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eOMMENTATIÛNES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3 (1988) 

BADE'S THEOREM ON THE UNIFORMLY CLOSED ALGEBRA 

GENERATED BY A BOOLEAN ALGEBRA * 

Werner J. RICHER 

Abstract; We give a new proof of the classical result of W.Bade stating 
that the uniformly closed algebra generated by a complete Boolean algebra of 
projections in a Banach space coincides with the weak operator closed algebra 
that it generates. The method of proof does not rely on the use of Gelfand 
theory for commutative Banach algebras or the existence of Bade functionals. 
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The uniformly closed algebra generated by a complete Boolean algebra of 

projection operators M in a Banach space X is a full algebra equivalent to the 

algebra of continuous functions on its maximal ideal space. Furthermore, for 

each x 6 X there is a c-ontlnuous linear functional x' with the properties 

(i) <Bx,x*> _> 0, for each B € M, and 

(ii) if <Bx,x'> « 0 for some B 6 M, then Bx « 0. 

An element x' satisfying (i) and (ii) is often called a Bade functional for x 

with respect to M. These two facts are the essential ingredients in the proof of 

the reflexivity theorem of W.Bade [1; Theorem 4.3] which states that the uni

formly closed operator algebra generated by M consists of all bounded linear op

erators in X which leave invariant each closed subspace of X which is invariant 

for each member of M. The classical result of W.Bade [1; Theorem 4.5] stating 

that the closed algebra generated by M with respect to the weak (or, equivalent-

ly, strong) operator topology coincides with the uniformly closed algebra gen

erated by M follows immediately. So, the idea is to exhibit a criterion describ

ing the elements of the uniformly closed algebra generated by M (a Banach 

algebra) and then check that elements of the weakly (or strongly) closed algebra 

generated by M (a locally convex algebra) satisfy this criterion. 

* Presented at the 19th Seminar on Functional Analysis in Alsbvice 

(Czechoslovakia), May 1988. 



The aim of this note is to show that this strategy can be reversed, there

by providing an alternative proof of Bade's result. Namely, we give a descript

ion of the elements of the strongly closed algebra <M>S generated by M from 

which it follows that <M> is a part of the uniforraly closed algebra. The 

techniques are based on the theory of integration with respect to spectral 

measures, recently developed and successfully employed in [2;3;4] for the case 

of non-normable spaces. In the Banach space setting such techniques make no use 

of Banach algebra theory and Bade functionals play no role. 

Let X be a Banach space with continuous dual space X *, and let L (X) denote 

the space of all continuous linear operators of X into itself. Then L (X) de

notes the space L(X) equipped with the strong operator topology (i.e. the top

ology of pointwise convergence on X) and L (X) denotes the space L(X) equipped 

with the uniform operator topology. We remark that L (X) is quasicomplete. The 

definition of a Boolean algebra of projections M is standard; see [1] or [5], 

for example. It is assumed that the unit element of M is the identity operator I 

in X. The closed algebras generated by M in L (X) and L (X) are denoted by <M> 

and <M> , respectively. For the notions of a-completeness and completeness of 

Boolean algebras of projections in Banach spaces we refer to [1 ]. Such Boolean 

algebras are always uniformly bounded in L (X), [1; Theorem 2.2]. We remark that 

<M> coincides with the closed algebra generated by M with respect to the weak 

operator topology in L (X). 

Theorem (W.Bade). Let M be a complete Boolean atgzb/ta o£ pKojtc&lQnb In a 

Banack Apace. X. Then <M> = <M> . r u s 

The inclusion <M> c <M> is clear. It is the reverse containment which is 
u — s 

not so obvious. The basic idea of the proof goes as follows: 

(i) Realize M as the range of a suitable spectral measure P. 

(ii) Using the results of [2] characterize <M> as an L -space with res

pect to P. 

(iii) Observe that the only P-integrable functions are the P-essentially 

bounded functions. 

(iv) Approximate (uniformly) by P-simple functions. 

We now formulate these steps more precisely. 

