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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
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ON EQUIVALENCE RELATIONS ON A DIFFERENTIAL SPACE 

Wieslaw SASIN 

Abstract: In this paper some propert ies of equivalence relations on a 
d i f f e r e n t i a l space are studied. Some special examples of equivalence relati
ons are described. 

Key words: D i f f e r e n t i a l space, Hausdorff equivalence relation, d i f f e r e n 
tial s t ructu re. 

Classification: 58A40 

1. Introduction. In this paper we consider some propert ies of equivalen

ce relations on a d i f f e r e n t i a l space. In the case of differentiable manifolds 

the well-known Godement theorem gives a necessary and sufficient condition 

fo r the quotient space to have the structure of a d i f fe ren t iab le manifold. A 

general izat ion of this theorem to the category of d i f f e r e n t i a l spaces was gi

ven by W. Waliszewski £43. R.S. Palais £1] gave a necessary and sufficient 

condition fo r the quotient space to admit a quotient modulo an equivalence re

lation in the category of ringed spaces. 

In the category of d i f f e r e n t i a l spaces the quotient structure always ex

ists. So we may consider the quotient d i f f e r e n t i a l structure in many d i f f e ren t 

situations even if Godement's conditions are not fulfilled, e.g. in the theo

ry of homogeneous spaces. 

2. Main results. Let (M,C) be a d i f f e r e n t i a l space £21, t3]. For an ar

bi t ra ry mapping F:M—* N from M into a set N let F* :R — > R be the map gi

ven by the formula 

F* (oC)= oC- F fo r <* <S RN. 

The set (F* )" (C) is a d i f f e r e n t i a l structure on N called the d i f f e r e n t i a l 

structure coinduced from C to N by the mapping F £ 5J. 
Now let y> be an equivalence relation on (M,C). A function fsC is said 

to be consistent with q> if x «jo y implies f(x)=f(y) fo r any x,yeM. We denote 
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by Ĉ j, the set of all f«C consistent with p . One can easily show that C^ 

is a differential structure on M, i.e. C~=(sc C,-.,)., £2J,[5J. 

Let now M/Va denote the set of all equivalence classes of p and let 

$L : M — * M / J D , x — * C x J p be the canonical map. We denote by C//f> : = 

*= (-WJjf ) (C) the differential structure on M/j» coinduced from C by the map-

pin9 ^ £43, £5.1. Evidently, the diagram 

idM 
(M,C) -% (M,CU ) 

Чм/л, f ,c/ř) * 

is commutative. 

It is easy to show that or* \(C/p ):Q/p —* C~ is an isomorphism of al

gebras. It follows that (M/p> ,C/JD ) has a constant differential dimension if 

and only if (M,C^) has a constant differential dimension [ 2 l , C 3 3 . 
An equivalence relation (0 on (M,C) is said to be a Hausdorff equivalen

ce relation if for any x,y$M such that (x,y) $ J> there exists a function 

f s C ^ which separates x and y, i.e. f(x)=*pf(y) (cf. C H ) . 

It is easy to prove that the following conditions are equivalent: 

(a) jt> is a Hausdorff equivalence relation on (M,C). 

(b) The topology *t~, in M/$& is a Hausdorff topology. 

(c) For arbitrary x,y«M, if f(x)=f(y) for any f € C then x p y . 

Now let (M,C) be a differential space and DcC an arbitrary subset of C. 

Using D we define an equivalence relation p n in M by 

(1) x j& D y iff f(x)=f(y) for every ffeD. 

Obviously, p n is a Hausdorff equivalence relation on (M,C). 

1. An equivalence relation on a differential space (M,C) is a 

Hausdorff equivalence relation if and only if there exists a subset OcC such 

that p = p D. 

Proof. If p is a Hausdorff equivalence relation, then taking D=C^ we 

obtain £> = © n . 

Now we will show that every equivalence relation on a differential space 

may be extended to a Hausdorff equivalence relation. 

Proposition 1. For any equivalence relation p on a differential space 

(M,C) there exists a unique Hausdorff equivalence relation ( D H ^ p such that 

C =C<0 . Moreover, if ro is a Hausdorff equivalence relation on (M,C), then 
f H ?> v 
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PIT P • 

Proof. Let /*> be an equivalence relation. We put i©u=<&r • By (1) we 

have J 

x^>H y <=--> f(x)=f(y) for every fcC . 

