, h_{1}\right\} \in F\right\}\right\rangle$.
That is, the set of vertices of $B \times W$ is the product of the set of the vertices of B and W and the set of edges is the product of the set of the edges.
S.T. Hedetniemi raised the following problem [4] : Given a natural number k, must the product of two k-chromatic graphs be also k-chromatic, or may this number be less than k ?

The case $k=3$ is trivial, the product cannot be 2-chromatic.
M. El-Zahar and N. Sauer solved the problem for $k=4$ in [2]. In this case the chromatic number of the product must be 4 . The problem for $k \geq 5$ is $0-$ pen.
A. Hajnal asked what happens for infinite cardinals. He succeeded in proving the following results, see [3]:

*) The preparation of this paper was supported by the Hungarian National Foundation for Scientific Research, grant no 1805

Theorem. (1) If $\operatorname{Chr}(B)=\omega_{0}$, $\operatorname{Chr}(W)=k<\omega_{0}$, then $\operatorname{Chr}(B \times W)=k$.
(2) If x is a strongly compact cardinal, $\lambda<\boldsymbol{\alpha}$, and $\operatorname{Chr}(B)=\boldsymbol{x}, \operatorname{Chr}(W)=\boldsymbol{\lambda}$, then $\operatorname{Chr}(B \times W)=\lambda$.
(3) There are two graphs, B and W on ω_{1}, such that Chr $(B)=$ $=\operatorname{Chr}(W)=\omega_{1}$, but Chr $(B \times W)=\omega_{0}$.
The problem how small the chromatic number of the product can be still remains open. Here we are going to give a partial answer by proving the following result.

Theorem. Con (ZF) implies Con (ZFC+GCH+ there are two graphs B and W on ω_{2} such that Chr $(B)=\operatorname{Chr}(W)=\omega_{2}$, but $\left.\operatorname{Chr}(B \times W)=\omega_{0}\right)$.
2. A simple case. In order to make a bit easier to follow our construction, we present a proof for a weakened version of the main result, namely, we drop the assumption CH .

Theorem. Con (ZF) implies Con (ZFC + there are two graphs B and W on ω_{2}, such that $\operatorname{Chr}(B)=\operatorname{Chr}(W)=\omega_{2}=2^{\omega_{0}}$, but Chr $\left.(B \times W)=\omega_{0}\right)$.

Proof. Define the notion of forcing $Q=\langle Q, \leqslant\rangle$ as follows. Its underlying set Q consists of quadruples $\langle a, B, W, f\rangle$ where
(i) $a \in\left[\omega_{2}\right]^{\left\langle\omega_{0}\right.}, B, W \in[a]^{2}$, and f is a function, $f: a x a \rightarrow \omega_{0}$,
(ii) $B \cap W=\emptyset$,
(iii) for each $\alpha, \beta \in$ a we have

$$
f(\alpha, \beta)= \begin{cases}0 & \text { if } \alpha=\beta \\ >0 \text { and even } & \text { if } \alpha<\beta \\ \text { odd } & \text { if } \alpha>\beta\end{cases}
$$

(iv) if $\{\alpha, \beta\} \in B \cup W$ and $\boldsymbol{\gamma} \in a, \alpha<\boldsymbol{\gamma}$ then $f(\alpha, \boldsymbol{\gamma}) \neq f(\beta, \boldsymbol{\gamma})$ and $f(\boldsymbol{\gamma}, \alpha) \neq f(\boldsymbol{\gamma}, \beta)$,
(v) for each $\{\alpha, \beta\} \in B$ and $\{\gamma, \delta\} \in W, f(\alpha, \gamma) \neq f(\beta, \delta)$.

The ordering on Q is as expected: if $\left.p=\left\langle a^{p}, B^{p}, W^{p}, f^{p}\right)\right\rangle \in Q$ and $g=\left\langle a^{q}, B^{q}, W^{q}, f^{q}\right\rangle \in Q$ then $p \leqslant q$ iff

$$
\begin{aligned}
& a^{q} \subseteq a^{p} \\
& B^{q}=B^{p} \cap\left[a^{q}\right]^{2} \\
& w^{q}=w^{p} \cap\left[a^{q}\right]^{2} \\
& f^{q} \subseteq f^{p} .
\end{aligned}
$$

The elements of Q are the approximations of the edges of B and W, and the colouring of the product. It is easy to see that Q satisfies c.c.c. Now let \mathscr{G} - 2 -
be V -generic over Q and put

$$
\begin{aligned}
& B=U\left\{B^{p}: p \in G\right\} \\
& W=U\left\{W^{W}: p \in \mathscr{G}\right\} \\
& F=U\left\{f^{p}: p \in \mathscr{G}\right\}
\end{aligned}
$$

B and W are the sets of edges of graphs on ω_{2} and their product has chromatic number at most ω_{0} since F is a "good colouring" of $\beta \times W$ by ω_{0} colours. On the other hand, for each $n \in \omega_{\mathrm{o}}$ the complete graph on n vertices can be embedded into $\beta \times W^{r}$, thus $\mathrm{Chr}(\beta \times W) \geq \omega_{0}$.

Finally, $\mathrm{Chr}(\mathcal{B})=\mathrm{Chr}(\boldsymbol{W})=\omega_{2}$ follows from the following fact. For each $A \in\left[\omega_{2}\right]^{\omega_{2}}$ and $\left\{p_{\alpha}: \alpha \in A\right\} \subset Q$ in V there are two different elements $\alpha, \beta \in A$ and $q \leq P_{\alpha}, P_{\beta}$ with $\{\alpha, \beta\} \in B^{q}$.

Obviously, this construction can be carried out for every regular cardinal in place of ω_{2}.
3. The proof of the main result. We use a generalization of a method of J.E. Baumgartner [1]. First of all we sketch the idea. The elements of the poset \mathcal{P} we are going to force with are quadruples $\langle A, B, W, F\rangle$, where A is a countable subset of ω_{2}, B and W are edge-disjoint graphs on A approximating B and \mathcal{W}, and F is a set of functions, $F=\left\{F_{x}: x \in \omega^{<\omega}\right\}$. The union of F_{\emptyset} 's in the generic set will be a good colouring of $\beta \times \mathcal{W}$.