A spectral measure is a a-additive map P : £ -• L (X) satisfying P(ft) = 1 

and P(E 0 F) =- P(E)P(F), for every E,F € £, where I is a a-algebra of subsets of 

some set ft. It is known that the range R(P) == (P(E); E € 1} of P is a c-complete 

Boolean algebra. Furthermore, R(P) is a complete Boolean algebra if and only if 

it is a closed subset of L (X), [2; p.148], Conversely, any complete Boolean 

algebra is the range of a spectral measure defined on the Borel sets of its 
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Stone space; see [1; p.349], for example. So, formally (i) means that there 

exists a spectral measure P : 2 ->• L (X), with R (P) a closed subset of L (X), 
s s 

such that M = R (P) . 

Let P : Z -* L (X) be any spectral measure. The o-additivity of P is equiv

alent to the a-additivity of each (E-valued set function 

<Px,x'> : E -> <P(E)x,x*> , E € E, 

for each x € X and x' € X'. A E-measurable function f on Q is said to be P-inte-

grable if it is <Px,x'>-integrable, for every x € X and x1 € X', and there 

exists an element P(f) = JofdP in L(X) satisfying 

(1) <P(f)x,x'> = JQfd<Px,x'>, 

for every x € X and x' € X'. This definition agrees with that for more general 

vector measures (in the sense of [6]); see [2; Proposition 1.2]. In this case 

JEfdP = P(f)P(E) = P(E)P(f), E € I. 

A P-integrable function f is called P-null if P(f) = 0. A typical seminorm gen

erating the topology of L (X) is of the form 

q x : T -> || Tx|| , T € L(X), 

for some x € X. This seminorm then induces a seminorm q (P) in the space L(P) of 

all P-integrable functions via the formula 

(2) qx(P) (f) = sup { || (JEfdP)x|| ; E € Z ) , f € L(P). 

The family of all such seminorms (2), as x varies through X, generates a locally 

convex topology in L(P). The quotient space of L(P) with respect to the space of 
1 1 

P-null functions is denoted by L (P). Then L (P) is a (Hausdorff) commutative, 
1 

locally convex algebra with unit (the constant function 1) and L (P) is complete 

if and only if R(P) is a closed subset of L g(X), [2; Proposition 1.4]. If R(P) 

is a closed set in L (X), then the integration mapping 

(3) *p : f •* P(f) = J^fdP, f € L1 (P), 

is a bicontinuous isomorphism of the (complete) locally convex algebra L (P) on

to the operator algebra <R(P)> , [2; Proposition 1.5]. Accordingly, <M> is 

isomorphic to L (P) for any spectral measure P such that M = R(P). 

The notion of P-essentially bounded functions proceeds as for (finite) 

numerical-valued measures; see [5; Chapter XVII, §2], for example. In particular, 

such functions are necessarily P-integrable. Indeed, if f - l A a . x „ / M is a 

Z-simple function, then it is clear that f is P-integrable and 

P(f) = J^fdP » I j^a jP(E(j)). 

It is then possible to define, for each P-essentially bounded function f o n Q , 

an operator P(f) € L(X) satisfying (1) by continuous extension from the I-simple 

functions; for the details we refer to [5; Chapter XVII] or [7; §1]. In par

ticular, there is a constant K such that 

(4) |f[ p£ II Jofap.l £<|f| P r 
- 599 -



for every P-essentially bounded function f on Q, [5; XVII Theorem 2.10], where 

| • |p denotes the P-essential supremum norm. Actually, the P-essentially bounded 

functions are the only P-integrable functions. T M s follows from [5; XVIII 

•Eheorem 2.11 (c)] and Proposition 1.8 of [2]; see also the remarks following this 

proposition. 

Having formulated the steps (i)-(iv) more precisely the proof of Bade's 

theorem follows immediately. Indeed, let P : I -+ Lg(X) be any spectral measure 

such that R(P) » M. If T € <M> , then it follows from the surjectivity of (3) 
1 

that there exists f € L (P) such that 

T « J^fdP . 

But, f is then P-essentially bounded and so there exist I-simple functions (f } 

which converge to f with respect to the norm | • L . It follows from (4) that 

{P(f )} converges to P(f) in Lu(x). Since each operator P(f ), n » 1,2,..., be

longs to <R(P)> • <*fc>u it follows that also T = P(f) belongs to <M>U . This 

completes the proof. 

Remark. The representation of <M> as an L -space seems not to have been 

sufficiently exploited in the Banach space setting. 
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