It is easy to see that (OC f u and L c C . Now we must show that C c C . > n £ £>u ^ H »̂ 

Indeed, let A s C . This means that £ s C and 
i H 

(Vf6C f(x)=f(y)) -*• /1(x)=j3(y) 

for x,y«M. Assume that xp y. Then f(x)=f(y) for any ffcC^ , and hence /3(x)= 
= p(y), which means that /3 e C^ . This completes the proof. 

Corollary 1. A differential space (M,C) is a Hausdorff space if and on

ly if the trivial equivalence relation p on (M,C) (£xj ={x} for any x«M) 
» o 

is a Hausdorff equivalence relation. Moreover, for an arbitrary differential* 

space (M,C) the differential space (Mu,Cu): = (M/{0 c,C/{0 «) is a Hausdorff spa

ce. 

Let us observe that C =C and hence C/for is isomorphic to C. Every smooth 
r°C } C 

mapping F:(M,C) — * (N,D) determines the smooth mapping FH:(Mu,CH)—.--(Nu^Du) 
given by 

Fu(£x3^ )= CF(x)J for xeM. 
H ?C ?D 

The following diagram is commutative: 

(M,C) F >(N,D) 

WPc ғ
н 1 

(^,C
H
) ^ (N

H
,D

H
) 

|Я
fD 

Let M be a non-empty set and rt> an equivalence r e l a t i o n on M. 

Definit ion 1 . A subset AcM i s c a l l e d p - s a t u r a t e d i f 1% ( ^r_ (A))=A. 

I t i s easy to see that the fo l lowing condit ions are equivalent: 

(a) Ac M i s p-saturated 

(b) A= ^ ( B ) , where BcM/jo . 

(c) A= U U L . 
xeA " 

(d) For any x,yeM, if x&A and x p y, then ye A. 

The family of all p-saturated sets together with the empty set is a to

pology in M. It is easy to prove 
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Lemna 2. Let (M,C) be a d i f f e r e n t i a l space and (O an a rbi t ra ry equival

ence relation on M. Then an a rbi t ra ry set \J e<€r is ro -satu rated. 

Let C be a set of generators of the d i f f e r e n t i a l structure C on M. It 

is known [3J that V ^ V ^ ^(scC^^ TC-

We shall prove 

3. If C is a set of generators of a d i f f e r e n t i a l structure C on 

M, then 

(2) P c = P s c C = P ( s c C ) = P c ' o o o M 

where f>c , £> s c C » $°(scC ) ' ^C a r e e c i u i v a l e n c e re la t ions on (M,C), d e f i n 

ed by ( 1 ) . 

Proof. Let x,yc.M and x p c y. Hence by ( 1 ) , f (x)= f (y) for any f 6 C . Let 

gescC o , By de f in i t i on g= &> o ( f ° , . . . , f n ) , where a>€C^ (R n ) and tv . . . , f n 6 C 0 . 

Therefore g(x)= o * ( f p . . . , f f l ) ( x ) = < i ) ( f 1 ( x ) , . . . , f n ( x ) ) = o ( f 1 ( y ) , . . . , f n ( y ) ) = g ( y ) . 

Hence if xo>c y then g(x)=g(y) for any gsscCQ, i.e. xj»scC y- Since the imp-
o o 

Hcation x Pg(£ y -*• x p c y is evident, we obtain p = a The other equ. 

0 0 o scu 

alities may be proved analogously. 

Now let (M,C) be a d i f f e r e n t i a l space and (0 an equivalence relation on 
I -1 

M, Observe that the mapping M/p o A — > ** (A)CM is a bisection between the 
family of rf> -satu rated sets in M and the family of all subsets of Wca . 

Denote by 171*, the family of all j©-saturated open sets in r«: 

m := \U <SXC:U= itfl( *p (U))J. 

It is easy to see that Wt^ ^l(xc/f )> where X^/f is the quotient topology 
in the set M/p and X~ =I(rc/ ), where * c/ is the weakest topology in the 

p F > 
set M/JD and T c =I(^ C /), where nfc^ is the weakest topology on M/J© such 

that all functions belonging to C/jo are continuous. 

It is easy to observe that the following diagram is commutative: 

V s 0 _ i , w f 

. 3 . 3 
rtc/9—

L*rcp 

From the above diagram we obtain 
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Corollary 2. r ^ p = r c^ *-> WtL? - <Cp • 

Now we will prove 

Lenma 4. For an a rb i t ra ry set V 6 f r , 

where tp|V is the restriction of the relation (p to the subset V. 

