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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,4 (1988) 

ON COLLECTIONS OF ALMOST DISJOINT FAMILIES 

Bohuslav BALCAR and PETR SIMON 

Dedicated to Professor Miroslav KatStov on his seventieth birthday 

Abstract: We show, in ZFC only, that for every uncountable cardinal K 

the quotient Boolean algebra 5 ^ ( K ) = iP( H ) / I K I < K i s («*>> • , K + ) , res-
*o pectively (&>,, • , K ), nowhere distributive. This depends on the cofinality 

of K . Moreover, we prove that for uncountable regular K the forcing notion 
$> ( K ) collapses a cardinal characteristic b ^ > K to cO . Nowhere distri-
butivity of (P^ ( K ) is formulated in terms of almost disjoint families on K • 

Key words: Almost disjoint family, non-distributivity of Boolean alge­
bra, completion of Boolean algebra. 

Classification: 03E05, 03E45, 06E05 

§ 1. Introduction. Soon after Cohen's discovery of forcing, it became 

apparent that the distributivity properties of a Boolean algebra decide the 

basic features of the generic extension. The first author investigated with 

his collaborators the distributivity of &(K ) / [ K 1 * systematically for a 

long period of time. The present paper aims to give a survey of this topic. 

Though the partial results have been already published IBVop], [BPS], T B F 3 , 

[BSl, here we present the definite statements concerning the non-distributi­

vity of $*( K ) / 1 K 1 < K . The results concerning the collapsing of cardinals 

when forcing with (P( *>)/{ Kl< *are far from being complete except for reg­

ular K . The paper extends [BS, § 41 from the Handbook of Boolean Algebras. 

The notation used throughout the paper is the standard one. The Greek 

letter K always means an infinite cardinal number, [icl is the ideal in 

the power set algebra fP( K) of all sets of size less than K and the quoti­

ent Boolean algebra ( P ( K )/l&VcK is denoted by J ^ ( K ) « We shall consider 

also its completion, for which we use the notation Compl ( Jt ( K ) ) . 
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Few words on the organization of the paper. In the forthcoming § 2, the 

necessary notions are introduced and the main results formulated . The proofs 

will be done in §§ 3 - 5 for a regular case, for a singular with uncountable 

cofinality and for a singular with countable cofinality, r espec t i ve l y . 

§ 2. The nonrJistributivity of (p (*)• For the reader's convenience, 

let us summarize here a few basic and well-known facts on the almost disjoint 

families on K . 

A family A £ fi (K ) is called almost disjoint on K , if all members 

of A have size IC and any two distinct A,A'e A satisfy |Ai\A'|-c K . Thus an 

almost disjoint family on K corresponds to a disjoint family in T K ( K ) . 

If a family Jt S t icl is almost disjoint and there is no almost disjoint 

family on K properly containing A , then A is called maximal almost dis­

joint, MAD. A MAD family on ic corresponds to a partition of unity in(JjJ,(lc). 

There is no maximal almost disjoint family of size cf(K) on IC . Next, 

on each K » there is an almost disjoint family of size K . Assuming, more­

over, 2 < K= K , then there is an AD family on K of the maximal size possib­

le, i.e. 2K . In particular, there is an almost disjoint family on cO of size 

2*°. On the other hand, 3. Baumgartner [Ba] showed that it is consistent that 

°1 all almost disjoint families on «x have size strictly smaller than 2 . In 

the case of a singular, strange things may happen: P. trdos* and S.H. Hechler 

[EH] formed a MAD family of size fc on »c under the assumptions ft=cf(*c)< K 

and ( V t < K ) **< K . 

In contrast to <P (ic), the algebra J^CtC) has no atoms and therefore 

is not distributive. Moreover, every non zero element of ff* ( K ) admits a 

partition of size at least K +. An algebra 9K(K) is homogeneous. (Recall 

that Sh is homogeneous if for any non zero x e ^i , & is isomorphic to 

As commonly adopted, for A,B e[#cj , c, we shall write A £ * B iff |A\B|< 

< K , A c*B iff A S-*B and |B\A| = IC . This corresponds to the canonical 

order 4z in the algebra 3*K( ic). For M £ K , its equivalence class modulo 

the ideal Ctc}* 1* (equivalently, the corresponding element in tP (tC)) is 

denoted by [Ml. 

For two functions f ,g £ K , f j£.*g means that \{ £ c. K :f(P )>g(£ )} J< 

< K;. 
The central notion discussed in the present paper is defined as follows. 

