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ON COLLECTIONS OF ALMOST DISJOINT FAMILIES

Bohuslav BALCAR and PETR SIMON

Dedicated to Professor Miroslav Kat&tov on his seventieth birthday

-

Abstract: We show, in ZFC only, that for every uncountable cardinal K
the quotient Boolean algebra ?k(K)= P(R)/IkI<Kis (W, ,kh), res-

X
pectively (e, , » , K °), nowhere distributive. This depends on the cofinality
1

of K . Moreover, we prove that for uncountable regular K the forcing notion
?K (x ) collapses a cardinal characteristic be>K 10 co. Nowhere distri-

butivity of P, (x) is formulated in terms of almost disjoint families on K.
K

words: Almost disjoint family, non-distributivity of Boolean alge-
bra, completion of Boolean algebra.

Classification: 03E05, 03E45, 06E05

§ 1. Introduction. Soon after Cohen’s discovery of forcing, it became
apparent that the distributivity properties of a Boolean algebra decide the
basic features of the generic extension. The first author investigated with
his collaborators the distributivity of P (x )/[x]1<* systematically for a
long period of time. The present paper aims to give a survey of this topic.
Though the partial results have been already published [Bvopl, [BPS], [BF],
[BS], here we present the definite statements concerning the non-distributi-
vity of P(k)/[k1<¥ .| The results concerning the collapsing of cardinals
when forcing with P(x)/[Kk1<®are far from being complete except for reg-
ular & . The paper extends [BS, § 47 from the Handbook of Boolean Algebras.

The notation used throughout the paper is the standard one. The Greek
letter k always means an infinite cardinal number, I:|<,]<K is the ideal in
the power set algebra J°( k) of all sets of size less than K and the quoti-
ent Boolean algebra P (k )/Lk1%¥ is denoted by ?‘(x). We shall consider
also its completion, for which we use the notation Compl ( ?*' (k).
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Few words on the organization of the paper. In the forthcoming § 2, the
necessary notions are introduced and the main results formulated. The proofs
will be done in §§ 3 - 5 for a regular case, for a singular with uncountable
cofinality and for a singular with countable cofinality, respectively.

§ 2. The nondistributivity of Tn (k). For the reader s convenience,
let us summarize here a few basic and well-known facts on the almost disjoint
families on K .

A family A e P (k) is called almost disjoint on K , if all members
of A have size K and any two distinct A,A’e R satisfy |AnA"|< K . Thus an
almost disjoint family on K corresponds to a disjoint family in P ().
If a family A & [lC'lK' is almost disjoint and there is no almost disjoint
family on K properly containing A , then A is called maximal almost dis-
joint, MAD. A MAD family on k corresponds to a partition of unity in fr':c(lc).

There is no maximal almost disjoint family of size cf(® ) on K . Next,
on each K , there is an almost disjoint family of 8ize ‘. Assuming, more-
over, 2%K- , then there is an AD family on K of the maximal size possib-
le, i.e. 2%, In particular, there is an almost disjoint family on eo of size
2%, On the other hand, J. Baumgartner [Bal showed that it is consisten& that

all almost disjoint families on w, have size strictly smaller than 2 1. In

the case of a singular, strange things may happen: P. trdo¥ and S.H. Hechler
[EH] formed a MAD family of size Kk on ¥ under the assumptions A=cf(k)< K
and (VZ< K) LD

In contrast to P (k), the algebra {PK,('C) has no atoms and therefore
is not distributive. Moreover, every non zero element of be () admits a
partition of size at least v'. An algebra 'Pn(tc) is homogeneous. (Recall
that 43 is homogeneous if for any non zero x e I , 3 is isomorphic to
BMx.)

As commonly adopted, for A,B € [tc]k', we shall write A €¥ B iff |ANB|<
< K , Ac*¥B iff A %8 and |[BNA|= K . This corresponds to the canonical
order & in the algebra fPK_( k). For M & K , its equivalence class modulo
the ideal [ ©3<" (equivalently, the corresponding element in ?n (x)) is
denoted by [M].

For two functions f,g ek , £ £*g means that |{ g er :f(g )>g(€ )3 ¢

<K.