Proof. Let ©C * (C^ )v- Since C C C, we have in p a r t i c u l a r (CJ vCC y 

and thus oCC Cv. We will prove that oc 6. (CyX-jy. Let x,y«V with x p y . The
re exists an open neighbourhood U « t p of x and a function fi € C^ such 

that 06 |VAU= fl |VnU. 

Of course Vn U s TTP and x,ye V nU since VoU is ro -saturated. Hence 

oC (x)= fi (x)= /3(y )= o6(y j . Therefore 

x(p|V)y - ^ oc(x)= oC(y) 

or equivalently oC 6 ^v-WlV* 

We now prove the reverse inclusion. Let oC s (Cv) jv. Let p S V be an 
a rbi t ra ry point and (3s L a function separating the point p in the set 

V € X c , u.e. there exist Vo,WQ B T c such that p6 V , /S|VQ=1, /-* |WQ=0 

and Wou V=M. 

Consider the function 06 :M—*R defined by 

,oc(x) (i(x) for xCV 

0 f o r x £ V 
Clea r ly, "5t € C, since <x • /3 |Wor.V=0|WQnV,-{Wo,Vi is an open covering of M 
and oC • (3 |V« Cy and O c C w . We will now ve r i fy that 5 « L .Indeed, 

0 » 

l e t x ja y. Then e i ther x,yeW or x , y « V . 

If x,y$V, then 

So(x )= oc(x) / i ( x ) = cc(y ) / 3 ( y ) = 5c(y ) 

and if x,y€ W , then 

oZ(x)=Q= <3j(y). 

Thus for any p 4 V we have found a neighbourhood V c V o f p , V 6 T f , and a 

func t ion oC € LU such that oc|V =oc |V . This means that oC € (C^ ) v , which 

completes the proof of the lemma. 

Now l e t (M,C) be a d i f f e r e n t i a l space and OCC an a rb i t r a r y subset. The 
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sets D, scD, (scD)M and C- are sets of functions consistent with the equiva

lence relation jOn defined by (1). We have the inclusions 

DcscDC(scD) MCCL . 

Moreover, (scD)M and CL are differential substructures of the differential 

structure C. Evidently, ny definition, the differential structure C is the 

maximal set of functions consistent with the equivalence relation p Q . We now 

show that in general (scO)M#Q_ . 

Example 1. Consider the differential space (RjC^CR)). Of course the 

function f:R—»» R given by the formula f(x)=x belongs to C ^ R ) . This func

tion defines by (1) the Hausdorff equivalence relation £>rft on R. It is ea

sy to observe that the function given by g(x)=x is consistent with p,f»and 

g ̂  (sc{f?)R. Therefore C «fc (soi'ff ) R . 

The above considerations suggest the following definition. 

Definition 2. Let (M,C) be a differential space. A differential substruc

ture D of the differential structure C is said to be saturated if D=(L . 
> D 

Evidently, the differential structure C itself is saturated because 

C"C?c • 

We will prove 

Proposition 2. The mapoing p i—-> CU defines a one-to-one correspond

ence between the set of Hausdorff equivalence relations on a differential spa

ce (M,C) and the family of saturated differential substructures of the diffe

rential structure C. 

Proof. Let $o, and p^ De Hausdorff equivalence relations on (M,C) such 

that C =C . We shall prove that £>,= JO.. Indeed, 

x p 1 y < - ^ ( V f 6 C f(x)=f(y))^=> (V-ffiC f ( x ) = f ( y ) ) £ - = $ > x j D 2 y . 

On the other hand, if DC C is a saturated differential substructure, then 

by definition F=C , where pn is the Hausdorff equivalence relation on (M,C) 

defined by (1). 

Now we may prove 
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Proposition 3. Let p be a Hausdorff equivalence relation on a differen

tial space (M,C). Then the quotient differential structure C/̂ o on M/p is 

generated by a set D of real functions if and only if the differential struc

ture CU is generated by the set D= .TL^CTJ). Moreover, if C/p is generated 

by "D then m = p D. 

Proof. Since St* :(M,£) — > ( M / © ,C/p ) is a smooth mapping such that 

&& |(C/JD):C/JD - * ( L is an isomorphism of linear rings, "IT is a set of ge

nerators of the differential structure C/f> iff D= "31^(0) is a set of gene

rators of the differential structure C/-> . 

Let D be a set of generators of C/p . Then D is a set of. generators of 

Cjp , i.e. C.J, =(scD)M. From Proposition 2 it follows that £D = f> ~ . Lemma 3 

gives p c =f> ( s c D ) M=^ D. Hence ̂ 0= p Q . 