2.1. Definition. Let JJ be a Boolean algebra, t ,^ , /uc cardinal num­

bers, ft 2 2. 
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* ( i ) The algebra ft is ( f , (4,, ^ - d i s t r i b u t i v e , i f for every family 

{ P ^ : oC < T jo f partit ions of unity of (ft such that each .P^l .6 <u, there is 

a par t i t ion of unity Q with the property that for every q€Q and for every 

o c - C C , KpCP^ :pAq4»0 j |< A-

( i i ) The algebra :B is ( t , (tc, A)-nowhere distr ibut ive, i f there is a 

family { P . : oc < t r } o f part i t ions of unity of # such that for each oc < t , 

IP^ I .6 ^a and for every a « f n , there is some cC<X with KpeP^ :pAa + 0 | | 

I £ A • 
(iii) We shall speak about ( t , • , A )-distributivity (( tr, • , :A)-now-

here distributivity, r e s p . ) , if there is no demand on the size of P^ s . 

We shall omit an easy proof of the next proposition, which may be found 

e . g . in [BSV) . 

2.2. Proposition. A Boolean algebra % is (t, • ,^)-nowhere distribu­

tive iff no partial algebra ft \ a (a 4*0) is (t , • ,&)-distributive. 

Let us apply the general definition of nowhere distributivity to the ca­

se of (PK (*C). Clearly, every family witnessing to the ( t } • , A)-nowhere 

distributivity is in fact a collection of almost disjoint families on K . We 

shall try for the smallest possible X and then for the greatest possible A 

without any additional set-theoretical assumptions. The main emphasis is put 

on A , because the <tf is, in fact, known; see 2.5 below. 

The first demand leads naturally to the notion of a height 

2.3. Definition. The height h^ of an algebra $*K (IC ) is defined by 

h^ =min i t : &K ( K ) is not ( t , • , 2 )-distributiveJ. The letter h without 

an index stands for h.%. 
w 

2.4. Cownents. (a) Since the algebra &K(K) is homogeneous, h^ equ­

als to min Kx : (PK ( K ) is (if, • , 2 )-nowhere distributive } . 

(b) Equivalently, h K is the least ca rd ina l t such that there is a 

collection { A , : e& < f } of MAD families on K such that for every X m £ Kj * 

there is some eC -*s X and distinct A,A'c A^ with |AAX|= K =|A'A X| . 

(c) Since every Boolean algebra is (t,» ,2)-distributive iff its comp­

letion is, h K is the smallest *£ such that forcing with ^ ( K ) adds a new 

set of size *t . 

(d) Just in the spirit of the definition 2.3, one may also describe 

the splitting number as s ^ =min «£«*: (P^ ( K ) is (*€ ,2,2) -nowhere distribu­

tive}. 

For the interested reader, 5=5^ is extensively studied in IvDj, and one 

can easily prove that s =min {rt> : 2 ^ > lei for an uncountable regular K . 
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Immediately from the definition, h^.6 s^ f o r all cardinals K. . 

Concerning h^, the next should be stated. 

2.5. Theorem. 

( i ) h ^ is a regular cardinal, c-^.6 h ^ c f ^ * 0 ) [BPS]. 

( i i ) For an uncountable K , if c f ( K ) > < * > , then h^-^ o>, [B Vop], 

if c f ( K ) = c*>, then h K= o>x [BS]. 

We shay, omit the proof of 2.5 ( i ) . An exhaustive information on h^can 

be found in [BPS] or [BS]. But it should be noted here that - contrary to the 

case of uncountable cardinals - the exact value of h ^ depends on additional 

pr inciples of set theory. 

We reprove 2.5 ( i i ) as it follows from the more detailed statements 2.7, 

2.8. The full proof of them will be the contents of §§ 3 - 5. 

2.6. Definition. Let K be a regular ca rd ina l . Define 

bK=min €|H| :H C
1*1 IC and H has no upper bound under &.*}. 

Notice that bK > K and b ^ is regular. Now we are ready to give the 

results. 

2.7. Theorem, ( i ) Let K be a regular uncountable ca rd ina l . Then 

f> (K) is (co, • ,bK)-nowhere dist r ibut ive. 

( i i ) Let ic be a s ingular with uncountable cofinality. Then iPK>( K) is 

(o>, • , vc )-nowhere distr ibut ive. 

( i i i ) Let K be a singular with countable cofinality. Then &K(K) is 

(cOi, • , K^)-nowhere distr ibut ive. 

For a regular ic , we are able to prove a bit more. 

2.8. Theorem. Let *c be a regular uncountable ca rd ina l . Then there is a 

collection C A , :n 6 c^.occb^l such that: 
n,«c. •* 

( i ) For each n < < * > , UiJl o C
J o t € D i c ^ i s a MAD family on ic , 

( i i ) for each n < to , oC</3 < b^ , An ^ n JtR =0, 

( i i i ) for every M C [ K ] , there is some n < o> such that for each oc < 

< b K , |MnA| = K for some A e JL ^ . 

Or, equivalently, there is a family { a n ^ :n € €J , oc € b } in 

Compl ( 4*K (K)) such that 

( i f i i i ) ' Every row -tap ^ l o t c b ^ j l is a par t i t ion of unity. 

