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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3 (1988) 

COMPACTIFICATIONS WITH FINITE REMAINDERS 

Eliza WAJCH 

Abstract; For a locally compact space X and a positive integer n, deno­
te Bn(X)= A f e C ( X ) : there is a compact Kc X such that |f(X\ K)|-= n}. Then the 

diagonal mapping e =A-if:f GB (X)} is a homeomorphic embedding and the closu­

re of e (X) is a compactification of X denoted by e X. It is shown here that 

|e X \ X|=n if and only if X has exactly one n-point compactification which 

holds if and only if B (X) is a subalgebra of C*(X) but B (X) is not whene­

ver l< m< n. A number of other necessary and sufficient conditions for X to 

have only one n-point compactification are given. 

Key words; n-point compactifications, locally compact spaces, sets gene­
rating compactifications, algebras of functions. 

Classification: 54035, 54D40, 54C20 

Throughout this paper, X denotes a locally compact Hausdorff space. The 

algebra of all real-valued continuous functions on X is denoted by C(X) and 

its subalgebra of bounded functions - by C*(X). 

For a compactification oc X of X, let C^ denote the set of all functi­

ons feC*(X) continuously extendable to esc X. For f c C ^ , let I 0 0 be the con­

tinuous extension of f to ocX and, for F c C ^ , let Fot= f f ^ f c F j . 

Let *£(X) be the family of all sets FcC*(X) such that the diagonal 

roapping eF= ^ f is a homeomorphic embedding. If F € *€(X), then the closure 
r f»F 

of ep(X) in R' ' is a compactification of X. This compactification is said to 

be generated by F and is denoted by eFX. Of course, eFX is the smallest com­

pactification of X to which all functions from F are continuously extendable. 

For a positive integer n, denote B (X)=f f € C(X): there exists a compact 

set K c X such that |f(X\K)|:4 n}. It is easily verified that BR(X) separates 

points from closed sets, and so belongs to #(X). For simplicity, denote 
en X = eF X where F = B

n(
x)- xt follows from r 2; Theorem 3.3J and [5; Theorem 3.3'j. 

(cf. also C3; Corollary 6.5, p. 67]) that if |px\X|=n, then 0X=enX. 
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In 13; Remarks 6.9, p. 71} R.E. Chandler asked the question whether |enX\ X| 

equals n for X having an n-point compactification (i.e. a compactification 

with the remainder of cardinality n). In this note, we shall show that 

|e X\X|=n if and only if X has exactly one (up to equivalence) n-point com­

pactification which holds if and only if B (X) is a subalgebra of C*(X) but 

B (X) is not whenever l<m<n. We shall also give a number of other necessary 

and sufficient conditions for X to have only one (up to equivalence) n-point 

compactification. 

We shall use the following theorem proved in 123 by B.3. Ball and Shoji 

Yokura: 

Theorem 0. For any subset F of C*(X) and any compactification «tX of X, 

the following conditions are equivalent: 

(i) F6<fc(X) and epX= ©cX; 

(ii) Fc C ^ and F06 separates points of ocX. 

For notation and terminology not defined here, see £33 and £43. 

Results. To begin with, let us observe that if X is a noncompact local­

ly compact space and c*> X is the one-point compactification of X, then 

B,(X)cC<4) and B,(X) separates points of o>X. Th eorem 0 implies that B,(X) 

generates <*> X. 

Lemma 1. If ot X is a compactification of X for which |o*X\X| is fini­

te, then - U M n C ^ generates oc X. 

Proof. Without any difficulties one can check that the set B,(X)*C sepa­

rates each pair of distinct points y,z e otX such that y6X. 
Suppose that y,z e o c X \ X and y4s.z. As the set ocX\X is finite, there 

exist sets V, W open in ocx and such that y€V, (ocX \X)\-£yfcW and 

(clcXV)n(cl XW)=0. Take a, function f*G C(ocX) such that f* (cl^V)* i0\ and 

f^Ccl^W)* <1* and put f=f*lx. The set K=X\(VuW)= otX\(VuW) is compact 

and f(X\K)c*0,li, so fcB 2(X)nC o C. Clearly, t* (y) * f* (z), hence 

£B2(X)nC<rc-3
oC separates points of oc X. It follows from Theorem 0 that 

B2(X)nC0C generates ocX. 