The poset is will be ω-complete, therefore we need to show $\$_{2}$-c.c. As usual, we have to "amalgamate" p and $\mathrm{q} \in \mathcal{P}$ whenever they satisfy certain assumptions. Assume π is a full isomorphism between $p=\left\langle A^{P}, B^{P}, W^{P}, F^{\mathrm{P}}\right\rangle$ and $q=\left\langle A^{q}, B^{q}, W^{q}, F^{q}\right\rangle$. If $\alpha \in A^{p} \backslash A^{q}, \beta \in A^{q} \backslash A^{p}$, then we must define the "colour" of $\{\alpha, \beta\}$ in the amalgamated condition. Our idea is that $\mathrm{F}_{\langle 0\rangle}^{\mathrm{q}}(\boldsymbol{\pi}(\alpha), \beta)$ consist of the potential colours of $\{\alpha, \beta\}$. However, we need to define $F_{\langle 0\rangle}(\alpha, \beta)$, too. Its candidates are the members of $F_{\langle 0,0\rangle}^{q}(\pi(\alpha), \beta)$. In general, the elements of $\left.F_{\langle k\rangle}^{q} \sim_{x}(\boldsymbol{T}(\alpha), \beta)\right)$ are the candidates to be elements of $F_{x}(\alpha, \beta)$.

Now we start the detailed construction with some notions. Let
$U=\left\{\alpha<\omega_{2}: \operatorname{cf}(\alpha)=\omega\right\},\left\{f_{n}: n \in \omega\right\}$ be a set of functions from U into ω_{2}, such that for each $\propto \in U,\left\langle\mathrm{f}_{\mathrm{n}}(\propto): n \in \omega\right\rangle$ is increasing and unbounded in \propto.

Let $\left\{S, G_{n}, H_{n}: n \in \omega\right\}$ be the following enumeration of $\omega: S=0, G_{n}=2 n+2, H_{n}=$ $=2 n+1$.

If $\alpha, \boldsymbol{\gamma} \in \mathcal{U}, \boldsymbol{\alpha}<\boldsymbol{\gamma}$, let $t(\boldsymbol{\alpha}, \boldsymbol{\gamma})=\min \left\{\mathrm{n}: \alpha<\mathrm{f}_{\mathrm{n}}(\boldsymbol{\gamma})\right\}$. If $\mathrm{n}, \mathrm{k} \in \boldsymbol{\omega}$, let $T_{n, k}=\left\{5, G_{m}, H_{l}: m \geq n, l \geq k\right\}$ and $v_{n, k}=T_{n, k}<\omega$.

Definition 3.1. Let $\mathcal{S}_{0}\left\langle\left\langle P_{0}, \leqslant\right\rangle\right.$ be the partial ordered set whose underlying set P_{0} consists of quadruples $\langle A, B, W, F\rangle$, where
(1) $A \in\left[\omega_{2}\right]^{\leq \omega_{0}}, B, W \in[A]^{2}, F=\left\{F_{x}: X \in \omega^{<\omega}\right\} ;$
(2) $B \cap W=\varnothing$;
(3) F_{\emptyset} is a function from $[A]^{2}$ into $[\omega]^{\omega}$;
(4) If $x \in \omega^{<\omega}, x \neq \emptyset$ then F_{x} is a function from $A x A$ into $[\omega]^{\omega}$.

The ordering on P_{0} is as expected: if $p=\left\langle A^{P}, B^{P}, W^{P}, P^{P}\right\rangle \in P_{0}$, $q=\left\langle A^{q}, B^{q}, W^{q}, p q\right\rangle P_{0}$, then $p \leqslant q$ iff
$A^{q} \subseteq A^{p}$
$B^{q}=B^{p} n\left[A^{q}\right]^{2}$
$W^{q}=W^{p} \cap\left[A^{C}\right]^{2}$
$F_{x}^{q} \subseteq F_{x}^{p}$ for each $x \in \omega^{<\omega}$.
Definition 3.2. Let \mathcal{P}_{1} be the subset of \mathcal{P}_{0} consisting of quadruples $\mathrm{p}=\langle\mathrm{A}, \mathrm{B}, \mathrm{W}, \mathrm{F}\rangle \in \mathcal{P}_{\mathrm{O}}$ satisfying conditions $1-5$ below.

Condition 1. If $\left\{\alpha, \gamma^{\}} \in B,\left\{\beta, \boldsymbol{\alpha}^{\gamma}\right\} \in W, \alpha<\beta, \gamma, \sigma, n=t(\alpha, \gamma), k=t(\alpha, \delta)\right.$, $x \in V_{n, k}$ then $F_{\phi}(\alpha, \beta) \cap F_{x}(\gamma, \sigma)=\varnothing$.

Condition 2. If $\{\alpha, \gamma\} \in B, \beta \in A, \alpha<\beta, \gamma, x, y \in V_{0,0}, n=t(\alpha, \gamma)$, $k=t(\alpha, \beta)$ and for arbitrary $Z \in V_{n, k}$ and $i<n\left\langle G_{i}\right\rangle \cap_{x} \neq Z \cap_{y}$ and $x \neq\left\langle G_{i}\right\rangle \cap z \wedge y$, then $F_{x}(\alpha, \beta) \cap F_{y}(\gamma, \beta)=\varnothing$.

Condition 3. If $\{\beta, \delta\} \in W, \gamma \in A, \beta<\gamma, \delta, x, y \in V_{0,0}, n=t(\beta, \gamma)$, $k=t\left(\beta, \sigma^{\prime}\right)$ and for arbitrary $Z \in V_{n, k}$ and $i<k\left\langle H_{i}\right\rangle \cap_{x} \neq Z_{y} y$ and $\left.x \neq\left\langle H_{i}\right\rangle^{\wedge} Z\right\rangle y$, then $F_{x}(\gamma, \beta) \cap F_{y}(\boldsymbol{\gamma}, \delta)=\varnothing$.

Condition 4. If $\langle\beta, \sigma\rangle \in W, \gamma \in A, \gamma<\beta, \sigma, x, y \in V_{0,0}$ and for arbitrary $i \in \omega\left\langle H_{i}\right\rangle^{\wedge} x \neq y$ and $x \neq\left\langle H_{i}\right\rangle^{\wedge} y$, then $F_{x}(\gamma, \beta) \cap F_{y}(\boldsymbol{\gamma}, \delta)=\varnothing$.

Condition 5. If $\alpha, \beta \in A, x, y \in V_{0,0}, x \neq y$ then $F_{x}(\alpha, \beta) \cap F_{y}(\alpha, \beta)=\varnothing$. If $\alpha, \beta, \gamma, x, y, n, k$ are such as in 2 above, we denote this fact by $b(\alpha, \beta, \gamma, x, y, n, k)$ and if they are such as in 3 , we abbreviate this by writing $w\left(\beta, \gamma, \delta^{\circ}, x, y, n, k\right)$.

The notions strongly closed, closed, the lemma 1 and the method of Lemma 7 are due to J. Baumgartner [1].