Corollary 3. The quotient differential space (M/p ,C/<t> ) is a Hausdorff 

differential space generated by a set of n real valued functions if and only, 

if there exists a smooth mapping F:(M,C)—*- (R »*£n) such that C.p=(scF ) M , 

where F is the set of coordinate functions of the mapping F . 

Now consider a smooth mapping f:(M,C)—*"(N,D) between differential spa

ces . The mapping f determines the equivalence relation p f in M defined by 

x^y$-*f(x)=f(y), for x,y€M. 

The map g:M/pf ~—>N defined by 

(3) g(txl£f)=f(x) for xeM 

is a bisection onto f(M). 

It is easy to observe that the following diagram is commutative: 

(M,C) 1 C % (M.C ) — i - ^ (N,D) 

Wp ,c/p ) 

We will prove 

-JŤN-. J/> /-

5. Let f:(M,C)—> (N,D) be a smooth surjection. Then the homomor-

phism f* |0:D—* C is an isomorphism of linear rings if and only if 
rf 

(f*)'1(C)=D. 
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Proof, ^ssr Assume that ( f * ) ~ 1(C)=D. Since f is a surjection, f* is 

an injection. We now show that f*|D: — > • C^ is "onto". Let -v e C . Thus 

Pf T ?i 
f S C and for any x,yc M, if f(x)=f(y) then -y(x)= 'y(y). 

Consider the function *p:N —*-R defined by xW= T^x) for q«N, where 

xftM is any element such that q=f(x). Since y e C , the definition of ~p is 

rt 
correct. Moreover, ~p© f= *y. Hence y € (f**)~ (C) because y g C. Therefo

re ~JT £ o. We have shown that f ** |D:D —*»• C is an isomorphism of linear rings. 

Pf 
The implication s*^ is obvious. 

Corollary 4. Let f:(M,C)—>(N,D) be a smooth mapping of a differential 

space (M,C) onto a differential space (N,D). 

Then the smooth bisection g:(M/jo f ,C/{0 f)—>-(N,D) defined by (3) is a 

diffeomorphism if and only if ( f * ) ~ (C)=D. 

Now we will give a sufficient condition for a mapping f:(M,C)—*-(N,D) to 

satisfy the condition (f**)~ (C)=D. I n £43 it is proved that if the mapping 

f:(M,C)— i*(N,D) is weak coregular, then ( f * ) ~ (C)=D. In particular, we have 

Lame 6. Let f:(M,C)—*(N,D) be a smooth surjection. If there exists a 

smooth map i:(N,D)—#>(M,C) such that f©i=idN, then (f*-)~
1(C)=D. 

Example 2. Let (M,C) be a differential space, (TM,TC) the tangent diffe

rential space to (M,C), 3f:(TM,TC)—**(M,C) the canonical projection. It is 

easy to observe that the zero section 0:M—•TM is smooth. By Lemma 6 it fol

lows that (*T*)~ (TC)=C, and Corollary 4 yields that the quotient space 

(TM/jy JC/p^ ) is diffeomorphic to (M,C). 

Now we will prove 

Proposition 4. Let f:(M,C)—->(N,D) be a smooth surjection such that 

(f * )~ (C)=D. Then 'tn/m ~ vr/p f --" ant- oruv if f i~ an °Pen mapping. 

Proof. 4~-~~ Let f be an open mapping. In view of Corollary 2 it suffices 

to prove that fl# = * . The inclusion < P c IffL^ is evident. Now we 
Pf CPf CPf Pt 

will show the inclusion W u c X r # Let U «. Vt^ . By definition U is an 

open pf-saturated set. To prove that U 6 f„ it suffices to show that for 

any ps U there exists a function ft € C such that ^(p)=l and fMq)=0 for 
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qeU . Since f is an open mapping, F(U) is an open set in T n . Let g>c 0 be a 

func t ion separat ing the poin t f(p) in the set f(U), i . e . g?(f(p))=l and 9?(s) = 

=0 for s ^ f ( U ) . Consider the func t ion (t = 9 0 f. Ev iden t l y , (i & C has the 

required proper t ies: |i(p)= g?(f(p))=l and /3(q)= 9?(f(q))=0 for qgU. 

•====> Suppose n?c/(p f= r c/ . Let U £ * c . Since 3f :(M f* c)—> 

—^(M/p f,fp/jD f) is an open mapping, i t follows that TC (U) e t*c/ = 

= V f f 
On the other hand, f(U)=g(3T (U), where g is defined by (3 ) . Since g is 

yf 

a diffeomorphism, g(jr (U))«r-j. Therefore f(U) 6 fD, and the proof is com

plete. 