The central notion discussed in the present paper is defined as follows.

v

2.1. Definition. Let 73 be a Boolean algebra, « JA (4 cardinal num-
bers, A z 2. . .
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+ (i) The algebra P is (¥ ,@,N)-distributive, if for every family
{P* :o¢ < Yof partitions of unity of 93 such that each IP“ |& @ there is
a partition of unity Q with the property that for every q€Q and for every
x <, {p€P, :pAq 0} <.

(ii) The algebra % is (¥, &, A)-nowhere distributive, if there is a
family{Pec:ec < lof partitions of unity of 43 such that for each e < T,
|Po| & @ and for every a0, there is some ot <% with I{PEP,,C :paa w0}
[z a.

(iii) We shall speak about (@, e , A)-distributivity (( 2, ., Q)-now-
here distributivity, resp.), if there is no demand on the size of Pu" S.

We shall omit an easy proof of the next proposition, which may be found
e.g. in [BSV].

2.2. Proposition. A Boolean algebra % is («q, », A)-nowhere djstribu-
tive iff no partial algebra Bla (a &0) is (x,+ ,A)-distributive.

Let us apply the general definition of nowhere distributivity to the ca-
se of ff’n (®). Clearly, every family witnessing to the (@, o, A)-nowhere
distributivity is in fact a collection of almost disjoint families on K . We
shall try for the smallest possible @ and then for the greatest possible A
without any additional set-theoretical assumptions. The main emphasis is put
on A , because the « is, in fact, known; see 2.5 below.

The first demand leads naturally to the notion of a height

2.3. Definition. The height h, of an algebra % (i) is defined by
hy =min L« : P, (®) is not (¥, »,2)-distributive}. The letter h without
an index stands for hw.

2.4. Comments. (a) Since the algebra ?n(le) is homogeneous, h,, equ-
als to min{@: P (k) is (@, +,2 )-nowhere distributive}.

(b) Equivalently, h, is the least cardinal a such that there is a
collection {ﬂgc:oc<'r} of MAD families on & such that for every X & [ n]"
there is some e¢ < «¢ and distinct A,A'eﬁ‘_ with |AnX|= K =|A'nX]|.

(c) Since every Boolean algebra is (@, ,2)-distributive iff its comp-
letion is, hy is the smallest 4/ such that forcing with 'P,‘(N) adds a new
set of size « .

(d) Just in the spirit of the definition 2.3, one may also describe
the splitting number as s, =min €% : (Pn, (&) is («,2,2)-nowhere distribu-
tive}.

For the interested reader, 535, 1S extensively studied in {vD), and one

[

can easily prove that s":min {g: 29 > 1} for an uncountable regular W .
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Immediately from the definition, hné Sy for all cardinals K .
Concerning h,, the next should be stated.

2.5. Theorem.
(1) h,, is'a regular cardinal, w & huécf(Z“’) [BPS).

(ii) For an uncountable «k , if cf(k)>@& , then h . =w, [B Vop],
if cf(w)= w, then h = | [Bs].

We shall omit the proof of 2.5 (i). An exhaustive information on hgycan
be found in [BPS) or [BS]. But it should be noted here that - contrary to the
case of uncountable cardinals - the exact value of hg, depends on additional
principles of set theory.

We reprove 2.5 (ii) as it follows from the more detailed statements 2.7,
2.8. The full proof of them will be the contents of §§ 3 - 5.

2.6. Definition. lLet Kk be a regular cardinal. Define
by =min {|H]:H&®K and H has no upper bound under &%1.

Notice that bsc > K and by is regular. Now we are ready to give the
results.

2.7. Theorem. (i) Let K be a regular uncountable cardinal. Then
5’3” (k) is (e, ~ ,b, )-nowhere distributive.

(ii) Let w be a singular with uncountable cofinality. Then % (k) is
(@, », ¥")-nowhere distributive.

(iii) Let & be a singular with countable cofinality. Then ?.‘(K:) is
(@), » k®)-nowhere distributive.

For a regular Kk , we are able to prove a bit more.