If $\omega_{1} \leqslant \propto<\omega_{2}$, let $\eta_{\infty} ; \propto \frac{1-1}{\text { onto }} \omega_{1}$. We say that $A \in\left[\omega_{2}\right]^{\omega \omega_{i}}$ is strongly closed iff $A \cap \omega_{1} \in \omega_{1}$ and for each $\alpha \in A \quad A$ is closed under h_{∞} and h_{∞}^{-1} and for each $\alpha \in A$ and $p \in \omega \quad f_{p}(\alpha) \in A$. For arbitrary $A \in\left[\omega_{2}\right] \in \omega$, $\operatorname{scl}(A)$ is the smallest strongly closed set containing A. If $p \in \mathcal{P}_{1}, p$ is closed iff $A^{P}=\operatorname{scl} A^{P} \cap U$. For \mathscr{S}_{1} is σ-complete, the closed conditions form a dense subset of $\mathcal{\rho}_{1}$.

Lemme 1. If a, b are strongly closed and $a \cap \omega_{1}=b \cap \omega_{1}$, then $a n b$ is an initial segment of both a and b.

Proof. Let $\xi=a \cap \omega_{1}=b \cap \omega_{1}, v \in a \cap b, \eta \in a, \eta<v$. Then $h_{\eta}(v) \in a n$ $\cap \omega_{1}=b \cap \omega_{1}$. Thus $v=h_{\eta}^{-1}\left(h_{\eta}(v)\right) \in b$.

Definition 3. Let $p, q \in P_{1}, p, q$ closed, $p=\left\langle A^{P}, B^{P}, W^{P}, F^{p}\right\rangle$, $q=\left\langle A^{q}, B^{q}, W^{q}, F^{q}\right\rangle$. We say that P and q are isomorphic and π shows it, in signs

$$
\mathrm{p} \cong_{\boldsymbol{J}} \mathcal{A}
$$

iff the following conditions hold:
(a) $\pi: \operatorname{scl} A^{p} \frac{1-1}{\text { onto }} \operatorname{scl} A^{q}$, π is order preserving,
(b) $\left(\operatorname{scl} A^{p}\right) \cap \omega_{1}=\left(\operatorname{scl} A^{q}\right) \cap \omega_{1}$,
(c) $\{\alpha, \beta\} \in B^{p}$ iff $\{\pi(\alpha), \pi(\beta)\} \in B^{q}$,
(d) $\{\alpha, \beta\} \in W^{p}$ iff $\{\pi(\alpha), \pi(\beta)\} \in W^{q}$,
(e) $F_{x}^{p}(\alpha, \beta)=F_{x}^{q}(\boldsymbol{\pi}(\alpha), \pi(\beta))$,
(f) $t(\alpha, \beta)=t(\boldsymbol{\pi}(\alpha), \pi(\beta)$,
(g) $\pi\left(f_{k}(\boldsymbol{\alpha})\right)=f_{k}(\pi(\boldsymbol{\alpha}))$.

By Lemma $1, D=A^{P} \cap A^{q}$ is an initial segment of both A^{P} and A^{q}.
At present we are ready to define the poset $\mathcal{P}=\langle P, \leqslant\rangle$, which adds the desired graphs to the ground model.

Definition 4. P consists of quintuples $p=\left\langle A, B, W, F^{\circ}, F^{l}\right\rangle$, where both $p^{\circ}=\left\langle A, B, W, F^{0}\right\rangle$ and $p^{l}=\left\langle A, W, B, F^{l}\right\rangle$ are elements of \mathcal{P}_{1}. If $p, q \in P$, then let

$$
\mathrm{p} \leqslant \mathrm{q} \text { iff both } \mathrm{p}^{0} \leqslant \mathrm{q}^{0} \text { and } \mathrm{p}^{1} \leqslant \mathrm{q}^{1}
$$

If $p \in P$, let $p=\left\langle A^{p}, B^{P}, W^{p}, F^{O P}, F^{l p}\right\rangle$.
The notions of isomorphism, closedness are extended into elements of in a straightforward way.

So far we have defined a notion of forcing \boldsymbol{P}. To show that it works as expected, we need 3 technical lemmas, rather simple as stated but cumbersome to prove them. Using them we construct a generic model.

The lemmas below use some new notions. To begin with, if $\alpha, \beta \in A^{p} \cup A^{q}$, $D=A^{p} \cap A^{q}$, then let us denote by $E(\alpha, \beta)=E^{p, q}(\alpha, \beta)$ the set $\left\{S, G_{n}, H_{\ell}\right.$: $\left.: D \subseteq f_{n}(\alpha), D \subseteq f_{\ell}(\beta)\right\}$. $E(\alpha, \beta)$ may be $\{S\}$. If $\alpha \in A^{p} \cup A^{q}$, then put

$$
\tilde{\propto}=\left\{\begin{array}{l}
\pi(\propto) \text { if } \alpha \in A^{p} \\
\alpha \text { otherwise }
\end{array}\right.
$$

Definition 5. Assume $p \cong_{\pi r} q$. Let $t \in P_{0}, t=\langle A, B, W . F\rangle$. We say that t is (p, g)-good, iff the conditions (A) - (E) below are satisfied.
(A) $A=A^{p} \cup A^{q}$.
(B) $B=B^{p} \cup B^{q}$.
(C) $W=w^{p} \cup w^{q}$.
(D) For each $x \in V_{0,0} F_{x}=F_{x}^{p} \cup F_{x}^{q} \cup F_{x}^{\prime}$, where $\operatorname{dom}\left(F_{x}^{\prime}\right)=\operatorname{dom}\left(F_{x}\right)$)
$\backslash\left(\operatorname{dom} F_{x}^{p} u\right.$ dom $\left.F_{x}^{q}\right)$ and for each $\langle\alpha, \beta\rangle \in \operatorname{dom}\left(F_{x}^{\prime}\right) \quad F_{x}^{\prime}(\alpha, \beta) \leq U\left\{F_{\langle t\rangle}^{q}{ }_{x}(\tilde{\omega}, \tilde{\beta})\right.$: $\left.: t \in E^{p, q}(\alpha, \beta)\right\}$.
(E) For each $x, y \in V_{0,0}$ if $\langle\alpha, \beta\rangle \in \operatorname{dom}\left(F_{x}^{\prime}\right)$ and $\langle\gamma, \sigma\rangle \in \operatorname{dom}\left(F_{y}^{\prime}\right)$ then $F_{x}^{\prime}(\alpha, \beta) \cap F_{y}^{\prime}(\gamma, \sigma) \neq \emptyset$ implies $x=y$ and $\langle\alpha, \beta\rangle=\langle\boldsymbol{\gamma}, \delta\rangle$.

Obviously, if $p \cong \mathbb{T}^{q}$, then there are (p, q)-good elements of \mathcal{B}_{0}. The first lemma we have promised, is the following one.

