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Nowhere continuous solutions to elliptic systems 

OLDRICH J O H N , J A N MAL\% JANA STARA 

Abstract. We construct for any given Fcr-set F in R3 a linear elliptic system with bounded 
measurable coefficients and its bounded weak solution in R3 which is essentially discon­
tinuous on F and essentially continuous on R3 \ F. 

Keywords: elliptic systems, regularity. 

Classification: 35D10, 35J45 

1. In troduc t ion . We are interested in linear elliptic systems of the form 

(1.1) Da(A°f(x)Dliu>) = Q, i = l,...,M. 

The domain of the functions A**-• , it* is considered to be a nonempty open subset Q, 
of Rm. The summation convention is used throughout the paper. We suppose that 

(1.2) Af/€L°°(-1), a , 0 = l , . . . , m ; i , j , = l , . . . , M 

such that there is A > 0 for which 

(1.3) A°f{x)V*§ > -MCI2 for every { € RmM and almost every x £ Q. 

By a (weak) solution of the system (1.1) we understand a function 

(1-4) u€W^(il,RM), u = (u\...,uM) 

such that 

(1.5) DQb?=0, i = l , . . . , M 

holds in the sense of distributions on 0 for 

V?=A?fD,,ui. 

According to the classical results of C.B.Morrey, A.Douglis, L.Nirenberg ([18], 
[4]) every weak solution of (1.1) is locally Holder continuous provided A"? are con­
tinuous on ft. As we can see from the proof of Theorem 3.1 in [9], the continuity of 
coefficients at one point implies the Holder continuity of the solution in a neighbour­
hood of this point. On the other hand, the discontinuity of coefficients of (1.1)—(1.3) 
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even at one point can cause the discontinuity of the solution—see the well-known 
counterexamples of E.De Giorgi, E.Giusti, M.Miranda (see [1], [12], [9] ). 

Consider now a system 

(1.6) DQ(A^f(x, u)D$u>) = 0, i = 1 , . . . , M 

where the coefficients A^ are uniformly continuous both in x and u and satisfy 
conditions analogous to (1.2), (1.3). From the point of view of regularity we can 
regard (1.6)to be a special case of (l . l)when putting 

A°f(x) = A°f(x,u(x))-

Although we cannot expect in general the everywhere continuity of the solution of 
(1.6) (see [12] ) the following partial regularity result holds (see [9]): 

(1.7) "There is an open set QQ C O such that it is locally Holder continuous on Qo 
and the (m — 2)-dimensional Hausdorff measure of Q \ QQ is zero." 

The counterexample of J.Soucek (see [19]) gives a solution u of a system (1.1) 
which is discontinuous on a dense countable set. Hence the partial regularity (1.7) 
does not hold for solutions of ( IT) . 

For the solutions of (1.1), analogues of (1.7) are available in terms of generalized 
continuities only. J.Deny and J.L.Lions [3] proved that every function from W1*2 

is finely continuous except a set of 2-capacity zero. This result was generalized to 
Wl>p by N.G.Meyers [17]. The relations between capacities and Hausdorff measures 
(O.Frostman [7], H.Federer and W.P.Ziemer [5], V.G.Mazja and V.P.Havin [15]) 
show that the exceptional set of a function from W1,p has Hausdorff dimension 
m — p. It was observed by B.Fuglede [8] that fine continuity implies approximate 
continuity in the sense of A.Denjoy [2]. The size of sets of non-Lebesgue points is 
estimated in the papers of E.Giusti ([10], [11]), H.Federer and W.P.Ziemer [5], etc. 

This all can be said on a function u from W1,p without using the fact that u 
solves any equation. 

For the solutions of (1.1) we have a W1'J*-estimate for some p > 2 due to 
N.G.Meyers [16] which implies that the Hausdorff dimension of the exceptional 
set is less than m — 2. 

The advantage of the system (1.6) consists in E.Giusti's "Main Lemma of Partial 
Regularity" (see [9]), which states that the solution of (1.6) is Holder continuous 
on a neighbourhood of every its Lebesque point. 

This leads to the topological interpretation of the proof of (1.7) at least concern­
ing bounded functions, for which the notions of Lebesque points and approximate 
continuity points coincide. A fine approach to partial regularity is established by 
J.Frehse [6]. ( 

This paper is devoted to the continuity of solutions of (1.1) in the usual sense (i.e. 
with respect to the Euclidean topology). We construct a system of the type ( IT) , 
(1.2), (1.3) and its bounded weak solution on B3 whose set of points of essential 
discontinuity is a given set of the type Fa. In particular, the solution can be 
everywhere essentially discontinuous. Thus, the above mentioned partial regularity 
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results using generalized continuities are for general system (1 .1) in some sense best 
possible. 