lemma 2. If oc X is an n-point compactification of X where n>l, then 

there exist functions f.e B 2 ( X ) A C ^ (i=l,...,n) such that 

Z fjCB^WNB^CX). 
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Proof. Let z,,...,z be distinct points of oc X\X. Take sets V., open 

in CtfX, such that z^ Vi and (
c L x V

n ( c o c X V j ) = 0 f ° r ia^J (i' J=1,#' *,n)* 

There exist functions f 5* 6 C(ocX) such that t?* (cl XV )= til and 

f.* ( U cl YV.)={0l (1=1,...,n). Denote f.=f * L (i=l,...,n) and 
Hi J

 I l A 

n 
f= X fv Then f.* B2(X)n C^ and fec(c^.xV.)= {it for 1=1,...,n. If there 

is a compact set K c X such that |f(X\K)|-» n-1, then V . A X C K for some 
ig-Jl,... ,nj, which is impossible because z.tf cl x(V.riX). Hence 
fcBn(X)\Bn_1(X). 

Lemma 3. If n>l and f 6B n(X)\ B j,(X), then there exists an n-point 
compactification otX of X such that fe C^ . 

Proof. Suppose that K is a compact subset of X such that |f(X\K)f=n. 

Let f(X\K)= |a1,...,an]and, for 1=1,...,n, let us put Gi=f"
1(ai)\ K. It is 

easily seen that the sets G. are open in X, pairwise disjoint and 

X\KJ G.=K. If KuG. is compact for some i, then, since |f [X \ (KuG^J | .4 
i=l x X 

£ n-1, we have that f*B ^(X) - a contradiction. Hence all the sets KuG t 

are not compact. The proof of Magill' s theorem (cf. 16; the proof of Theorem 
2A 3 or £3; the proof of Theorem 6.8, p. 70]) implies that there exists an n-
point compactif ication oC X of X such that if oc X\X= { z „ .. .,z }, then the 
set G-U-fz-1 is a neighbourhood of z. in oC X (i=l,...,n). Let us define 
f*(z)=f(z) for z€X and fot(zi)=ai for i=l,...,n. The function f

4* is a con­
tinuous extension of f to oc- X, so f e C ^ . 

Let us recall the notion of ft -families (cf. £3; Definition 5.15,p.523). 

Definition. Let oc X be a compactif ication of X and let h:/$X —• ocX 
—i 

be a continuous mapping such that h •£ =oc . The set {h~ (z):z 6 oc X \X } is 
denoted by & (ocX) and is called the (5-family of <*X. 

Lenma 4. If oc X and y X are nonequivalent n-point compact if ications 

of X, then neither oc X k x X nor f X *» ocX. 

Proof. Suppose that oc X £ ^X, & (ocX)= {Ap... ,A^ and TiyXh 
= CE1,...,EnV For j=l,...,n, denote N.= {i S-U,... ,ni:Eic A.I. Then the sets 
N. are pairwise disjoint and, moreover, Lemma 5.16 of t^; p. 52] yields that 

n n n 
U N.= tl,...,ni. As U E,= U A.= 0X\X, then |N.| = 
j-1 J 1=1 x 1=1 x J 

1 for each 
• J 
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j€ilf...»n}. This implies that y ( o C X ) = ^ ( y X ) . By virtue of [3; Corollary 

5.17, p. 53j, we have that <* X= flfX - a contradiction. 

Our next lemma is a consequence of Lemmas 6.12 and 6.13 of [3; p. 723. 

Lemma 5. Suppose that X has an n-point compactification for some n>l. 

Then all n-point compactifications of X are equivalent if and only if X has 

no m-point compactification where m>n. 

Theorem 1. For every locally compact space X and any positive integer 

n>l, the compactifications e«X and e X of X are equivalent. 

Proof. Let us fix a positive integer n>l. Since B 2 ( X ) c B (X) , accord­

ing to Theorem 2.10 of [3; p. 143, it suffices to show that B n ( X ) c C e . 