Leman 2. If t is (p, q)-good, then $t \in \mathcal{P}_{1}$.
Proof. The general form of a condition is the following
$\left(\forall x, y \in V_{0,0}\right)\left(V\langle\alpha, \beta\rangle \in \operatorname{dom} F_{x}\right.$ and $\left.\langle\gamma, \sigma\rangle \in \operatorname{dom} F_{y}\right)$ if \ldots then $\left.F_{x}(\alpha, \beta) \cap F_{y}(\gamma, \sigma)=\varnothing\right)$.

We say that $F_{x}(\alpha, \beta)$ is new, if $\langle\alpha, \beta\rangle \in$ dom F_{x}^{\prime}. It is clear from the isomorphism of p and q and the condition (E) of the (p, q)-goodness that if one of the conditions $1-5$ fails in t, then we can assume that either $F_{x}(\alpha, \beta)$ or $F_{y}\left(\boldsymbol{y}, \delta^{\prime}\right)$ is new, but not both.

Let us verify conditions $1-5$ one by one. Let $D=A^{p} \cap A^{q}$.
Condition 1. Let $\{\alpha, \gamma\} \in B,\{\beta, \delta\} \in W, \alpha<\beta, \gamma, \delta^{\gamma} \quad n=t(\alpha, \gamma)$, $k=t(\alpha, \alpha), x \in V_{n, k}$. As we remarked, exactly one of $F_{x}(\gamma, \sigma)$ and $F_{\phi}(\alpha, \beta)$ must be new. If $F_{\varnothing}(\alpha, \beta)$ is new, then $\propto, \beta \notin D$. Without loss of generality we may assume $\propto \in A^{p} \backslash D, \beta \in A^{q} \backslash D$. Because $\alpha<\gamma, \sigma^{r}$, hence $\gamma, \delta \neq 0$. But $\left\{\propto, \gamma^{\}} \in B=B^{p} \cup B^{q}\right.$ and $\left\{\beta, \sigma^{\sigma}\right\} \in W=W^{p} \cup W^{q}$, thus $\gamma \in A^{p} \backslash D$ and $\mathcal{\sigma}^{\sim} \in A^{q} \backslash D$. Hence $F_{x}(\boldsymbol{\gamma}, \boldsymbol{\delta})$ is also new, a contradiction. Thus $F_{x}(\boldsymbol{\gamma}, \boldsymbol{\sigma})$ is new and, for example, $\gamma \in A^{p} \backslash D, \delta \in A^{q} \backslash D$. Since $\{\beta, \delta\} \in W=W^{p} \cup W^{q}, \beta \in A^{q}$. As $F_{\eta}(\alpha, \beta)$ is old, $\propto \in A^{q}$. As $\gamma \in A^{p} \backslash D,\{\propto, \boldsymbol{\gamma}\} \in B, \propto$ must be in A^{p}. Thus $\propto \in D$. Thus $E^{p, q}(\boldsymbol{\gamma}, \delta) \leq T_{n, k}$.

By the definition of (p, q)-goodness we have

Since $t(\alpha, \boldsymbol{\gamma})=t(\alpha, \tilde{\gamma})$ and $t(\alpha, \sigma)=t(\alpha, \tilde{\sigma})$ hence applying condition 1 for q we get that every member on the right side is disjoint from $F_{\beta}^{q}(\alpha, \tilde{\beta})$. For $F_{\phi}(\alpha, \beta)=F_{\phi}^{q}(\alpha, \widetilde{\beta})$ and $F_{x}\left(\gamma, \sigma^{\sigma}\right)=F_{x}^{\prime}(\gamma, \sigma)$ hence $F_{x}(\gamma, \sigma) \cap F_{\phi}(\alpha, \beta)=\varnothing$.

Condition 2. Let $\alpha, \gamma, \beta, n, k, x, y$ be such as expected. As above, it can be seen that $F_{y}(\gamma, \beta)$ must be new and α must lie in D. Hence $E^{p, q}(\gamma, \beta) \subseteq$ $\varepsilon T_{n, k}$.
Now
$F_{y}^{\prime}(\boldsymbol{\gamma}, \beta) \subseteq U\left\{F_{\langle t\rangle}^{4} \gamma_{y}(\tilde{\boldsymbol{\gamma}}, \tilde{\boldsymbol{\beta}}): t \in \mathrm{E}^{\mathrm{p}, q^{\prime}}(\boldsymbol{\gamma}, \boldsymbol{\beta})\right\}$. We must check that each $F_{\langle t\rangle}^{q} \cap_{y}(\tilde{\gamma}, \tilde{\beta})$ appearing in the right side is disjoint from $F_{x}(\alpha, \beta)=F_{x}^{q}(\tilde{\alpha}, \tilde{\beta})=$ ${ }_{-} F_{x}^{q}(\boldsymbol{\alpha}, \tilde{\beta})$. We want to apply condition 2 for q. But $b(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, x, y, n, k)$ holds and $t \in E^{p, q}(\boldsymbol{\gamma}, \beta) \subseteq T_{n . k}$. Hence $b(\alpha, \tilde{\beta}, \tilde{\gamma}, x, t y, n, k)$ holds, too, therefore by condition 2 ,

$$
\begin{aligned}
& F_{x}^{q}(\alpha, \tilde{\beta}) \cap F_{\langle t\rangle \gamma y}^{q}(\boldsymbol{\gamma}, \tilde{\beta})=\emptyset \text {. thus } \\
& F_{x}(\alpha, \beta) \cap F_{y}(\boldsymbol{\gamma}, \boldsymbol{\beta})=\varnothing .
\end{aligned}
$$

Condition 3. Let $\beta, \gamma, \delta, x, y, n, k$ be such as expected i.e. $w\left(\beta, \boldsymbol{\gamma}, \delta^{\circ}, x, y, n, k\right)$. Now $F_{y}(\boldsymbol{\gamma}, \delta)$ must be new and $\beta \in D$. Hence

$$
F_{y}^{\prime}(\boldsymbol{\gamma}, \boldsymbol{\sigma}) \in U\left\{F_{\langle t \gamma}^{q}(\tilde{\gamma}, \tilde{\sigma}): t \in E^{p, q}(\boldsymbol{\gamma}, \boldsymbol{\sigma})\right\} .
$$

Let s be an arbitrary member of $E^{p, q}(\gamma, \delta)$. Since $\beta \in D$, we have $s \in T_{n, k}$. From $w(\beta, \boldsymbol{\gamma}, \boldsymbol{\sigma}, x, y, n, h)$ we get $w\left(\beta, \boldsymbol{\gamma}, \boldsymbol{\sigma}, x,\langle s\rangle{ }^{\wedge} y, n, k\right)$. Applying condition 3 for q ,

$$
F_{x}^{q}(\tilde{\boldsymbol{\gamma}}, \beta) \cap F_{\left\langle s \gamma_{y}\right.}^{q}(\tilde{\gamma}, \tilde{\sigma})=\emptyset .
$$

Therefore

$$
F_{x}(\gamma, \beta) \cap F_{y}(\gamma, \delta)=\varnothing .
$$

Condition 4. In this case it is impossible that exactly one of $F_{x}(\gamma, \beta)$ and $F_{y}\left(\gamma, \sigma^{\prime}\right)$ is new.