( i i i ) ' For every 'non zero we Compl ( fK(K)) there is some n € eo sujh 

that wAan ^ + 0 for a l l cc e D n,«c> IC 
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The family of partitions described just now can be also viewed as a name 

for a function from c*> to b ^ , thus we have an immediate 

2.9. Corollary. For a regular uncountable tc , forcing with 9K (\c) 

collapses b ^ to o> . 

2.10. Corollary, (i) Suppose cf(*)>c*> and 2K = K+. Then 

Compl ( (P^ (t-c)) is isomorphic to the Boolean algebra of all regular open 

subsets in the product of CJ copies of a discrete space of size 2 **, TT 2 K 

nco> 
(i.e., in a generalized Baire space of weight 2 * ) . 

(ii) Suppose K> cf ( * )= CO and 2K = K°*. Then Compl ( P^ ( *)) is 

isomorphic to the Boolean algebra of all regular open subsets in GK-topology 

on a product of CJ-, copies of a discrete space of size 2K. 

We omit the standard proof. The set-theoretical assumptions and the non-

distributivity from 2.7 enable us to routinely apply Mc Aloon's characteriza­

tion of collapsing algebras. See e.g. tBSV, Theorem 1.153 or [CN, Theorem 

12.13]. 

2.11. Remark. In [BS}, a weaker form of 2.7 was given. Here, 2.7(ii), 

2.7(iii) and 2.8 are new and solve several open questions from [BS3. 

The forthcoming three paragraphs are devoted to the proofs of both theo­

rems. The authors apologize for a rather technical and complicated stuff. We 

shall start with 2.8. 

§ 3. Regular uncountable cardinal. In this section, K will stand for 

an uncountable regular cardinal. First, let us discuss in some detail the pro­

perties of functions and closed unbounded sets on K related to the cardinal 

bK-

3.1 . Lemma. There is a family -if : eC< b^\ S^K. such that: 

( i ) f 0 2 i d , 

( i i ) i f oC-C# < b K , then f ^ & * f^ , 

(iii) every f^ is continuous in the usual topology of ordinals, 

(iv) there is no upper bound for-Cf^ :oC<b^j in {*°K , .»*). 

(Hint: Given f^ , let g^C | +D=f o C(£ +1), g^Cf )=spo f (tj) for f li­

mit. If 4f , ioC< b. J is unbounded, then fg ̂  ieC< b | is.) 
CO K <C 

3.2. Lenma. The cardinal b K is the smallest one satisfying: 

There is a family {C :<c< b } consisting of closed unbounded subsets 
oC KJ 

of K such that 

- 635 -



( i ) i f oc, < H , then C^ c * C^ , 

( i i ) for every Mcdc ! 1 6 there is some ©c «£ b^ with |M\C . |= K . 

Proof. Given { f ^ r o t * . b^J as in 3 .1 , le t C ^ i $ * K ! : f < j C ( p = Cf . 

The family-£C:oC < b^J is as required. 

Conversely, i f n* < b and {C . : o£ •< tf $are closed unbounded in tc and 

satisfy 3.2 ( i ) , define 9 ^ (§ )=min-fy € C^ :*£.>£ | . By 3.1, there is a con­

tinuous g satisfying g * £ g for a l l vC < K • The set M=<C c fc :g(£)= £ f 

contradicts 3.2 ( i i ) . O 

Let us show two simple statements, both being immediate consequences of 

the lemma below. 

3.3. Lemma. Let a family . {D^ : oC< b^ } g [ K1 satisfy the fo l lowing: 

( # ) For a l l c C < / * < b^ , D^ C * 0^ . 

Then there is a dis joint collection { A c : £ < b ^ j such that: 

( i ) U{Ac:i<bKl is a MAD family on IC , 

( i i ) i f M €T ic ] K sat isf ies (VoC<b K . )Qp>oC) |MA(D o C \ 0^)1= W , 

then for every § < b^ there is some Ac Jig such that |MAA|= *C . 

Proof. We shall work in Compl ( (P^ ( i c ) ) rather than in ^ ( i c ) . That 

means, we shall look for a par t i t ion of unity •Cvc • £ < b ^ } such that for 

every M e IK"}K , i f 

( # ) for each c C - c b ^ there is some /3 > oG with [M] A (fD^"] \ {0^1 ) + 0, 

then I M ] A V € 4 » 0 for a l l | < b K . 

Let woC= A l D ^ N C D ^ l fo rO<«C<b | C , wQ= 1 \ \/{ w^.O <aC< b ^ I . 

Clearly -Cŵ .-oC •< b^ } is a par t i t ion of unity in Compl ( TK ( K ) ) , some 
woc's may e c lu a l * 0 0-

Suppose M c tc sat isf ies ( # ) and consider the set & ={oC< bK : £M]A W - + 

+ 0 } . We claim that 0 is K.-closed unbounded in b w . 