In what follows we shall consider the case M = m > 3 . 

2. SouSek's method. Let u be a solution of (1.1). Denote 

(2.1) a? = DQu\ (potential field), 

(2.2) b? = A^Dpu', (divergence-free field). 

Then a, 6 € Lfoc(Q,Rm x Rm). Ellipticity and boundedness conditions on Aff 
yields the existence of positive constants A, \i such that 

(2.3) (6, a) > A(a,a) a.e. in ft, 

(2.4) (6,6) < fi2(a, a) a.e. in H, 

where (a, b) means the scalar product in Rm x Rm. 
Converting this observation we obtain the result due to J.Soucek [19] which is 

very useful in the construction of counterexamples. 

Theorem 1. Let u be a given function ofW^oc(Q,,Rm), a its potential field (2.1). 
Let b € Lfoc(£l, Rm x Rm) be a divergence-free field (i.e. DQbf = 0 (i = 1 , . . . , m) 
on 0 in the sense of distributions). Assume that there are positive constants A, ft 
such that (2.3), (2.4) hold. 

Then u is weak solution of a system (1.1), whose coefficients A"- satisfy the 
estimate 

(2-5) \o\i\2<Aaf(x)VJi<^\\ 

for all £ e Rm x Rm and almost all x £ SI, where 

' S + vS^i 
PROOF: For 0 e (0, A) put 

V-©*•/»«« + — { b _ Q l a ) • 
For all £ € Rm x I2m and almost all x € 0 we have 

and 

A.iCCn<l« ( U + ( 6 _ e a , a ) } - A - e ICI ' 

Choosing 0 = "'-"V"*-* w e obtain (2.5), (2.6). • 
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Remark. As it is easy to calculate, the above choice of 0 keeps the ratio Ao/Ai in 
(2.5) maximal. It will help us to prove that the counterexample constructed in this 
article has Ao/Aj arbitrarily near to the Koshelev's condition number K(m) which 
guarantees for AQ/AJ > K(m) the regularity (see Section 7). 

3. Construction of the counterexample. Consider a sequence {zp} of dictinct 
points of .Rm, a sequence {wp} of constant vectors from Rm and a sequence {Gp} 
of positive functions from C2(R+)(p = 1,2...). Denote 

rp = rp(x) = \x- zp\, np = np(x) = j~—f-

<3-°) G(r(x)) ' 
fP = fp(*) = 'rp£*)}> 9P = 9P(*) = Gp(rp(x)). 

Assume that the objects described above have the following properties: 

(3.1) \wp\ < 2 for all p € N, 
(3.2) there exists r € (0,0.01) such that for every 

P € N 0 < -gp < rfp on JRm \ {zp}, 
(3.3) for every R > 0 we have 

oo 

J2§fp\\L'(B*(Q)) <+oc' 
p = l 

Put 

(3.60) up = up(x) = rpfp(np - wp)y 

(ZAQ) (a?)p = DauP = fp(6ai - n*pnp) -f gp(n°np - n > « ) , 

(3.50) (b?)p = fp((m - 2)6ai + n«pnp) + gp(6ai - na
pnp), 

(3.4) « = f>p, 
p=i 

(3.5) & = £ > „ 
p = l 

OO 

(3.6) « = £ > , . 
P«I 

Theorem 2. Let 0 = J?m ann! u be defined by (S.6). Then there is a system (1.1)-
(1.8) such that u is its weak solution. For any r £ (0,0.01), the system can be 
constructed in such a way that 

<3-7> §*1+(^+150'-
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where y. and A are the constants from (2.8), (B.4). 

PROOF: It will be proved in the next section that one can obtain for each positive 
r the functions fp,gp given by (3.0) for which (3.2) takes place. We can check 
that the sum (3.6) converges strongly in W2^(Rm) and the sums (3.4), (3.5) in 
L1

2
oc(Il

m). It is easy to calculate that DQbf = 0, D_,u* = af ,t = 1, . . . ,m, in 
the sense of distributions. 