Now we consider families of equivalence re la t ions given on elements df 

some covering of a set M. We would like to give a su f f i c i en t condi t ion for 

such a family to generate an equivalence re la t i on on M. 

Definition 3. Let A and B be subsets of a set M and £>•,, .*>2 equivalen

ce re la t ions on A and B respec t ively. The re la t ions p, and £©2 are said to 

be compatible on AnB if <p, |AiB= £C» |Ar>B. 

The following proposi t ion is obvious: 

Proposition 5. Let (A.)- T be a covering of a non-empty set M and 

(^>.). -r a family of equivalence re la t ions given on the sets A, respec t ively, 

sa t i s f y i ng the following condi t ions: 

(a) A.nA. is ^ . - s a t u r a t e d in A. and f> . -sa tura ted in A. for any i , j s l . 

(b) ?il Ai a An = pJ Ai^ A^, for any i>J€A-
Then there exis ts a unique equivalence re la t i on p on M such that p|A.= 

= (O and A. is ©-sa tura ted in M for i€l. 

Proof. Let a> be the re la t i on on M defined in the following way: 

(5) x rt> y iff there exis ts isl such that x,ysA. and x rt>. y. 

I t is easy to show that m is a unique equivalence r e l a t i on sa t i s f y i ng the 

assumptions of the propos i t i on . 

Now we will prove 

Proposition 6. Let (M,C) be a d i f f e r e n t i a l space. Let (V.). T . ^ ^ ' 1 id be an open 

covering of (M,Tc) such that: 
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1° on each set v., it I, there is given an equivalence relation rf>., 

2° V . A V . is «.-saturated in V. and {p.-saturated in V., i,j€l, 

3° p.|V.AV.= pjlV^V . for i , j € I , 
4° V i Ctf c for any i 6 I , where CQ: = ice :M —*R|o<; |Vi€ (Cy^jpJ. 

o i 
Then there exists a unique equivalence relation p on M such that j&|V.= (0.? 

the sets V. are j>-saturated in M, G» =C and (Cp) v =(VV V . 

Proof. Let {0 be the equivalence relation defined by (5). By P roposi t i 

on 5, to complete the proof it suffices to show that C^ =C . 

We f i r s t prove that CQC C .Let & a CQ. Since oo | V± C(Cy )pc Cv fo r 

any i«I and (VjX j is an open cover ing of (M,tp)» it follows that 06 € C. 

We have to ve r i f y that cc is consistent with the equivalence relation j© . In

deed, if x p y, then there exists ifcl such that x,yeV. and x p i y. Hence 

oc|V.€(Cy )_ yields ( «* |V. )(x)=( <* |V, )(y) or equivalently c*(x)= oc (y). 1 vi Pi l x 

Conversely, let «C € C . By Lemma 4, 06|Vi« (C^ ) v =(Cy ) ^ , i.e. 

©C * C » which completes the proof. 

Exanple 3. Let (M,C)=(R2\0,( ?«) 7 ) be the plane with the o r i g in 
1 RZ\0 

removed and with the natural di f ferential structure. Let V. = -f (x, ,x2):x. -^0 } 

fo r k=l,2. Of course $V,,V2} is an open cover ing of (M,TP). Consider the map

ping F. :V.—-^R fo r k=l,2 defined by the formulas: 
X2 xl 

F1(x1,x2):= — fo r Cxt»x2^ftVl and F2^xl»x2^:= 7" for ^ Xl , x2^ € V 
The relations £>,= p p and p2= $p F are compatible on V,nV2. 

The mappings i ^ R - ^ R ^ O and i2:R—-*R
2\0 defined by 

(6) ix(t)=(l,t) and i2(t)=(t,l) fo r t«R 

are smooth and satisfy F, o ii=idR and F2©i2=idR. By Corollary 4 and Lemma 6 

it is easy to see that the bisections 

F ^ ^ / p - . ,Cy /j&F )—*(R,<S) and F2:(V2/jQp ,CV / p p )—*(R,«§) 

defined by (3) are diffeomorphisms and the sets V, and V2 belong to T c . So 

there exists a unique equivalence relation g> on M such that to |V.= p f , the 
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sets V, and V„ are a>-saturated, and C^ =C . One can prove that the quotient 

space (M//p ,C/» ) is the one-dimensional projective manifold P,(R ) and the 

maps F, and Yj are its charts. 
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