Indeed, i f«<L< bK , then by ( * ) d= T M 3 A ( [ D JNTD^J + O for some 

/ | ?• «60» Since <( w ^ : oc < b-^j is a par t i t ion of unity and since obviously 

dAw =0, there must be some <f , oC < y . 6 / 3 with dAw + 0 . Thus & is un­

bounded . 

Further, i f 4«£g '• £ < to\ is a s t r i c t l y increasing sequence converging 

to aC< b ^ and contained in 8 , t h e n f M l A w , 4s 0 for a l l C < fe . I n 

I * 
particular, the same holds for a l l successors €+1 < R , so |MA(DflP \ 
\ 0 ^ )|= K for a l l | < tc . Choose inductively a set XSMSD^, |x|= * 

1+1 
satisfying |X\D_ \< K for a l l P-< *c . Then C X2 £ w _ , consequently, 
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[ M ] A W 4 0 * This shows the K-closedness of 9 . 

I t remains to se lec t a pa r t i t i on {S« : f < bK\ of b ^ consist ing of *C-

stat ionary subsets of b ^ and define v* = V £ w ^ . The pa r t i t i on -{S ̂  : f < b fc} 

ex i s t s by a Fodor-Solovay theorem [FJVCSoI. The statement follows. Q 

3.4. Proposition. Let { C ^ o C < bK\ be a family of closed unbounded se ts 

on ic sat isfying 3.2 ( i ) , ( i i ) . Then there i s a family {Ac'i< b . ? s u c h 

that 

(1) if f <<>£ < b ^ , then J l - A -4^=0, 

( i i ) U {Ac : f < bhl i s a MAD family on K , 

( i i i ) if M e t * ) * s a t i s f i e s I M A C ^ ^ K for a l l cc < b ^ , then for each 

f < bK, |MrkA| = fc for some AC Jl* . 

Proof. Apply Lemma 3 .3 . • 

3 .5 . Proposition. Let {Qy,:y< K\ &LK"1 be a d is jo in t family. 

Then there i s a family { * / l c . f < b # e l such that 

( i ) if S < * ^ < b l c , then Ac r\ A^=0, 

( i i ) IJ i A c : f < b ^ ^ i s a MAD family on K , 

( i i i ) if M e d e l 1 * s a t i s f i e s |MAQ,O-| = IC for cofinally many ^ ' s , then 

for a l l C <by>i |MAA| = K for some A e J l e . 

Equivalently, there i s a pa r t i t ion of unity in Compl ( $> ( t c ) ) , 

-[cp : f < b c J , such that for each M e C * ] , if C M J A C Q ^ I + 0 for cofinally 

many y ' s , then £ M ] A C « + 0 for a l l S < b ^ . 

Proof. Clearly, we may assume without any loss of generality that 

{Q**: y < K $ i s a pa r t i t ion of K . Identify K with \C x K and imagine Q-y. 

as -CQTJ x fc . Choose a family {f - : o C < b l c l S KK without an upper bound, with 

each f^ s t r i c t l y increasing and such that for oC<ft<bfC> f^ X f/a • Deno­

t e D ^ = - t ( | , i j ) c K>xK: : f o C ( f ) * ^ | . 

We want to apply Lemma 3 .3 . Let M e f KJK sa t i s fy | M A Q ^ | = * C for cof i ­

nally many *f s. We show that then M f u l f i l s the assumptions of 3.3 ( i i ) . 

Indeed, l e t oc < b w be a rb i t ra ry . Define g: ic v ie as follows: g ( £ ) = 

=min i ^ : ( f , i ^ )€M, \ z f^ ( f )}+! for a l l f < K with |M A ( { f J * *c)| = K , 

g ( f )=min - i g ( f ) : f > f and | M A ( i * f l x i c )|= * } otherwise. 

Since { f ^ . «£< b ^ i i s unbounded in b . ^ , there i s some fi>*C such that 

| { f « t i c : g ( f ) « * f / | ( f )JI= K . If f < »c and g ( f ) * f / | ( f ) , consider the 

l eas t "f sat isfying |Mn(-t |T ! K ic )|= K , f & f .We have an ^ < ic such 

that ( f , ^ ) € M , g ( f ) > f o C ( f ) and g ( f ) = «*£ +l=g( | ) * f / i ( f ) < f / | ( f )• The­

refore ( f , ^ ) € M A ( D \ D^ ) and the regular i ty of ic gives the r e s t : 
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JMnCD^S 0 ^ ) 1 = K . 

