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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROtlNAE 

29,3 (1988) 

EXTENSIONS OF NONEXPANSIVE MAPPINGS IN THE HILBERT BALL WITH 
THE HYPERBOLIC METRIC. PART I . 

Tadeusz KUCZUMOtf and Ada* STACHURA 

Abstract: In an open unit disc A c C we have the Poincare" metric £>,. 

I f T:X->A is a {&,-nonexpansive mapping of a subset X of A into A -, then 

there exists a p,-nonexpansive mapping T: A->A such that i t s restr ict ion to 

X is identical with T. 
I f in a complex Hilbert space H we take an open unit bal l B with the hy­

perbolic metric, then for dim H2T2 the above fact is not true. Similarly as 

in A n for nZ2. 

Key words; Hyperbolic metric, nonexpansive mappings, fixed points. 

Classification: 47H10, 32H15 

Let B denote an open unit ball of a complex Hilbert space H. B can be 

furnished with the invariant hyperbolic metric p^ given by the formula 

«?1(x,y)=tanh-1LU- (x,y))1/2J, 

where 

^(x,y)-^Hxll2)(Hylt2) . 
U-(x,y)|z 

B(x,r) denotes a closed ball in (B, y,) centered at x and of radius r. 

It has been recently shown (I2l,l3l ,15)) that several ideas from the 

theory of nonexpansive mappings in Banach spaces can be used to yield new 

results concerning holomorphic self-mappings of B which are f>,-nonexpansive. 

In particular, it is useful to observe that certain metrical properties of 

(B, »,) are analogous to properties of Hilbert spaces. Therefore there is a 

natural question if the Kirszbraun-Valentine theorem (£6l) on the existence 

of nonexpansive extensions for nonexpansive mappings in an arbitrary Hilbert 

space is still true in (B, £>,). In this paper we give the answer to this que­

stion. 

We will consider first the case dim H=l. Then B is equal to the unit 
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disc A on the complex plane C and p, is the Poincarg metric. The key role 

in our considerations will be played by the following 

Lemma 1. Let a,,a2,a3,b,,b2,b3 be points of A satisfying inequalities 

JD1(bk,b.) «c p1(ak,a.) for k,j=l,2,3. Then there exist points
 c

1,c2,c3 in 

& such that 

(i) the inequalities fi(ck,c.) -»fi(
a
k»

aj) (k,j=l,2,3, k#j) are satis­

fied and at least two of them are actually equalities; 

(ii) if the balls B(c,,r,), B(c2,r2), B(c3,r3) have a nonempty inter­

section, then 

3 
r\ B(b. ,r. )*0. 
k=l K K 

Proof: Without loss of generality we may assume that 0=b,, b 2*R, 

Im(b3)40, p,(0,b2) < p,(a, ,a2) and p*(Q,b3) < j>,(a, ,a 3). It is easy to ob­

serve that there exists a point c,'=io& c A (0<oC*R) satisfying 

5>1(c1',b2)= Pi(
ai»a

2>» f>i(Cpb3) Af^,^) 
or 

P l ( c l , D 2 j ^fi( ai» a2 ) j Pl ( cl , b3 ) = fi(ai»a3)-

3 

Let us denote c2=b2, c3=b-,. Obviously if f\ B(ck,rk)a^0 then 

3 K=1 

Q B(b.,rk)4'0 C£3J). Applying this construction at most twice we get the 

sought points c^c^c-,. 

Lama 2. If a,,a2,a3,b,,b2,b3 are points of A such that Pi(bk»bJ * 

3 
-P1(a|<,a.) Ck,j=l,2,3) and r\ B(ak,rk)*fr0 for some r,,r2, r 3>0, then 

3 K = 1 

kQ B(bk,rk)*0. 

Proof: By Lemma 1 we may assume that a,=b,=0, 0<a2=b26R, a3=re , 
re 1^ , where 0 < r < l . We have 

(l-a^)(l-r2)( l+a^r2-2a2rcosic)"1= tf(a2,a3)4 €((b2,b3)= 

=(l-b2)(l-r2)(l+b2r2-2b2rcos/J)"1 

i tot 
and therefore 0 ^ p6ct*ft. In r"\ B(a. ,r. ) we may find a point Re , 

K = 1 3 
where 0 * t £ l ( [3 ] ) . Hence the point Re1*" l ies in r \ B(bkrk). 
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Now we may prove the following 

Theoren 1. Let-{B(xot,r<Jt)}^#1, W\i*^i9C€i be two families of balls 

in the disc A . If pi(x^,x') .6 fi^****^ *or a^ •£-/!€ I and the inter­

section f*\ B(x ,r ) is nonempty then so is the intersection f*\ B(x',r,). 

ocel * * «c*I * * 

Proof: To prove this theorem it is sufficient to apply the Helly's The­

orem (L41) and Lemma 2. 

The usual procedure based on the Kuratowski-Zorn Lemma gives the theorem 

on the existence of nonexpansive extension. 

Theoren 2. Let T:X-*A be a pj-nonexpansive mapping of a subset X of 

& into A . There exists a jt>,-nonexpansive mapping T: A-*A such that its 

restriction to X is identical with T. 

Lemma 2, Theorem 1 and Theorem 2 fail to be true without assumption that 
2 

dim H=l as shown by the following example. In C we take points a,= («c,0), 

a2=(i«c,0), a3=(-i«c,0), ^ = ( ^ ' , 0 ) , b2=(0,©c,), b3=(0,--*>), where *, «o,' e 

(t(0,l) and oc'=«ct(l+^2)(l4-o64)~l<l
1/\ 

-1 3 3 

For r=tanh «c we have 0 c f*\ B(a. ,r. ) and C\ B(b. ,r. )=0. 

k=l K K k=l K K 

, Now let us consider the domain Bn=B>t.. .xB. The hyperbolic metric /» 

on this domain is defined by 
P n((x r...,x n), ^ r - ' - ' y ^ ^ ^ P i ^ k ' ^ 

for (x1,...,xn), (y1,...,yn)«B
n (LU). If we take H=C, n=2 and B*B=A*>A 

then for the points a1=(0,0), a2=(oc,0), a3=(0,eC), b.,=(0,0), b2=(oc,0), 

i - i 3 3 

and r= j tanh x«c (0<«c<l) we obtain A B(ak,rk)40 and r\ B(bk,rk)=0. 
K=I K=l 
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