2.8. Theorem. Let x be a regular uncountable cardinal. Then there is a
collection {.ﬂ NEWw,xeb, % such that:

(i) For each n<w, ULR  _ :xeb, ¥ is a MAD family on K ,
(ii) for each n< @, cx.</3<b Jl. r’oJLn,s

(iii) for every M & [ <], there is some n < @ such that for each o¢ <
< , IMAA|=k for some Ae Jl.n "

Or, equivalently, there is a famlly {an cNEW,xe€ b { in
Compl ( ¥ (K)) such that

(i&ii)" Every row {ar‘ o< TED, } is a partition of unity.

(iii) " For every 'non zero wcCompl ( ? (&)) there is some n € w suzh
that wAa, -ko for all ® € b

- 634 -



The family of partitions described just now can be also viewed as a name
for a function from w to b.c , thus we have an immediate

2.9. Corollary. For a regular uncountable Kk , forcing with 9,0 (x)
collapses b, to e .

2.10. Corollary. (i) Suppose cf(®)> « and 2% =k*. Then
Compl ( P, (k)) is isomorphic to the Boolean algebra of all regular open

subsets in the product of w copies of a discrete space of size 2"', T 2%
ne w
(i.e., in a generalized Baire space of weight 2%).

(ii) Suppose K » cf(K)=w and 2" = k. Then Compl ( P (k) is
isomorphic to the Boolean algebra of all regular open subsets in de-topology
on a product of aJl copies of a discrete space of size 2%,

We omit the standard proof. The set-theoretical assumptions and the non-
distributivity from 2.7 enable us to routinely apply Mc Aloon’s characteriza-
tion of collapsing algebras. See e.g. [BSV, Theorem 1.15] or [CN, Theorem
12.13]. .

2.11. Remark. In [BS], a weaker form of 2.7 was given. Here, 2.7(ii),
2.7(iii) and 2.8 are new and solve several open questions from [BSJ.

The forthcoming three paragraphs are devoted to the proofs of both theo-
rems. The authors apologize for a rather technical and complicated stuff. We
shall start with 2.8.

§ 3. Regular uncountable cardinal. In this section, K will stand for
an uncountable regular cardinal. First, let us discuss in some detail the pro-
perties of functions and closed unbounded sets on Kk related to the cardinal
bn .

3.1. Lemma. There is a family {f“’:gc< b.c7; E”K such that:

(1) f,zid,

(i1) if k<P < by, then £, &*f5,

(iii) every f,‘c is continuous in the usual topology of ordinals,

(iv) there is no upper bound for {f, :o¢< bt in (%, &%).

(Hint: Given f_ , let g“(g+1)=f°‘(g+1), gw(g ):Lsé‘% f“_'(n) for g li-
mit. If-{fc6 tel< bb} is unbounded, then {g‘:¢< b} is.)

3.2. Lemma. The cardinal b, is the smallest one satisfying:
There is a family {C°c et <& b.c} consisting of closed unbounded subsets
of ®© such that
- 635 -



(i) if & <3, then Cq c* i,
(ii) for every M&[ic)1*® there is some ot < b, with |M\[,‘°6|= K

Proof. Given {f  :et< bwi as in 3.1, let C= {§ e K (€)= g;.
The family {C«':oc < b} is as required.

Conversely, if ¥ < b‘c and {Ca‘: o <lc§are closed unbounded in w and
satisfy 3.2 (i), define g (§ )=min {n € Coc:'rl2§§ . By 3.1, there is a con-
tinuous g satisfying g¥*z e for allet < ¥ . The set M= -[g €K :g(g): g}
contradicts 3.2 (ii). O

Let us show two simple statements, both being immediate consequences of
the lemma below.

3.3. Lenma. Let a family {0 :ec< b, 3 & [k satisfy the following

(%) ForallX<fi<by,, Dp€¥* Dy .

Then there is a disjoint collection {.ﬂg =§ < b,c]j such that:

1) U4LA :§<bk.} is a MAD family on K,

(ii) if M egfn]"satisfies (Ve < b, ) IR > ) IMAD N Dﬂ)|= K,

then for every §< b, there is some A € Jlg such that [MnAA|=c .
Proof. We shall work in Compl ( %, (i )) rather than in P (k). That

means, we shall look for a partition of unity {VS :§< bn} such that for
every M € [w]¥, if

(%) for each & < b, there is some [3 > oc with [M]A ([D“:l \[Dp])*ﬂ,

then [MJAv. = 0 for all E<by.