I t remains to use 3.3 . D 

3 .6 . Proof o f 2 .8 . We s h a l l def ine a system of subsets of tc , D y , f o r 

a l l f i n i t e increasing sequences Op of o rd ina ls less than bK . To do t h i s , f i x 

some fami ly { C f l t . : o C < b l < ? of closed unbounded subsets of K s a t i s f y i n g 3.2 

( i ) . ( i i ) and such tha t O c C ^ f o r a l l aC < bK . 

We proceed by an induct ion on the length of <p . Let 0^= K , fw=idJC . 

On the f i r s t l e v e l , set 0 ^ = K S c ^ and l e t f ^ -.D^—fr-C^ be def ined by 
f o c ' f ) = s u p f ^ Coc* S i n c e O c C ^ , f ^ i s we l l -de f ined and f o r a l l f 6 D^ , 
f«»C^f ) " * f • Moreover, f o r each r^ £ - L t l ^ l . . I-L " *J I < ^ ' D e c a u s e C^ i s 

unbounded. 

I f D^ and f « have been def ined fo r a l l <p- KoC , o C 1 , . . . , e £ n i *> i n c r e ­

as ing, fo r an a r b i t r a r y oC n>oC n_ 1 put D ^ / ^ = O S C 1 ! ^ ] , f ^ ^ = 

=f o f . One can qu ick ly check tha t f o r each increasing gp = K oC , . . . 

•••><-Cn~l^' { D ^ A ^ : oc .> oC , j i s an fi - inc reas ing fami ly of subsets of D ^ 

such tha t fo r each M€CD C -1 K there i s some oC < b „ w i th | M A D . ^ |= K- .A lso , 

f o r a l l tl< K , I f ' 1 " q | < ic and f o r every § € dom f ^ , f ^ ( £ ) < 

<v§>. 
Using D<^ s j u s t def ined, we sha l l f i n d countably many p a r t i t i o n s P 

(n <CJ) of 1 i n Compl ( <PK ( K ) ) as f o l l ows . Let v 0 = l , PQ= iv0),voC= C D ^ X 

^ i l ^ ^ 3 f o r o C < b l c , P 1 = { v o C : < ^ < b J C ? . 

Suppose n < U) and P = {v : | y |=n and 9> s t r i c t l y i nc reas ing } i s known, 

then put 

VVv<e A ( l V*1 S , X „ CD ^ ] ) , 
* ^ ** T cf(n- l)</3<oC ^ ** 

P ,= "Cv^ : | <y | =n+l and <^ :n+l—• b ^ is strictly increasing J. 

We have got an auxiliary family of partitions of 1 in Compl ( <T*#,( K)). 

Let us show one important feature of it. 

3.7. Claim. Whenever M ft tw-l*, then there is some % = ^oCQ,..., ^ i } 

such that 

I ioC< b ^ - I M J A V A ^ - f O M .> tf . 

Proof of the c la im. Suppose not , l e t M be the counterexample. Denote 

$ = ^ 6 <0bK : [ M j A v ^ + 0 l 

By an induc t ion on | Cf | , we s h a l l def ine a t ree of subsets of M. 
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|<y |=1: Enumerate {oC c : | < p i all oc < bK with C M I A V ^ + 0. By the assump­

tion, (p < ic. Define M =MnD , M^ =MAD_, N U C M^ f or § < f . 

Then I M ^ |= K for all § < f> , because the ideal C w j * * is K -additive, 

and CM^ I ^ E M J A V ^ for all | < f . Moreover, |M v. U M ^ | < K, , 

since in the opposite, the non zero element [M \ U M . 1 must meet some v_ > 

which contradicts the definition of M ^ . 

If \<* |£1, M^ £ M is known, proceed in the same manner with all oC < b^ 

such that E M ^ I A v ^ 4»0t to reach M ^ A o C • 

For each n t o> , |M \ U M | < *c , therefore there is some 9 € M \ 

I cf I = n 
\ ^,Mfi,. Due to our construction, there is a unique sequence <©c :n € o>> 

such that M 3 M 2...3M 5... having £ in its intersecti-
*o V < * 1 *o'*l'--"°n * 

on. For this £ , f (£)> f, ^ C S )>•••> L ~ * (§)>..., a cont-
* <*0 * o ^ S ^o'^l'-'-'^n r 

radiction, which proves the claim. 

3.8. Now we shall refine all P 's in order to get the family -£a : 

:CC<bt<J. 

Whenever M e i K-l , according to Claim 3.7, there is some <f and some 6* 

with cf(cf)= Ic such that [MlAV^nc *f» 0 for cofinally many ^ < <^ . This 

situation clearly resembles the one described in Proposition 3.5, however, 

v n are not subsets of »c , but non zero members of Compl ( (Pw ( « ) ) . 

Nevertheless, v.-nt were created with the intention of a possible applicati­

on of 3.5; let us do it. 