Condition 5. Obviously, $F_{x}(\alpha, \beta)$ and $F_{y}(\alpha, \beta)$ are new at the same time. The lemma 2 is proved.

Lema 3. Let $p, q \in \mathcal{P}_{1}, p \cong \cong_{\mathbb{N}^{\prime}}, \nu<\mu<\omega_{2}, \ell \in \omega, D=A^{P} \cap A^{q}$, $\nu \in A^{P} \backslash D, \mu \in A^{q} \backslash D, x(\nu)=\mu, D c f_{l}(\nu), D \subset f_{l}(\mu)\langle\nu$. Let $t=\langle A, B, W, F\rangle$ be a (p, q)-good element of \mathcal{J}_{0} such that

$$
\begin{aligned}
& \langle\alpha, \beta\rangle \in \operatorname{dom} F_{x}^{\prime} \text { implies } \\
& \text { if } \alpha \notin\{\nu, \mu\} \text { then } F_{x}(\alpha, \beta) \subset F_{\langle s\rangle}^{q}(\tilde{\alpha}, \tilde{\beta})
\end{aligned}
$$

if $\alpha \in\{\nu, \mu\}$ then $F_{x}(\alpha, \beta) \subset F_{\left\langle G_{\ell}\right\rangle \cap_{x}}^{q}(\tilde{\alpha}, \tilde{\beta})$.
Then $r=\langle A, B \cup\{\nu, \mu\}, W, F\rangle \in \mathcal{P}_{1}$.
Proof. Assume on the contrary that $r \notin \mathcal{P}_{1}$. We know $t \in \mathcal{P}_{1}$, and the difference between r and t is only one edge, $\{\nu, \mu\}$. Therefore we must check only cases when edge $\{\nu, \mu\}$ acts in conditions $1-5$.

Condition 1. Let $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\sigma}, \mathrm{x}, \mathrm{n}, \mathrm{k}$ as expected. In this case $\boldsymbol{\alpha}$ must be ν, and $\boldsymbol{\gamma}$ must be μ. Since $\mathrm{f}_{\ell}(\boldsymbol{\mu})<\nu<\mathrm{f}_{\mathrm{n}}(\boldsymbol{\mu}), \ell<\pi$.
(i) $F_{\emptyset}(\alpha, \beta)$ is new. Since $F_{\emptyset \emptyset}^{\prime}(\alpha, \beta) \subset F_{\left\langle G_{\ell}\right.}^{q}(\widetilde{\alpha}, \tilde{\beta})=F_{\left\langle G_{\ell}\right\rangle}^{G}(\tilde{\gamma}, \tilde{\beta})$, therefore it is enough to prove

$$
F_{\left\langle G_{\ell}\right\rangle}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta}) \cap F_{x}^{q}(\tilde{\gamma}, \tilde{\delta})=\emptyset
$$

If $\tilde{\boldsymbol{\gamma}}<\tilde{\beta}, \tilde{\delta}$ then because $\boldsymbol{\ell}<n$ and $x \in V_{n, k}$ we can apply condition 4 for q to obtain it. If $\widetilde{\beta}<\tilde{\gamma}, \tilde{\boldsymbol{\sigma}}$, then because $\boldsymbol{\ell}<n, x \in V_{n, k} t(\alpha, \gamma)=n \leqslant t(\tilde{\beta}, \tilde{\gamma})$, we can use the condition 3 for q and obtain the desired result.

If $\tilde{\sigma}^{\widetilde{\prime}}<\tilde{\gamma}, \tilde{\beta}$, then because $\ell<n \leqslant \mathrm{t}(\tilde{\sigma}, \tilde{\gamma})$ we can apply Condition 3 .
(ii) $F_{x}\left(\boldsymbol{\gamma}, \boldsymbol{\sigma}^{\prime}\right)$ is new. Since $F_{x}^{\prime}(\boldsymbol{\gamma}, \boldsymbol{\sigma}) \subset F_{\left\langle G_{\ell}\right\rangle}^{q}{ }_{x}(\boldsymbol{\gamma}, \tilde{\boldsymbol{\sigma}})$ hence it is enough to prove
$F_{\emptyset}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta}) \cap F_{\left\langle G_{\ell}\right\rangle \cap}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\delta})=\emptyset$
because $F_{\emptyset}(\alpha, \beta)=F_{\emptyset}^{q}(\tilde{\alpha}, \tilde{\beta})=F_{\emptyset}^{G}(\tilde{\gamma}, \tilde{\beta})$. But $\alpha<\beta, \delta^{\sigma}$, hence $\tilde{\gamma}=\tilde{\alpha}<\tilde{\beta}, \tilde{\sigma}$. For $G_{\ell} \neq H_{i}$, we can apply Condition 3 in q to obtain the desired result.

Condition 2. Let $\{\alpha, \gamma\} \in B, \beta \in A, x, y, n, k$ as expected. Then $\alpha=\nu$ and $\boldsymbol{\gamma}=\boldsymbol{\mu}$. Since $\mathrm{f}_{\boldsymbol{\ell}}(\boldsymbol{\mu})<\nu<\mathrm{f}_{\mathrm{n}}(\boldsymbol{\mu}), \quad \boldsymbol{\ell}<\boldsymbol{n}$.
(i) $F_{x}(\alpha, \beta)$ is new. Since $\left.F_{x}^{\prime}(\alpha, \beta) \subset F_{\left\langle G_{\ell}\right\rangle}^{q}\right\rangle^{(\tilde{\alpha}, \tilde{\beta})=F_{\left\langle G_{\ell}\right\rangle}^{q}}(\tilde{\gamma}, \tilde{\beta})$, we need

$$
F_{\left\langle G_{\ell}\right\rangle^{\prime}}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta}) \cap F_{y}^{q_{y}}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta})=\emptyset
$$

For $b(\alpha, \beta, \gamma, x, y, n, k)$ and $\ell<n,\left\langle G_{\ell}\right\rangle^{\wedge} x \neq y$, thus what we have hoped, is really true.
(ii) $F_{y}(\boldsymbol{\gamma}, \beta)$ is new. Since $F_{y}^{\prime}(\boldsymbol{\gamma}, \boldsymbol{\beta}) \subset F_{\left\langle G_{\ell}\right\rangle^{\wedge}}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta})=F_{\left\langle{ }_{\ell}\right\rangle^{\wedge}}(\tilde{\alpha}, \tilde{\beta})$, we need $\left\langle{ }^{G}{ }_{\ell}\right\rangle^{\wedge} y \neq x$. For $b(\alpha, \beta, \gamma, x, y, n, k)$ and $\ell<n$, it is clear.