Let wy= /;\JD{,]\[D‘] for 0<at<b,, W= 1N\ \/{W,,g=0<°“boc}-
Clearly 4w :e¢ < b, } is a partition of unity in Compl ( %, (K)), some
w"s may equal to O.

Suppose M & te satisfies () and consider the set 8 ={w< b, :IMIAw, %
$0}. We claim that @ is k-closed unbounded in b, .

" Indeed, ifeg < by, then by (k) d= rM]A([DxOJ\[DﬂJ)"'O for some

[5 > oy Since{ww:cc< bni is a partition of unity and since obviously
d/\w0=0, there must be some « , o, < 7ﬁ(§ with dAw?,-l-O. Thus @ is un-
bounded.

Further, if {ogg : g < k¥ is a strictly increasing sequence converging
tc o¢ < b, and contained in 0, then[M]Aw.‘ % 0 for all g < b . In
particular, the same holds for all successors §+l < Kk , SO |Mn(D‘ \

\ D, 1)l=n for all § < K . Choose inductively a set XEM\D, |x]=
+

satisfying |X \D, |<x for all €< x . Then [X] & w, , consequently,
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IM) Aw_ % 0. This shows the K-closedness of e .

It remains to select a partition {Si :§< bkj of by consisting of K-
stationary subsets of by, and define VE T o b5, Y The partition {S§ 1f< bel
exists by a Fodor-Solovay theorem [F],[Sol. Thg statement follows. O

3.4. Proposition. Let{C°°:0c< b} be a family of closed unbounded sets
" on ke satisfying 3.2 (i), (ii). Then there is a family {ﬂ§:§< bki such
that

(1) if ey < by, then .H,E n Avf”’

(i) UV {jlf :§<bb3 is a MAD family on K ,

(iii) if MeLKk)® satisfies MnC, |= 1 for all & < b, » then for each
€ < by IMAAl=Kk for some A€ ﬂg
Proof. Apply Lemma 3.3. [

3.5. Proposition. Let {Q,:g <k} [x]“ be a disjoint family.
Then there is a family {ﬂag :§< bed such that

(i) it <m<by , then }l;n ﬂqfﬂ,

(1) U 4{ARg:§<betis aMAD family on K ,

(iii) if M e CLwl™ satisfies |Mr\Q,r|=|c for cofinally many 4’s, then
for all § <by, I[MAA|=Kk for some A e Ag .

Equivalently, there is a partition of unity in Compl ( B (w)),
{ce :§< b3, such that for each M e[k,]" , if [M]A[Q.‘.l o= 0 for cofinally
many 9+’s, then [M]Acesb 0 for all § < by .

Proof. Clearly, we may assume without any loss of generality that
{Qr: 'f<lc§is a partition of « . Identify & with K > k& and imagine Q4~
as {3} » k& . Choose a family {f‘°:¢c<b,c§ < K without an upper bound, with
each f_, strictly increasing and such that for oc<[3<b,c, fac $*fﬁ . Deno-
te Dw={(g,7l)c krK:f ()& 3.

We want to apply Lemma 3.3. Let Me[n]”satisfy IMAQ7-|= k for cofi-
nally many 7'5. We show that then M fulfils the assumptions of 3.3 (ii).
Indeed, let o¢ < b, be arbitrary. Define g: k—>k as follows: g(g )=
=min {n:(§,M)6M, N2 £, (§))+1 for all § <, with MA({§IxK)|=tk,
g(? )=min {g(?): ;' >§ and IMn({-Q'!xlc )|= v} otherwise.

Since {f_, :& < b is unbounded in by, there is some (3> o such that
I{ §<w:0(§)atn(g)}l=t . If § < and g(§)&t4(§), consider the
least 'g_ satisfying IMn({?}xlc N=w ,§ & F . We have an 7 < k such
that (F,7)eM, o(§)>1 (F) and o(§)= q+1=g(§)&fpy (§)<fp (F).The-
refore (‘g‘,’l)eMn (D‘\ Dﬂ) and the regularity of & gives the rest:
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IMADLN Dg )= k
It remains to use 3.3. 0O

3.6. Proof of 2.8. We shall define a system of subsets of ¥k , 09, , for
all finite increasing sequences ¢ of ordinals less than b, . To do this, fix
some family {C‘ rol < b,‘} of closed unbounded subsets of & satisfying 3.2
(i), (ii) and such that 0€C, for all o¢ < b,

We proceed by an induction on the length of ¢ . Let D[f K, fﬂ=idn
On the first level, set Do¢g= ¥ \NCy and let f, :D —C, be defined by
fuc(g )=sup g‘ N C, . Since 06C,, fo is well- defxned and for all fs Dy >
fo (§)< § . Moreover, for each 7 € fd[Dx] lf "m| < K, because Co is
unbounded.