If | cjp | =n-l and d* < b w , cf><f (n-2) is an ordinal with cf(<0= < , 

choose an increasing sequence ^aCy,:
iar< *c7 converging to <T. Use Proposi­

tion 3.5 as follows. Take D^r%. \ ^ D .-% in the role of Q^., let 

<f *r | < r ^ | r 
-ic^ (<-f ̂ cf ):£ < b wi be the result. If 3.5 is not applicable - which may 

happen e.g. if a lot of Q«'s are of size < *C - do nothing, i.e. Cg (cf/NcT) = 

=0 by definition. 

Now, define a - to be 

V í v ^ n ^ ACg(c§'V0:|y|=n-1, cf(cT)=lci 

f or 0 < £ < b 
*• ' п.u - 2* 

пгc.,
J(t 
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If a set M belongs to I K * ± K , then by Claim, there is some <f with 

\{Q< b K :|Mn(D^O| \ U D ^ - . ) ! - 5 K. } | > tC . Moreover, the assumption 

CMl^v^ does not induce any loss of genera l i t y . Therefore there is some S< 

<bK when 3.5 could be appl ied . Then [MlAc, (<y^J) -̂ .0 for all £ < b^ , 

consequently, [M]Aa £-4-0, *00-

To complete the proof, find for n <o> and £ < b._ a family A C££K:] 
> ** n,t 

maximal with respect to: 
(a) A n c is almost disjoint and 

(b) for each A e A_ t , CA]6an , . • 
n,^ n,^ 

§ 4. Singular cardinal with uncountable cofinality. Here we prove that 

(P^ikc) is (co, • , K: )-nowhere distributive provided co< ft=cf(K) < K: . 

The letters ft , ic will have this meaning till the end of the present secti­

on. 

We have to show that there is a collection {A :n e o>Jof MAD families 

on K such that for every M e£»c} there is some n e o> satisfying |{A e A: 

:|Ar\M|= iC I > > K . This will be done in four steps. 

4.1. Let us fix an increasing sequence of regular cardinals ^ * c £ ' | < ^ 

converging to K with K, > ft . Define r^ = K-c \ KJ tc^ for ̂  < ft ; 

notice that |r£ |= Kc and {r~ : £ < ft J is a partition of *c . For X c ft , 

let cf(X)~ KJ r . Clearly CP : ̂ ( f t ) — > & ( t c ) uniquely determines a regu-
ItX 5 ^ 

lar embedding { J ^ ( f t ) — ^ ^ ( K ) . The reason is that |<f(X)|= K iff |x|=ft 

and <£"(£, is MAD on *c iff (̂  is MAD on ft . 

4.2. According to 2.8, there is a collection {<£n ^ :n e o> , oce b^i 

such that 

(i) for each n € CO , W < £ n # ' oceb^} is a MAD family on ft , 

( i i ) i f < * < / * , then a n , * A # n , / J = 0 ' 
( i i i ) for every X c t f t l * there is some n e c*> such that for each 

oce bA , |XnQ|=ft for some Q e. <£n>eC,-

For n € o> and oc e bA , le t -#n>oC
 = <f" # n j f i C - T h e n °y 4-!> 

i t J 3 : n e w } i s a collection of MAD families on K. guaranteeing 

(ci>, • , b ^ )-nowhere d is t r ibu t iv i ty of &K{K). 

I f b* > >c , we need not do anything more. 

4.3. Let us go on and choose a family f f : cc< b* * °f s t r i c t l y i n -
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creasing functions without an upper bound in *A . Define an "inverse" func­

t ion g ^ by the rule goc( | )=sup f^1" £ . For every oC<b^ , the ideal of f^ -

small sets on ic w i l l be TJl^iM S K : ( 3 £ 0 < f t ) C V | >£0> \ < A ) 
|MAV* \^>*-

It is easy to see that each X«£«,l contains an f -small subset still 

of size K , for any cC < b ^ . Therefore there are MAD families on K consis­

ting of f^-small subsets. 

Claim. If A is a MAD family on ic and if each member of A is f^ -

small, then for any M € Cvc] which is not f -small, we have |f A & A : 

:|MnA|= *C J | 2 K+. 

Proof. We may assume that for every £ < ft , |MArfi | > ic ( £ ) , 

since in general, the set of these 9 's is cofinal in (regular) ft . There­

fore the standard diagonal argument, choosing Mc fi Mnr. \ U A«f , 

where 4Aj-: <f -< KJ1 S A , enables us to find a subset M'SM, |M'|= *C , which 
is almost disjoint with at most w-many members of A . The claim f o l l ows . 

4.4. Now, fix n < CO and cC < b x • For Be (B select a MAD family 
"̂  n,oc 

A(B) on B consisting of f^-small sets and set A R K = ̂ 4A(B):B e 
e 3 - }. It remains to show that iU 3 n ̂  :n e CJ i is the desired col-

"'*• <x,«b^ n , c c 

lection. 