In the remaining cases, the edge $\{\nu, \mu\}$ cannot act, thus the lemma 3 is proved.

Lemma 4. Let $p, q \in P_{1}, p \cong \pi q, \nu<\mu<\omega_{2}, \ell \in \omega, D=A^{p} \cap A^{q}, \nu \in A^{0} \backslash D$, $\mu \in A^{q} \backslash D, \pi(\nu)=\mu . D \subset f_{\boldsymbol{l}}(\nu), D \subset f_{\boldsymbol{\ell}}(\boldsymbol{\mu})<\nu$. Let $t=\langle A, B, W, F\rangle$ be a - 8 -
(p, q)-good element of \mathcal{P}_{0} such that $\langle\alpha, \beta\rangle \in \operatorname{dom} F_{x}^{\prime}$ implies
if $\beta \notin\{\nu, \mu\}$ then $F_{x}(\alpha, \beta) \in F_{\langle S\rangle}^{q}{ }^{q}(\tilde{\alpha}, \tilde{\beta})$
if $\beta \notin\{\nu, \mu\}$ then $F_{x}(\alpha, \beta) \subset F^{q}\left\langle H_{\ell}\right\rangle_{x}(\tilde{\alpha}, \tilde{\beta})$.
Then $r=\langle A, B, W \cup\{\nu, \mu\}, F\rangle \in \mathcal{P}_{1}$.
Proof. Assume on the contrary that $r \notin \mathcal{B}_{1}$. Keeping in mind that the difference between r and t is only one edge, $\{\nu, \mu\}$, we must check only cases when the edge $\{\nu, \mu\}$ acts in conditions 1 - 5. In the condition 2 and 5 the edge $\{\nu, \mu\}$ cannot act.

Condition 1. Let $\alpha, \beta, \gamma, \sigma^{\sim}, x, n, k$ as expected. Now $\{\beta, \boldsymbol{\sigma}\}$ must be $\{\nu, \mu\}$
(i) $F_{\emptyset}(\alpha, \beta)$ is new. Since $F_{\emptyset}(\alpha, \beta) \subseteq F_{\left\langle H_{\ell}\right\rangle}^{q}(\tilde{\alpha}, \tilde{\beta})=F_{\left\langle H_{\ell}\right\rangle}^{q_{l}}(\tilde{\alpha}, \tilde{\beta})$ we must prove $F_{\left\langle H_{l}\right\rangle}^{q}(\tilde{\alpha}, \tilde{\beta}) \cap F_{x}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\sigma})=\emptyset$. For $n=t(\tilde{\alpha}, \tilde{\boldsymbol{\gamma}}), k=t\left(\tilde{\boldsymbol{\gamma}}, \tilde{\sigma^{\prime}}\right), x \in V_{n, k}$ we get $\mathrm{b}\left(\tilde{\boldsymbol{\alpha}}, \tilde{\delta}, \tilde{\boldsymbol{\gamma}} ;\left\langle H_{\ell}\right\rangle, x, n, k\right)$. Thus we can apply condition 2 in q to obtain what we had to prove.
(ii) $F_{x}(\boldsymbol{\gamma}, \boldsymbol{\sigma})$ is new. Since $F_{x}(\boldsymbol{\gamma}, \delta) \subset F_{\left\langle\mathcal{Z}^{q}\right\rangle_{x}}(\tilde{\boldsymbol{\gamma}}, \tilde{\delta})=F^{q}\left\langle H_{\boldsymbol{\chi}}{ }^{n} x^{(\tilde{\boldsymbol{\gamma}}, \tilde{\beta})}\right.$, we must prove $F_{\emptyset}^{\mathrm{Q}}(\tilde{\boldsymbol{\alpha}}, \tilde{\beta}) \cap F_{\left\langle\mathrm{H}_{\boldsymbol{e}^{\prime}}^{\mathrm{q}}\right.}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta})=\emptyset$. For $\alpha<\tilde{\boldsymbol{\gamma}}, \tilde{\beta}$ and $t(\tilde{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\gamma}})=t(\boldsymbol{\alpha}, \boldsymbol{\gamma})=$ $=n$ we can see $b\left(\tilde{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}, \tilde{\boldsymbol{\gamma}}, \emptyset,\left\langle H_{\ell}\right\rangle^{\wedge} x, n, \mathrm{t}(\tilde{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}})\right)$. Indeed, for arbitrary $j \in \omega$ and $z \in V_{0,0}\left\langle G_{j}\right\rangle \neq z^{n}\left\langle H_{\ell}\right\rangle \wedge x$ and $\tilde{\varnothing} \neq\left\langle G_{j}\right\rangle^{n} Z^{\wedge}\left\langle H_{\ell}\right\rangle^{\wedge} x$. Thus $F_{\emptyset}^{q}(\tilde{\propto}, \tilde{\beta}) \cap F_{\left\langle H_{\ell}\right\rangle^{\wedge}}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta})=$ $=\varnothing$ by condition 2 .

Condition 3. Let $\beta, \gamma, \sigma, x, y, n, k$ as expected. Now $\beta=\nu$ and $\delta^{\gamma}=\mu$
(i) $F_{x}(\boldsymbol{\gamma}, \beta)$ is new. Thus $F_{x}^{\prime}(\boldsymbol{\gamma}, \beta) \in F_{\left\langle H_{\ell}\right\rangle}^{q} n_{x}(\tilde{\gamma}, \tilde{\beta})=F_{\left\langle H_{\boldsymbol{l}}\right\rangle^{n}}^{\eta_{x}}(\tilde{\boldsymbol{\gamma}}, \tilde{\sigma})$.