If Dy and f have been defined for all g = <ocy, e(l,.. ,otn 1) incre-

asing, for an arbitrary o >e¢ ; put D e oc : ?\ f? [Cq‘] f

=f o f . One can quickly check that for each increasing 9 <ec
. ,o(n 17, {D e €L rol } is an &* -increasing family of subsets of D?

® -

such that for each Me[Dg,] there is some ot < b, with IMnU?nccl— .Also,
l“

for all 7 <K, ]f‘, m | <k and for every § ¢ dom fq”ac’ f ﬁx(g) <

< f‘f (g ).
Using Dq's Just defined, we shall find countably many partitions P
(n<a) of 1in Compl ( P, (k)) as follows. Let vg=1, P -{v Yvees [0\

NS for ec < by, Pi={v_:a<b, .
B

Suppose n < W and Pn= {vq :|<! |=n and @ strictly increasing} is known,
then put
Vo=V, A([Dgn 1N \/ Aanl),

Prel” {v‘, | @ |=n+1 and ¢ :n+l—»b, is strictly increasing 3.
We have got an auxiliary family of partitions of 1 in Compl ( 93, ().

Let us show one important feature of it.

3.7. Claim. Whenever M & [ 1", then there is some @ = (eco,..., < 1?7
such that

| ft < b :[M]/\V‘!n“ $0} = «

Proof of the claim. Suppose not, let M be the counterexample. Denote

d- {cfs“"b‘c (MJAv $ 0%

By an induction on lc_f’ |, we shall define a tree of subsets of M.
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|gl=1: Enumerate fat¢ : § <@¥all o <b, with [Mlav,, + 0. By the assump-
. ; - - <
tion, @ < w. Define M‘O aneco, M“E M"D"‘g \n\<J§ M"L for § <@
Then [M . |=® for all § < @ , because the ideal {«l<®is k -additive,
and [M_, *J£[M]AvV for all § <@ . Moreover, [MN\ U M |< w ,
“s “ <8 B R

since in the opposite, the non zero element (M \ U M, ] must meet some v_,
£<e ¢ %

which contradicts the definition of Mg

If |c’ |z1, M?s M is known, proceed in the same manner with all &« < b‘c

such that [M",]/\vq,\“ﬁnﬂ, to reach M?"ec .

For each ne e , [M N\ U M_| < , therefore there is some § € M\

<
1ol

\ cheJQM?‘ Due to our construction, there is a unigue seguence (ocn:n» e w)
2 i i i i i-
such that M _M“o"’clg “.QM"‘O’«I"""’%E'“ having § in its intersecti

on. For this § , f“ (§)>f°°o aﬂl(g)>"’>fx « (§)>..., a cont-
0 g n

0,41,...,

radiction, which proves the claim.

3.8. Now we shall refine all Pn's in order to get the family {an
0 < bu}‘ <

whenever M e L w] , according to Claim 3.7, there is some % and some d
with cf(d')= ik such that [M]/\V"ng # 0 for cofinally many § < . This
situation clearly resembles the one described in Proposition 3.5, however,
are not subsets of k , but non zero members of Compl ( P (r)).

ot

Vq"‘ §
Nevertheless, v?ni were created with the intention of a possible applicati-
on of 3.5; let us do it.