Suppose that f e B ( X ) \ B2(X) and let p be the smallest positive integer 

for which f cB (X) . It follows from Lemma 3 that X has a p-point compactifi­

cation ocx such that ffcC^. By virtue of Lemma 1, the set B 2 (X )AC c C gene­

rates ocX. Using Theorem 2.10 of C3l, we obtain that oc X£e2X; thus, f^ c 

c C and f «C . Consequently, B (X)CC . 
e2 e2 n e2 

Theorem 2. For every locally compact space X and any positive integer 

n>l, the following conditions are equivalent: 

( i ) X has exactly one (up to equivalence ) n-point compactification; 

( i i ) Bm(X)=Bn(X) * Bn_1(X) for each m>n; 

( i i i) Bn+1(X)=Bn(X)4cBn-1(X); 
(iv) |e2X\X|=n. 

Proof. Assume ( i ) . Applying Lemma 2, we deduce that B (X)^B ,(X). If 

B (X)4» B (X) for some m>n, then there exists a positive integer p > n such 

that B (X) \ B , (X) 4* 0. Thus, by Lemma 3, X has a p-point compactification. 

This, together with Lemma 5, contradicts ( i ) . Hence ( i ) — * ( i i ) . 

Assume ( i i i ) . According to Lemma 3, there exists a compactification ocX 

of X such that |«cX\X|=n. Let us take a function f c B 2 ( X ) and suppose that 

f 4 C^. As B 1 ( X ) c C 0 C , by virtue of Lemma 3, X has a 2-point compactificati­

on y X such that f 4 C y . Denote ^ («cX)= •fA1,...,Afli and #*0yX)=«£ E,,E2%. 

Since C ^ \ C ^ + 0, the inequality # X .6ocX does not hold. It follows from 

Lemma 5.16 of [3; p. 523 that there is an it{l,...,nl such that A.nE 14
s 0 

and A.nE 24*0. Then there exists a compactification <fX of X for which 

$ (cf X > *A p... -A^-Ajn E1,AioE2,Ai+1,... ,A^ .Clearly, |cTX s X|-ml and,by 
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using Lemma 2, we obtain that B -(X) + B (X) - a con t rad ict ion . Hence, f4 C^ 
and B 2(X)cC 0 C. It follows from Lemma 1 that e2X= ©c, X, so (iii)a^(iv). It 
remains to show that (iv)*.^ (i). 

Assume (iv) and let aC X be an a rb i t ra ry n-point compactification of X. 
By Lemma 1, the set B 2 ( X ) A C < X generates oc X. This, along with Theorem 2.10 
of 13; p. 14J, yields that ©c X£e2X. Lemma 4 implies that oc X=e2X; hence 
(iv)-*->(!). 

Corollary 1. For every locally compact space X and any positive integer 
n, the following conditions are equivalent: 

(i) X has exactly one (up to equivalence) n-point compactification; 
(ii) |enX\X|=n. 

Corollary 2. For every locally compact space X, the following conditi­
ons are equivalent: 

(i) X does not have any 2-point compactification; 

(ii) B (X)=B,(X) fo r each positive integer n; 
(iii) |e2X\X|41. 

Corollary 3. For every locally compact space X, the following conditi­
ons are equivalent: 

(i) X has an n-point compactification fo r any positive integer n; 
(ii) B ,(X)+ B (X) fo r any positive integer n; 
(iii) |e2XSX|> j* o. 

Example. Let X be an infinite d iscrete space. It is easily seen that if 
y, z are distinct points of #X, then there exist sets V and W, open in /3X, 
such that yeV, Z£W, Vr*W=0 and Vv/W= /J X. This implies that B^X)*5 separa­
tes points of # X; thus, by Theorem 0, e«X= |3X. 

In connection with the above example one may suspect that e2X= (i X when­
ever |e2X\X| is infinite. That this is false is shown by the following 

Theorem 3. For every cardinal number M>*¥ 0, there exists a locally 
compact space X such that |e2X\X| = >*fr and e2X-4c/JX. 