Since $\mathrm{f}_{\boldsymbol{\ell}}(\boldsymbol{\mu})<\nu<\mathrm{f}_{\mathrm{k}}(\boldsymbol{\mu}), \boldsymbol{\ell}<k$. Thus $\left\langle\mathrm{H}_{\boldsymbol{\ell}}\right\rangle^{\wedge} \mathrm{x} \neq \mathrm{y}$ by $w(\boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}, x, y, n, k)$, therefore
$F_{\left\langle H_{\ell}\right\rangle>x}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\sigma}) \cap F_{y}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\sigma})=\emptyset$
(ii) $F_{y}(\boldsymbol{\gamma}, \boldsymbol{\sigma})$ is new. Since $F_{y}^{\prime}\left(\boldsymbol{\gamma}, \sigma^{\sigma}\right) \subset F_{\left\langle H_{\ell}\right\rangle}^{q} \wedge_{y}(\tilde{\boldsymbol{\gamma}}, \tilde{\sigma})=F_{\left\langle H_{\ell}\right\rangle_{y}}^{\eta_{y}}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta})$ and $x \neq\left\langle H_{l}\right\rangle^{\cap} y$ because $\ell<k$,

$$
F_{\left\langle H_{l}\right\rangle^{\wedge}}(\tilde{\gamma}, \tilde{\beta}) \cap F_{x}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta})=\emptyset
$$

Condition 4. Let $\beta, \gamma, \delta, x, y$, as expected. Now $\{\beta, \delta\}=\{\nu, \mu\}$.
(i) $F_{x}(\boldsymbol{\gamma}, \beta)$ is new. Since $F_{x}^{\prime}(\gamma, \beta) \subset F_{\left\langle H_{\ell}\right\rangle_{x}}^{q}(\tilde{\gamma}, \widetilde{\beta})=F_{\left\langle H_{\ell}\right\rangle}^{q}{ }_{x}(\tilde{\gamma}, \tilde{\sigma})$ and $\left\langle H_{\ell}\right\rangle^{\cap} x \neq y, F_{\left\langle H_{l}\right\rangle^{\cap}}(\tilde{\gamma}, \tilde{\sigma}) n_{y} F_{y}^{q}(\tilde{\gamma}, \tilde{\delta})=\emptyset$
(ii) $F_{x}\left(\boldsymbol{\gamma}, \delta^{r}\right)$ is new. Since $F_{y}^{\prime}\left(\boldsymbol{\gamma}, \delta^{\sim}\right) \subset F_{\left\langle H_{l}\right\rangle}^{q}{ }_{y}\left(\tilde{\boldsymbol{\gamma}}, \tilde{\sigma^{\prime}}\right)=F_{\left\langle H_{l}\right\rangle^{\wedge}}^{q}(\tilde{\boldsymbol{\gamma}}, \tilde{\beta})$ and: $x \neq\left\langle H_{l}\right\rangle \mathcal{Y}, F_{x}^{q}(\tilde{\boldsymbol{\gamma}}, \widetilde{\beta}) \cap F_{\left\langle H_{l}\right\rangle^{\wedge}}^{y}(\tilde{\boldsymbol{\gamma}}, \widetilde{\beta})=\emptyset$.
This completes the proof of Lemma 4.
We are going to use the following notions. If G is V-generic over \mathcal{P}, let

$$
\begin{aligned}
& \mathcal{A}=U\left\{A^{p}: p \in G\right\} \\
& \mathcal{B}=U\left\{B^{p}: p \in G\right\} \\
& W=U\left\{W^{p}: p \in G\right\}, \text { and if } x \in \omega^{<\omega}, i=0,1, \\
& F_{x}^{i}=U\left\{F_{x}^{i p}: p \in G\right\} .
\end{aligned}
$$

If $i=0,1$, let f^{i} be a choice function for F_{\emptyset}^{i}, that is,

$$
\begin{aligned}
& f^{i}:[A]^{2} \rightarrow \omega \\
& f^{i}(\alpha, \beta) \in F_{\emptyset}^{i}(\alpha, \beta) .
\end{aligned}
$$

Let us define the function f as follows:

$$
\begin{aligned}
& \operatorname{Dom}(f)=\mathcal{A} \times \mathcal{A} \\
& f(\alpha, \beta)= \begin{cases}0 & \text { if } \alpha=\beta \\
2 \cdot f^{0}(\alpha, \beta)+1 & \text { if } \alpha<\beta \\
2 \cdot f^{1}(\beta, \alpha)+2 & \text { if } \alpha>\beta\end{cases}
\end{aligned}
$$

We claim that in $v^{\mathcal{P}}, \beta$ and \boldsymbol{W} are ω_{2}-chromatic graphs on $\mathcal{A}=\boldsymbol{U}$, and f is a good colouring of $\mathcal{B \times W}$. 'To see it we need some observation.

Lemma 5. For arbitrary $\propto \in U, D_{\propto}=\left\{p \in \mathcal{J}_{1} \propto \in A^{\rho}\right\}$ is dense in \mathcal{P}_{1}.
Proof. Let $p=\langle A, B, W, F\rangle \in \mathcal{P}_{1}$. We ma; assume $\propto \notin A^{P}$. Let $r=\langle A \cup\{\propto\}$, $B, W, G\rangle \in \mathcal{J}_{0}$ such that $r \leqslant p$. If $\left\{G_{x}(\alpha, \nu), G_{x}(\nu, \propto): x \in \omega<\omega, \nu \in A \cup\{\propto\}\right\}$ consists of pairwise disjoint subsets of ω, then it is easy to see that $r \in P_{1}$.

Lemma 6. If CH holds, \boldsymbol{T} satisfies $\boldsymbol{\omega}_{2}$-c.c.
Proof. Let $\left.f_{P_{\alpha}}: \alpha<\omega_{2}\right\} \subset \mathcal{B}$. Since the closed elements of \mathcal{P} form a dense subset, we may assume every p_{α} is closed. Since $2^{\omega}=\omega_{1}$ there are only ω_{1} isomorphic types of elements of \mathcal{B}. Thus there are $\mu<\beta<\omega_{2}, p_{\alpha} \cong p_{\beta}$. Then, by Lemma $2 \rho_{\infty}$ and ρ_{β} are compatible.

Lemma 7. If CH holds, then $\mathrm{V}^{\mathcal{P}} \operatorname{Chr}(\mathbb{B})=\operatorname{Chr}\left(w^{\prime}\right)=\omega_{2}$.
Proof. Assume on the contrary that $p \in \mathbb{P}$ and $p \vDash " h: U \rightarrow \omega_{1}$ is a good colouring of $\beta^{\prime \prime}$. Let $\left\{p_{\alpha}: \propto \in U\right\}, g: U \rightarrow \omega_{1}$ be such that
P_{α} 's are closed, $\alpha \in A^{P_{x}}, P_{x} \leqslant p$ and
$p_{\alpha} \|^{-h}(\boldsymbol{\alpha})=\mathrm{g}(\boldsymbol{\alpha})$ ".
Since there are only $\omega_{1}=2^{\omega}$ isomorphic types of the elements of \mathcal{P}, there is a stationary subset S of U and there are $\xi, \eta, \tau \in \omega_{1}$ such that:
(i) $(\forall \alpha, \beta \in S) p_{\alpha} \operatorname{arft} p_{\beta}$ are isomorphic and $\pi_{\alpha, \beta}$ shows it,
(ii) $(\forall \propto \in S) g(\propto)=\tau$,
(iii) $(\forall \propto \in S) A^{P_{\propto}} \cap \omega_{1}=\eta$,
(iv) $(\forall \propto \in S) \propto$ is the $\xi^{\text {th }}$ element of $A^{P^{\rho}}$.