If |g|=n-1 and &' < b, , d’>@ (n-2) is an ordinal with cf(d)= Kk ,
choose an increasing sequence <°°-f: T< KK? converging to d”. Use Proposi-
ti . f . Tak ()

ion 3.5 as follows. Take ch"aof\ E<TD"’\§
{Cf (g "d'):g < bni be the result. If 3.5 is not applicable - which may
happen e.g. if a lot of Q.r's are of size € ¥ - do nothing, i.e. cg (@)=

in the role of Q‘f’ let

=0 by definition.
Now, define an,i to be

VAvgng Ace (@ ~d"):|gl=n-1, ct(d)= el

for 0<§ <be, 3, o=l \0<¥b g
[
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If a set M belongs to [K'.].c then by Claim, there is some @ with
|{E< b '|Mn(D \ (W) D ~y )= w }| = K . Moreover, the assumption
[M]év‘f does not 1nduce anygloss of generality. Therefore there is some J<
< b, when 3.5 could be applied. Then [M]/\cg (@) 40 for all g < b,
consequently, [_M]/\an,g#ﬂ, too.

K
To complete the proof, find for n < @ and §< b.c a family ﬁ’n %E [«k]
maximal with respect to: ’
(a) A K is almost disjoint and

n
n,& .

(b) for each A e A ng [Al4a a

§ 4. Singular cardinal with uncountable cofinality. Here we prove that
0" (k) is (e, », k')-nowhere distributive provided w< A=cf(r) < K .
The letters A , k will have this meaning till the end of the present secti-
on.

We have to show that there is a collection {A, :n € wtof MAD families
on i such that for every M e[k 1" there is some n e w satisfying |{A cﬂh
:|AnM|= Kk} > Kk . This will be done in four steps.

4.1, Let us fix an increasing sequence of regular cardinals (K-E: §<7\>

converging to w with k > A . Define rg =g\ "Lu for § < A;

<§’c

notice that |r§ |= ng and {rE : f < A%is apartition of & . For Xg A ,

let 9(X)=§U r. . Clearly ¢p: P(2)—3P (k) uniquely determines a regu-
€X

§
lar embedding F,(A)—sF (k). The reason is that |@(X)|= ke iff |X|= A

and @"(Q, is MAD on w iff @, is MAD on A .

4.2. According to 2.8, there is a collection {q‘n,w mnew,eb,t
such that

(i) foreachne w ,XQ, oceb,‘} is a MAD family on A

(ii) ifec < f3, then (Ln.t“‘lm a0

(iii) for every Xe[A1X there is some n & @ such that for each
xe by, [XaQl=A for some Q& G .-

For n€ w and c & by , let .‘Bn" " Qn . Then by 4.1,
v :B :ne co} is a collection of MAD famllles on k guaranteeing
xeby
(e, »,b, )-nowhere distributivity of P (1)

If bJ\ > K , we need not do anything more.

4.3. Let us go on and choose a family {fd':cc< bai of strictly in-
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creasing functions without an upper bound in aJ\ . Define an "inverse" func-
tion g, by the rule 9x<§) sup f 1"§ . For every o<b, , the ideal of f -
small sets on k will be M =4M sk (3§, <A) (¥§ >§,, § <A)

MA T le v

b
Y
It is easy to see that each Xc[n]n contains an fd_ -small subset still

of size k , for any e¢ < b, . Therefore there are MAD families on k& consis-
ting of f, -small subsets.

Claim. If A is a MAD family on i and if each member of A is Toc -
small, then for any MLkl which is not f, -small, we have [fA e A:
MaAl= v} | =z k¥

Proof. We may assume that for every § < A |Mnr§ | > ©g g,
&0

since in general, the set of these ?‘5 is cofinal in (regular) A . There-

fore the standard diagonal argument, choosing Mé a Marg \ () Ad
, 0§

where 4A g: & < k¥e A, enables us to find a subset M'SM, |M'|= k , which

is almost disjoint with at most W -many members of A . The claim follows.

4.4. Now, fix n < @ and o < b . For Be :Bn o select a MAD family
A(B) on B consisting of f, -small sets and set .R o U4{A®B)Be
eSH ‘}. It remains to show that { U/ :B :n e. "} is the desired col-

’ a<b

A

lection.