Proof. Let Y be the discrete spce of cardinality M> + 0. By virtue of 
C8; Proposition 4.17, p. 361, there exists a locally compact space X such that 
A X\X is homeomorphic to t0;l}xa>Y. For simplicity, assume that p X\X= 
= C0;l3xcJY. Let us observe that if z , z, are distinct points of o>Y, then 
one can find a function fcB2(X) such that f& (t0;l3 x.4 zil)= til for i=0,l. 
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Since B 2(X)^ does not separate points of f0;l3*.$ z} where z ea>Y, it fol­
lows from Theorem 0 that & (e2X)= {COjUx-C*? :Z€0>Y$. Hence |e2X\X|=^H* 

and, moreover, e2X-^^SX. 

Theorem 4. For every cardinal number /fr , there exists a locally comp­

act space X such that l e ^ X s X ^ ^ and e?X= fix. 

Proof. Let Y be the discrete space of cardinality /H-. If X is a local­

ly compact space such that /3X\X is tiomeomorphic to c*>Y (cf. [8; Propositi­
on 4.17, p. 363), then B„(X)^* separates points of AX; hence, by Theorem 0, 

e2X= j3 X. 

Let F be a nonempty subset of C*(X). For a positive integer n, denote 

M ° ( F M h o ^ f.:heC(Rn) and f.&F for i=l,...,n} and M°°(F)= U Mn(F). 
i=l x x n=l 

The sets Mn(F) and M°°(F) were first considered by B.J. Ball and Shoji Yokura 

in £lj. As shown in [7J, MW(F) is a subalgebra of C*(X) containing F and 

all constant functions. Denote by ./1(F) the smallest subalgebra of C**(X) 

which contains F and all constant functions, and let Jl(F) be the closure of 

,A(F) in C * (X) with the topology of uniform convergence. Proposition 1.10 

of pi says that M°*(F) c A(F). 

Without any difficulties we can check that B1(X)=M
a?(B1(X)), so B,(X) is 

a subalgebra of C*(X). We are now going to generalize this result to sets 

B (X) such that |enX\X|=n. 

Theorem 5. For every locally compact space X and any positive integer n, 

the following conditions are equivalent: 

(i) |enX\X|=n; 

(ii) M»(Bn(X))=Bn(X), and if l<m<n, then M°°(Bm(X)).4- Bm(X); 

(iii) Bn(X) is a subalgebra of C*(X), and if l<m<n, then Bm(X) is not 

an algebra. * 

CO 

Proof. Assume (i). It is easily seen that Ma>(Bfl(X))c U Bm(X); 
n m=1 

thus, by virtue of Theorem 2, Bn(X)cM°°(Bn(X)) c U Bm(X)=B (X); so that 
n n m=l m n 

M*(B (X))=B (X) and, moreover, B (X) is a subalgebra of C*(X). Suppose that 

K m < n . Lemma 2 yields the existence of functions f.6 B2(X) such that 

n 
Z f. i B

mCX)- Hence we have proved that (i) implies both (ii) and (iii). 
i=1 I m 

- 564 -



Assume either (ii) or (iii), and suppose that (i) does not hold. Then 

n > l and B (X)+ Bn_1(X). It follows from Theorem 2 that Bm(X)4»Bm-1(X) for 

some m>n. By Lemma 3, X has an m-point compactification. Lemma 2 implies that 

m 
there exist functions g.€ Bri(X) such that X g . i B m ,(X). As Bn(X)cBm ,(X), x n • _ -J x m~ x n m—x 

we have a contradiction. This completes the proof. 

Remarks. Assume that ofrX is the unique (up to equivalence) n-point com­

pactification of X. By our theorems, B (X) is an algebra which generates ocX. 

Applying Theorem 3.1 of [2j, we deduce that B (X) is a uniformly dense subset 

of C ^ . In this way, we obtain a new proof of Theorem 3.1 of C52. 

If n>l, then, by Theorem 2, B2(X) generates otX. It follows from Theo-

rem 2.3 of £7} that C^ consists of all functions of the form h • A f., whe-

re heC(R °) and f.« B«(X) for i=l,2,... . Of course, by Theorem 2.3 of 673, 

a function f6 C* (X) is continuously extendable to the one-point compactifi­

cation of X if and only if f=h a & f. for some heC(R ) and f-6 B,(X) 
i=l x l l 

(i=l,2,...). 
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