Since S is stationaly and for each $\propto \in S\left\langle f_{n}(\boldsymbol{\alpha}): n \in \omega\right\rangle$ is unbounded in $\boldsymbol{\alpha}$, there is an $n \in \omega$ such that f_{n} is not essentially bounded on S, that is, for each $\beta<\omega_{2}\left\{\alpha \in S: f_{n}(\alpha)>\beta\right\}$ is stationary in ω_{2}.

Thus there are $\alpha<\boldsymbol{\gamma}<\omega_{2}$: both $f_{n}^{-1}(\boldsymbol{\alpha}) \cap S$ and $f_{n}^{-1}(\boldsymbol{\gamma}) \cap S$ are stationary. Let $\nu, \mu \in S, \nu<\mu$ such that $f_{n}(\nu)=\boldsymbol{\gamma}, \mathrm{f}_{\mathrm{n}}(\boldsymbol{\mu})=\boldsymbol{\alpha}$. By (iv) $\boldsymbol{\pi}(\boldsymbol{\nu})=\boldsymbol{\mu}$. By the definition of isomorphism

$$
\pi(\boldsymbol{\gamma})=\pi\left(\mathrm{f}_{\mathrm{n}}(\nu)\right)=\mathrm{f}_{\mathrm{n}}(\boldsymbol{\pi}(\nu))=\mathrm{f}_{\mathrm{n}}(\mu)=\boldsymbol{\alpha}
$$

Since $D=A^{P_{\nu}} \cap A^{P_{\mu}}$ is an initial segment of both $A^{P_{\nu}}$ and $A^{p_{\mu}}, D \subset \propto$ and $D \subset \boldsymbol{\gamma}$. For $\mathrm{f}_{\mathrm{n}}(\boldsymbol{\mu})=\boldsymbol{\alpha}<\boldsymbol{\gamma}=\mathrm{f}_{\mathrm{n}}(\nu)<\nu, \mathrm{f}_{\mathrm{n}}(\boldsymbol{\mu})<\nu$.

Thus we can apply Lemma 3 for $p_{\nu}^{0}, p_{\mu}^{0}, \nu, \mu$ and n, and Lemma 4 for $p_{\nu}^{1}, p_{\mu}^{1}, \nu, \mu$ and n. Hence we obtain $p=\left\langle A, B, W, F^{0}, F^{l}\right\rangle$ such that $p \in 3$ and $p \leqslant p_{\nu}, P_{\mu}$ and $\{\nu, \mu\} \in B$. But
$p h-\underline{h}(\nu)=\underline{h}(\mu)=\tau \wedge\{\nu, \mu\} \in B \wedge \underline{h}$ is a good colouring of \mathcal{J}.
Contradiction. Thus Chr $(\beta)=\omega_{2}$. Similarly, Chr $(w)=\omega_{2}$,
Proof of main result. Assume the CH and let us regard $\mathrm{V}^{\boldsymbol{P}}$. By Lemma $6 \mathfrak{P}$ satisfies H_{2}-c.c. Since \mathcal{P} is $\boldsymbol{\sigma}$-closed, CH remains true and the cardinalities of V and $V^{\mathcal{P}}$ are the same. By Lemma 7

$$
V^{P_{1}} \operatorname{Chr}(\mathcal{B})=\operatorname{Chr}(\boldsymbol{W})=\omega_{2} "
$$

By Lemma $5, \boldsymbol{U}=\mathcal{A}$.
Let $\alpha, \beta, \gamma \in \mathcal{U},\{\alpha, \gamma\} \in \mathcal{\gamma},\{\beta, \delta\} \in \mathbb{W}$. Assume on the contrary
 $=\{(\nu, \nu): \nu \in U\}, \alpha \neq \beta$ and $\gamma \neq \delta$. Since $f(\alpha, \beta)$ is odd iff $\alpha>\beta$, we can see $\alpha<\beta$ iff $\gamma<\delta$. Let $p=\left\langle A, B, W, F^{\circ}, F^{l}\right\rangle \in \mathcal{G}$ such that α, β, γ, $\delta^{r} \in A$.
(i) $\alpha<\beta$. Thus $\gamma<\delta$. We may assume $\alpha<\gamma$. Since $\alpha<\beta, \gamma, \boldsymbol{\sigma}^{\alpha}$, by condition 1 for $p^{0}=\left\langle A, B, W, F^{0}\right\rangle, F_{\emptyset}^{0}(\alpha, \beta) \cap F_{\emptyset}^{0}\left(\gamma, \delta^{\circ}\right)=\emptyset$. But $f(\alpha, \beta)=$ $=2 \cdot f^{0}(\alpha, \beta)+2, f\left(\boldsymbol{\gamma}, \sigma^{\sim}\right)=2 \cdot f^{0}\left(\boldsymbol{\gamma}, \boldsymbol{\sigma}^{\sim}\right)+2, f^{0}(\alpha, \beta) \in F_{\emptyset}^{0}(\alpha, \beta), f^{0}\left(\boldsymbol{\gamma}, \boldsymbol{\sigma}^{\alpha}\right) \in$ $\in F_{\sigma}^{0}(\gamma, \delta)$, thus $f(\alpha, \beta) \neq f\left(\gamma, \delta^{\sim}\right)$.
(ii) $\alpha>\beta$. Similarly, using p^{1} instead of p^{0}. Therefore f really shows Chr $\left(B_{\times} \times W\right)=\omega_{0}$. On the other hand, for each $n \in \omega$ the complete graph on n vertices cah be embedded into $B \times W$, thus $\operatorname{Chr}(\beta \times W) \geq \omega$.

This completes the proof of the main result.

References
$[1]$ J.E. BAUMGARTNER: Generic graph construction, J. Symbolic Lugic 49(1984), 234-240.
[2] M. EL-ZAHAR, N. SAUER: The chromatic number of product of two 4-chromatic graphs is 4, Combinatorica 5(1985), 121-126.
[3] A. HAJNAL: The chromatic number of the product of two $1^{\text {-chromatic }}$ graphs can be countable, Combinatorica 5(1985), 137-139.
[4] S.T. HEDETNIEMI: Homomorphisms of graphs and automata, Univ. of Michigan Technical Report 03 105-44-T, 1966,
[5] T. JECH: Set Theory, Academic Press, New York, 1978.

Math. Institute, Hungarian Acad. Sci., Reáltanoda u. 13-15, P.0.B. 127, Budapest H-1364, Hungary
(Oblatum 12.8. 1987)