To this end, let MeC*]? By an induction, define an increasing function 

g: ft — > ft as g(6 )=min 4 % : -̂  > sup g" f and I r ^ M| > « j J . Since 

-£f :oC < b ^ i have no upper bound, there is some ft < b ^ with the set X= 
= 4 S < ft :g( 9 )< f/3 ( £ H of size A . As g" X is of size ft , too, we can 

apply (iii) from 4.2. There exists some n € o> such that for every eo < b ̂  
there is some Q € Q,n ^ with |Qng" X|= ft .In particular, for the above 

fl , we have |TAg" X|= ft for some Tfi ^n,^ ' Let B= ̂ " T* As B € ^n,/3 

and as all members of A(B) are f^ -sr^ll, the definition of X together with 

the claim gives that |4A e A ( B ) : | M A A | = * ? | 2 * + , which was to be proved. 

a 
§ 5. Singular cardinal with countable cofinality. The aim of this sec­

tion is to prove 2.7 (iii), that means, we have to find a collection 

{.A : «c < 0>, i of almost disjoint families on yc with K > cf(ic)= c*> 
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such that for every M ft CK,1 there is some oc < d>, satisfying |{A 6 A^: 

:|Mf\A|= <cj | 2- K<» . 

Using an easy diagonal argument one can show that for every centered 

countable family # in CP^ (»c) there is a non zero member u with u6v for 

all v 6 $ . Therefore fr^ (K) is &>-distributive, so it is worth noti­

cing that h^ is the least one from the possible candidates. 

The forthcoming lemma will turn up to be the crucial point in the proof. 

It holds for an arbitrary cardinal. 

t-C 

5.1. Lemma. Let M e £ *c] , let f:M > »c be a 1-1 function. Then the­

re is some L€ CM}* and g:L » K: such that g is 1-1 and for all £ e L, 

g(f )<f(f). 
Proof. Let h:f£M) > tC be a ^! increasing mapping onto ic . Let L= 

= if e M:h ©f(6 ) is a successor ordinal\ and let g(C ) be defined by the e-

quality h(g( | ))+l=h(f( f)). 

As h as well as f are 1-1, g is 1-1, too. Since h is increasing, g(£ ) < 

< f(I) for all § e L. As h is an onto mapping, g is well-defined. Q 

5.2. The construction of the desired collection. Using a transfinite 

induction, we shall construct a collection iA^.: co < u>,\ together with a 

family of functions K$h*k e A^, oc < fc>,$ such that: 

(i) A = i*% » fK is the identity on K , 

(ii) every A^ is a MAD family on K and for each A 6 A ^ , f. is a 

1-1 mapping from A to *c , 

(iii) whenever oG< (S < o> and B e, An, then for some A * A^, 

B c*A, 

(iv) if oc < (l < a>p A e A , Be Aft and B e*A, then for all ^ e Ar> 

AB, f B(^Xf A(|), 

(v) if 00 < (3 < A>; , then there is some X < K such that for all A € 

« A ^ , B c A ^ , if B £*A, then |B\ A| < t . AQ is fully described by 

(i), so suppose at < 6J- and A ^ is known together with ifA:A 6 A ^ } • 

Let us use Lemma 5.1: Whenever CeCA]** there is some BSC with fR: 

:B » « such that |B|= *c , fB is 1-1 and f0( § )<fA( f ) for all f < ic . 

So choose some infinite MAD family 3(A) consisting of such Bs and let 

A*,+r Uifc(A):Ae A^l. 

If ft < o>» is a limit ordinal and iA, • «C < /$ $ have been found, fix 

some sequence of ordinals oCn/*/3 and some sequence of cardinals t-e /* fc . 
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For each 2* -dec reasing sequence $f = { A : n £ & . > ? , where A e A . let 
n n <**n 

5*> (tf ) be a maximal almost disjoint family consisting of B s satisfying 

|B\ AR| < VCR for all n, |B|= K . Denote by <€ = U-tJi(^), ^ is a 2*-

-decreasing chain contained in U jl }. Clearly, ^ is a MAD family on 
7t£0> oCn 

K and each C e '-C has the proper ty that f o r every ac < (I there is a unique 

A e A^ with C S*A . Notice that (v) holds for <£ in place of An . 

Now, consider for C e <£ the mapping hp defined by hr(^ )= 

=min -TfA( t ):A « -̂1 4 & A ^ C & S f c A i C i . Being a minimum of a countable 

family of 1-1 mappings, |hZ (foci )| .£ o> for all aC e K , Therefore there 

is some MAD family 3) s (P (to) such that for each D e 2) there is some C e ^ 

with D£C and fQ=fc r D is 1-1. 

In order to pass from 3) to the desired A$ , proceed as in the succe­

ssor s tep . 

This completes the inductive def in i t ion . 

It remains to show that iA : <*> < a>. \ is really what we need. 