To this end, let Me[«:]‘.c By an induction, define an increasing function
g: A —> A as (g )=min £ m :m > sup g"§ and |1‘~L’\ M| > Ko $ . Since
{f, 1 < b, } have no upper bound, there is some f3< b, with the set X=
={§<A: g(‘é )<f(3 (g)} of size A . As g" X is of size A, too, we can
apply (iii) from 4.2. There exists some n € e such that for every e < b,
there is some Q e Qn o with |Qng" X|= . In particular, for the above
(3, we have |Tng" X|= A for some Teq_ B Let B=g@" T. AsBe B
and as all members of A(B) are ffi -gr 11, the definition of X together with
the claim gives that |[{A € A(B):|MaA|=1e } | 2 k", which was to be proved.

Q

§ 5. Singular cardinal with countable cofinality. The aim of this sec-
tion is to prove 2.7 (iii), that means, we have to find a collection
{‘A‘-c: « < @} of almost disjoint families on ¢ with ke > cf(wc)= e
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such that for every M e [wi® there is some o < o, satisfying {A e ﬂ‘:
(MAAl= ke } |2 €2 .

Using an easy diagonal argumerjt one can show that for every centered
countable family ¥ in ?x-. (k) there is a non zero member u with uév for
all v 6 § . Therefore B (k) is w-distributive, so it is worth noti-
cing that h, is the least one from the possible candidates.

The forthcoming lemma will turn up to be the crucial point in the proof.
It holds for an arbitrary cardinal.

5.1. Lemma. Let M e [-c]'c, let f:M —— « be a 1-1 function. Then the-
re is some L€ [M1* and g:L —> k& such that g is 1-1 and for all g e L,

o(§ )< 1§

Proof. Let h:f[M} ——> k be a __! increasing mapping onto k . Let L=
= 4§ e M:h o £( €) is a successor ordinal} and let g(g) be defined by the e-
quality h(g(g ))+1=h(£( § ».

As h as well as f are 1-1, g is 1-1, too. Since h is increasing, g(g )<
< f(g) for all g € L. As h is an onto mapping, g is well-defined. 3

5.2. The construction of the desired collection. Using a transfinite
induction, we shall construct a collection {AR: e < w1} together with a
family of functions {fy:A € R, e < m1§ such that:

(1) A0= Kk}, £, is the identity on i« ,
(ii) every A" is a MAD family on k& and for each A € ﬁ»w s fA is a
1-1 mapping from A to K ,
(iii) whenever ec< 3 < @, and B & ‘A'ﬂ’ then for some A & ﬂ.‘,
B C*Aa
(iv) ifc<P <, Ae A ,BeRgandB €®A, then for all §e An
nB, fB(§)<fA(§),
(v) ifew<f< ), then there is some % < k such that for all A €
e A, ,Be¢ Ap, if B %A, then [BNA| < . A, is fully described by
(i), so suppose &« < @, and R4 is known together with {fA:A 3 JL“}.

Let us use Lemma 5.1: Whenever C e[A]w there is some B&C with fB:
:B—» ¢ such that |B|= w , fB is 1-1 and fB(§)<fA(§) for all §< w .
So choose some infinite MAD family J3(A) consisting of such B's and let
A‘ﬂ: UinA):A e A“Q.

If @< w isa limit ordinal and {.ﬂd‘: o < 33 have been found, fix
some sequence of ordinals o< Vad ﬁ and some sequence of cardinals e Ar.
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For each 2*-decreasing sequence gz{An:n cwi , where Ane .ﬂo‘ , let
A(Y¥) be a maximal almost disjoint family consisting of B's satisfying
|B\ Anl < w_ for all n, |Bl]=« . Denote by €= U{R (L), ¥ is a 2*-
-decreasing chain contained in ( A }. Clearly, ¢ is a MAD family on
mew ecn

« and each C € € has the property that for every o¢ < /3 there is a unique
A e A, with C <*A. Notice that (v) holds for € in place of Ap .

Now, consider for C € € the mapping hC defined by hC(§ )=
=min {fA(g ):A €. LJ JL & A’“a C &%sAnC} Being a minimum of a countable
family of 1-1 mapplngs, lh (foel)| £ @ for all « € Kk , Therefore there
is some MAD family @ & & (k:.) such that for each D € D there is some C € €

with D&C and fIJ fCrD is 1-1.

In order to pass from & to the desired Aﬂ, proceed as in the succe-
ssor step.
This completes the inductive definition.

It remains to show that {J'ld‘: «® < wli is really what we need.

