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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3 (1988) 

NONISOLATED SINGULARITIES OF SOLUTIONS TO A 

QUASILINEAR ELLIPTIC SYSTEM 

Jan MALY 

Abstract: There is presented an example of a quasilinear elliptic sys
tem which has solutions with nonisolated discontinuities. 

Key words: Elliptic systems of part ial di f ferential equations, weak so
lutions, regularity. 

Classification: 35.360, 35D10 

1. Introduction. Let SLc Rn be an open set. We consider quasilinear 

elliptic systems 

(D D Afftu) DAu
J=0, i=l,...,m. 

(The summation convention concerning repeated indices is used throughout the 

paper; i,j=l,...,m, ot>,p =1,...,n.) Referring to the system (1) we always as

sume the coefficients to be bounded uniformly continuous functions on Rm sa

tisfying the ellipticity condition 

|2 (2) A * 0 f £ \l*\% I ^ r each f c Rm 

By a (weak) solution of (1) we understand a (vector valued) function 

u6Wloc (il'Rm) sucn that 

(3) D of =0, i=l,...,m 

holds in the sense of distr ibutions for 

(4) bf =A*jl(u)D<|u
j. 

The counterexample by E. Giusti and M. Miranda [3] shows that for n2T3 

the discontinuous function 

U ! X t - » M 

solves a system of type (1). Thus one cannot expect full regularity results 
in this general setting. Typical results estimate the Hausdorff dimension of 
singular i t ies. 
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Theorem 1. (E. Biusti [23, see also £ l ] . ) Let u be a weak solution of 
( 1 ) . Then there is an open set Si c XL such that u is locally Holder con
tinuous on XI and the Hausdorff dimension of XL\iI is less than n-2. 

o o 

An easy modification of the above mentioned counterexample shows that 

for every n £ 4 there is a system of type ( 1 ) which has a solution disconti

nuous at every point of 

4x6Rn:x1=x2=x3=0Í. 

Thus, it has been known for a long time that the singular set can be noniso

lated if nZ4. We shall prove the following theorem concerning n=3. 

Theorem 2. There are a weak solution s:R —** R of a system of type ( 1 ) 

and a sequence 4z.\ of discontinuity points for s such that z. 4*0, z. —*-0. 

2. Reduction to two singularities. Let z feR , z + 0 . Let u be a boun

ded weak solution of (1). For each k=0,l,... denote 

W2k> 
uk(x>u0(2

kx), 

Bk=B(zk,|zk|/4) 

(B ( z , r ) denotes the open ball with center at z and radius r ) . By a simple ho-

mothety argument we see that u. also solve (1) (the coefficients are f i x e d ! ) . 

Now let us assume that 

u, =u^ outside B UB,. 1 o o 1 
Put 

u outside B,, 
o 1' г° 

l U, 

s
r , 

«• u, on B,. 
Of course, s, =u, outside B . As the concept of weak solution is local, we 

' 1 1 o, 

see that s, solves ( 1 ) . We define recurrently ( k = 2 , 3 , . . . ) 

s. , outside B. , г 
Ł u, 

\ onBk. 

We see by induction that s. solve ( 1 ) and 

• V ^ 1*21 2 * C ( i l ) 2~k 

for every bounded domain ilc R . Hence the sequence {s.^ has a limit s in 
1 2 

the sense of ( s t r o n g ) Wr!"" convergence. By routine arguments we see that s 
loc 

discon 
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solves (1), too. If u_ is discontinuous at z . then s is discontinuous at o o 



all points z. (and at the origin). 

Conclusion. Theorem 2 is proved if we construct a system (1) (i.e. coe
fficients A W * ) and its bounded weak solution u such that 

(5) u is discontinuous at some point zfiR , z-frO, 

(6) u(2x)=u(x) for all x*B(z, |z|/4)uB(z/2, |z | /8) . 

o 
3. Construction. Fix a decreasing function y e C ( L O A D with 

</(l_>0, <£(0)=1, <f(l)=0 

and denote by if its inverse. Now, prolong the functions <f and \f to [0,o>) 
putting 

o/(r)=0, f(t)=0 for r,t*(l,a>). 

Fix a point z e R , |z|=4. Denote 

y=x-z for every x C R . 

Let c be a fixed constant, 

(7) cZ.2 sup (4+r)|<p'(r)|:r€(0,l). 