5.3. Here we shall try fo r the ( c*>,, • , K0*)-nowhere d i s t r i b u t i v i t y 

showing f i r s t that for each M e etc! there is some oc < <-«>, with |{A s A -

:|MAA|= *C}|r2. 

Suppose not, let M t*[*c3 be a counterexample: For every cC < <*>- the­

re is only one A € it with |Mr.A , |= K (here must be some, because Jl is 

MAD ! ) . As A^ is a MAD family, then A^ 2 * M. For brevity, let f^ =f. and 

let I = {oC < <->,: |M\AaC | -fe K \. Since KJ I = <y,, there is some n < o 
n6<*> 

wi th | I | = co , . F o r o ^ d I we have |M \A J £ K nt hence | U ( M \ A ^ ) | 
n i n oc n •- ĉ 

«fein 
| n* <*> • ft < K , so there is some € 6 M, £ e / ^ A .. But then 

1 n * * oC.<Sln * 

{ f ^ ( | ) : oC 6 I lis a s t r i c t l y decreasing a>,-sequence of o rd ina l s , a con­

tradict ion. 

Then, at least two members from some A^ must meet the set M. 

5.4. Now, let us prove that for each MfCi-ol* there is some oC < <U, 

with |{A 6 Jl^:|AnM|= K\ | £ K,+. 
oc 

Pick an arbitrary M # C«e3* . Using 5.3 repeatedly, find oC 6 ca and 

A„ € A- such that for each n e o> , n *on 

| M A A 0 A A 1 n . . . A A n _ 1 A A n | = K , 

as well as 
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|MnA0n...AAn_1\An|= K . 

Obviously, {oC :n e ̂ >i is a s t r i c t l y increasing sequence of ordinals 
and {A :n e a>\ is 3*-decreasing. 

Consider /3 =sup ioc n:n € eo \ . Since our collection satisfies 5.2 (v), 
an analogous reasoning as in Claim in 4.3 yields |fA € *#rt:|MnA| = «$| > tc+. 

5.5. Finally, we prove that for each M S C K I there is some oc < eo, 
such that |{A c ̂  :|MnA|= *1 | 2: K a . 

Fix an arbitrary M e Htcl* arid consider the par t ia l ly ordered set (!,£)-
=({A & LJ . j l . :|AAM|= K \ , 2 * ). By the construction of the collection 

oL< **1 

^A>c : ̂  < ^ p anc^ by 5.4 one can immediately check the properties of 
(T,£) that are essential for our proof: 

(i) (T,4.) is a tree of height c*>,, 
(ii) all branches in T have length o> 
( i i i ) for every t € T there is some oc < o>, such that | { s S V : s £ t y | 

\ZK+. 

We have to show that |T A | 2. w fo r some (3 < OJ.. According to (ii) 
above it is enough to show that the initial subtree \J T has to0* many 

branches for some fl < <*>-,. 

Define x =min-tv- K : v is a cardinal and v > K I. Since ^ ^ = 
= 2L £*** for every (p with uncountable cofinality, we have e i the r f=2 or 
§<«y * » 

X>co=cf(x). In each case, x = KJ . 

If t =2, one can easily find a full dyadic tree of height o> embedded 
into (T,£), using (iii). 

If X > €»> =cf(t), fix a sequence of regular cardinals X /*% . For 

every t*T let oC(t) be the f i r s t ordinal such that the set G(t)=-£s6T • ...: 
.s2t} is of size at least K . Select an arbitrary subset H(t)fiG(t) of 
size X and enumerate it as fs-(t): C <X.\. 

For f e TT x , we shall inductively define a pai r (C(f),y(f)), whe-
nfc-u n 

re C(f) is a chain in T and y(f) is an increasing mapping from o> to a>t. 
Let C(f)(O)=t0, the root of T and y (f)(0)--cC^O. If C(f)(n)=tR and 

<y(f)(n)= <* p is known, let y (f)(n+l)= 06 n+1 = <*(V'
 c^)Cn+l)=tn+1 = 

=sf(n)(V' 
As 2 ^ < X , *>/*< ** , too, and as | TT * n l

s *&**> X , there is 
n 4oi 
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some g e ^eo,, g=<oCn, oc,, • • • > such that |{f e T T X '- <p(f)=g}l 2 f + . 1 u x n£d> 

Let (B =sup {oc :n e c*>! and consider the subtree S={C(f)(n):n € o> , 

cp(f)=g]. The height of S is a) , the n'th level of S is of size 6. x n 

(an obvious induction on n gives that) and still S has at least X bran­
ch 

ches. It remains to realize that then S has at least X branches. 

The proof of this mirrors the standard proof of the following well-known 

fact: If a tree of height o> with all levels finite has at least cO 

of them, 

the proof is completed. 

<*> 
branches, then it has 2 of them 
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