5.3. Here we shall try for the (wl, +, k®)-nowhere distributivity
showing first that for each M € [k1' there is some e < 0, with |$A & ﬂ‘:
:IMaAl= R } |z 2.

Suppose not, let M el w1“ be a counterexample: For every o < @, the-
re is only one A_ € A with anA°¢|= x (here must be some, because A is
MAD !). As ﬁ.w is a MAD family, then A 2% M. For brevity, let fec =fA and
let In={ac< °’1:|M\A.¢' K i Smce U 1= @, there is some n < @

17
new
with IIn|= w,. For oz € I, we have |M\A°‘| £ K, hence | v MNA )]
.(eln
“‘“’1' k < Kk, so there is some §< M, ger\ A, - But then

el
{fo(.( g et e In tis a strictly decreasing wl—sequence of ordinals, a con-
tradiction.
Then, at least two members from some J%x must meet the set M.

5.4. Now, let us prove that for each Mt[iol'c there is some o6 <« @
with [{A e R_:|AnM= ki |2 k™.
Pick an arbitrary M e Lwl* . Using 5.3 repeatedly, find ncn € and

An € Awn such that for each n & @,

1

IMAAAA A...AA_NA I= K

as well as
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IMnAOn cenA N An|= K .

Obviously, {ocn:n cewl is a strictly increasing sequence of ordinals
and {A :n e w} is 2*-decreasing.

Consider f3 =sup {ec nin € w§ . Since our collection satisfies 5.2 (v,
an analogous reasoning as in Claim in 4.3 yields |{A & ﬂﬂ:[MnA|= Wiz k.

5.5. Finally, we prove that for each M e EK‘.]‘ there is some o¢ < Wy
such that [{A & A :|MnAl= x|z k.
Fix an arbitrary M e [c1® ard consider the partially ordered set (T, &)=

=fhe U A_ :|AnM|= ¥ , 2% ). By the construction of the collection
ol < W

{ﬂ,‘ 1 a0 < w1§ and by 5.4 one can immediately check the properties of
(T,£) that are essential for our proof:
(1) (T,4) is a tree of height o,
(ii) all branches in T have length e,
(iii) for every t€ T there is some ¢ < w
|z k™.

) such that l{se Ty :szt}

We have to show that IT,‘I z w® for some B < @, . According to (ii)
above it is enough to show that the initial subtree dy Tn has k% many

i

branches for some (5 < 601.

Define ~ =min{» £ k : v is a cardinal and ¥“> e §. Since E¥ =

=€‘2‘-_ g‘" for every @ with uncountable cofinality, we have either ®’=2 or
<@
¥>w=cf(). In each case, ©* = e«

If ~« =2, one can easily find a full dyadic tree of height ¢> embedded
into (T,£), using (iii).

If > @ =cf(®), fix a sequence of regular cardinals ’t'n/": . For
every t 6T let o¢(t) be the first ordinal such that the set G(t)={s€T°‘(t):
:s2t} is of size at least K*. Select an arbitrary subset H(t)gG(t) of
size ¥ and enumerate it as fsE(t): g <t

For f € VT n, we shall inductively define a pair (C(£),cp(£)), whe-

new
re C(f) is a chain in T and q(f) is an increasing mapping from e to w;.
Let C(f)(0)=tﬂ, the root of T and ¢ (£)(0)= o =0. If C(f)(n)=‘l:n and
@ (£)(n)= o | is known, let P (£)(n+1)= L P ac(tn), C(f)(n+1)=tn+1=
“sg(m (-

As 2% < v, W

w w :
L < T, too, and as lnT‘qunP v > «x, there is
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some g € wa)l, g=(o¢0,ocl,...7 such that [{f e TT rn:cy(f)=g}| z .
new

Let (3 =sup {qcn:n e w? and consider the subtree S={C(f)(n):n € < ,
qy(f)=g}. The height of S is w , the n'th level of S is of size & T
(an obvious induction on n gives that) and still S has at least " bran-
ches. It remains to realize that then S has at least % “ branches.

The proof of this mirrors the standard proof of the following well-known
fact: If a tree of height w with all levels finite has at least w’
branches, then it has 260 of them.

w

Since %= w , the proof is completed.
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