Put 
C - 4 Í T if i=4,5,6, 

(8) u Ҷ x ^ 

• ̂
( | у | )

 ТУТ
 i f i = 1

>
2
'

3
* 

We have 

(9) D̂u 

Denote 

T7Г ( é i -У 
x. ,x 
-fjf ) if i=4,5,6, 
M 

<r(lүD . ^ У.У_< . , . . ..УІУ. 

yf-(*^>-,Ul>j^----i.з.з. 

(10) Ь 

c
 ( л* ± 

Щ ( Лi-Ý Ix| 
ү*-) if i=4,5,6, 

Jtiffi (sf+ I i V ) + ? '( | y | ) ( <rf- !%•) if i=i,2,3. 
Iy| |y| 

By a routine calculation we obtain the validity of (3). Obviously, the func
tion u satisfies (5) and (6). It remains only to find coefficients A^r such 
that (4) holds. 
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4. Coefficients. In this section we construct coefficients 

A^(v,w) (v,wgR ) such that the functions u1, b^ given by (8), (10) satis

fy 

(11) b*=A*jW,u 2,u 3),(u 4,u 5,u 6)) D^uJ. 

We follow essentially the method due to 3. Soucek 163. Denote 

Y= Y(|v|)f 

x= rU-Y-ifrl, v+0, 

«-4, v=0, 

cY 
"" cY+X<y(Y) » 

f- Xy(Y) 
i- c Y + x^(Y) » 

n. XY</(Y) 
g_ cY+x-^(Y) . 

Using the conventions 

V-*. wi-3wi* 
-1—- =0 if v=0, l >* =0 if w=0, 
|v|2 |w|2 

v.-w^O if i#{l,2,3*, 

we define 

B* -h( d * • ---^J--)+f ( <T*+ -"-*-)+g( ** - - ~ V > ' 
1-3 Iw|2 x |v|2 J |v|2 

W W V V V V 

1 1_3 Iw | 2 1 |v|2 |v|2 

( i= l , . . . ,6; oc=1,2,3). Finally we put 

Q-min (l,|w|) (3B.T--T.Tp"1, 

A i j = * { * £ +Q(3Bf-Tf )(3B* -T* ) 

(i,j=l,...,6; oc, (I =1,2,3). By (7) we verify that Q is a nonnegative boun

ded function on R x R . Indeed, we have 

3^2V2.V2 2 , v x . , / v _ , v x . o v v / / V N N 2 . 13 v 2 , 2 A v 2 , -,vxx2N |c Z Y Z +X Z y Z (Y)+3(Xy(Y)+2XY/ (Y) ) Z + H- Y Z (c Z -4X Z (y ' (Y) ) Z ) 
3 B iVT iV l r-^ • 

1 1 1 1 (cY+Xy(Y))Z 
viv«c wi-3wac 

The coefficients are continuous: discontinuities -j—» sr21-, X are always 
Iv|2 |w|2 
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neut ra l i zed being multiplied by vanishing continuous functions. We observe 
that the supremum of |A*A| as well as the modulus of continuity of A?7/* are 

estimated by the same quantities on «tv: | v| is lixiw: |w| &1J. Hence the coeffi
cients are bounded and uniformly continuous. By a d i r e c t calculation we see 

that (11) is satisfied. 

5. Scwe remarks. A) If we admit discontinuous coefficients (Borel mea
surable only) then Theorem 1 does not hold. 

Let afr be bounded Borel measurable functions on R satisfying 

• if $« $1 2 '? i 2 f o r e a c h %e R?-
Let v be a weak solution to the l inea r system 

(12) D0&a^(x)D/3v
j=O. 

Then the function u defined by 

u W , i=l,2,3, ui=:xi-3' i=4>5>6 

solves the quasilinear system 

Oi6A*'\u)D/|u--0 

where 

r a^(u 4,u 5,u 6) if i,j€{l,2,3l, 

XJ [ cf J (?£ otherwise. 

However, solutions of (12) can be everywhere discontinuous (see 143). 

B) Our example does not fill the gap between the estimate of Hausdorff 

dimension of singular sets given in Theorem 1 and n-3-dimensionality of sin
gular sets in the known counterexamples. It is not even c lea r whether the 

singular set f o r n=3 can be uncountable. 

C) It would be nice to have counterexamples (o r f u r t he r positive regu
l a r i t y results) in case when the quasilinear system (1) is obtained as a sys

tem in va r iat ion . The only known counterexamples (see e.g. 3. Ne6as £53) have 
one singular point. 
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