Fix now p,q € N and denote Bpq = (np,nq). We have 

(ap,aq)=fpfq(m-2 + B2
pq)+ 

+ fp9P(l - ®2
pq - (nf,u;f> + Bpq(npiwq))+ 

+ fq9p(l ~ &pq ~ (n„Wp) + BPq(nq,Wp))+ 

+ 9p9q(®2
pq ~ ©p?[ («w) + (u>p,nq) - («Vi«0f)l). 

(*>p,b,) = fPfq(mz - 4m2 + 6m - 4 + 02
g)+ 

+ (fP9q + fq9P)(m2 - 3m + 3 - 0^)+ 

+ 9p9q(m-2 + <d2
pq), 

(^, «g> = fpfq(m
2 - 3m + 3 - B2

pq)+ 

fPgq(m - 2 + B2
pq - (m - 2)(nq,wq) - Gpq(np,wq))+ 

fq9p(m - 2 + B2
pq)+ 

gpgq(l - 0 2
g - (nf ,wf) + Op<r(n,,,tog)). 

Hence, taking into account that r 6 (0,0.01), we obtain 

(3.8) (bp, a,) > fpf,(m
2 - 3m + 3 - Q2

p,)(l - 4r), 

fpf,(m - 2 + O^Xl - Ur) < (ap,a,) < 

<fPf,(m-2 + e2
p,)(l+9T), 

(bP, b,) < fpf,(m
3 - 4m2 + 6m - 4 + 0j , ) ( l + r). 

From (3.8) it follows that 

(3.9) (b, a) = _3<6„ a,) > __; Xp,(ap, a,) = A(a, a), where 

(310) A ( m 2 - 3 m + 3 ' ' - e ; , ) ( l - 4 r ) 
(3.10) A „ - ( m _ 2 + e ? ? ) ( 1 + 9 r ) , 

_^AJ,,(a„,a,) 

(3.H) A = r-*-r-> , 
(a, a) 

(3.12) (6,6> = _ 3 ( 6 „ 6 , ) < _ 3 ^ , ( a p , a , ) = M
2(a ,a), where 

P,9 P,? 

r 3 n , 2 ( m 3 _ 4 m 2 + 6 m _ 4 + e;,)(i + r) 
1 J P ' « " ( m - 2 + 0 2 ) ( l - l l r ) 
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E^pgK^?) 
(3.14) fi2 = M  

(a, a) 

Now we estimate from (3.10), (3.13) 

(3.15) 
fiq _ ( m 3 - 4 m 2 + 6 m - 4 + e 2

g ) ( m - 2 + e^ ) ( l + r ) ( l + 9 r ) 2 

\qK> (m2 - 3m + 3 - 02
g)(m2 - 3m + 3 - 02,)(1 - 4r)2(l - l l r ) ~ 

m3 - 4m2 + 6m - 3)(m - 1)(1 + r)(l + 9r)2 

- l ( m 2 - 3 m + 2 ) 2 ( l - 4 r ) 2 ( l - l l r ) 

^ 1 + ^ > ( 1 + 5 0 ^ 1 + ( ^ + 1 5 0 -
From (3.11), (3.14) and (3.15) we get finally 

£5 P,9 *%* 
A2 EAP?(aP»a?>EAra(ar,a*> ~ 

p,«j r,« 

E l^(aP>a?)(ar,a,) 
= ^ , , r, r ^ l + T ^ ^ + lSOr. 

E Ap<rAr»(ap,ag)(ar,aW (m - 2)2 

J>,?,r,* 

So the system (1.1)—(1.3) with the solution u given by (3.6o), (3.6) can be con­
structed as in Theorem 1 with the divergence-free field 6 given by (3.5o), (3.5). As 
we have proved, it has the property (3.7). • 

4. The auxiliary functions. The condition (3.2) is satisfied, if the function 
G = Gp satisfies the differential inequality 

o<-G'(r)<!^ri. 
r 

This inequality is satisfied e.g. if G is defined by the formula 
G(r) = K(1 + u>r)~"r, where 

K e (0,1), w € (1, oo) and r G (0,0.01). 

For each R > 0 we have (defining /-» as in (3.0)) 

\\f,h>(BRW)<([RGl(ry»-3dry". 
Jo 

Putting 
Gp(r) = *„(! + u>„r)-r, 

we have 
Dm-2(l+r) 

n/yii,wo))<^r[m_2(1+r))
1/2-

Hence if the sequence {u)p} tends to infinity rapidly enough, the condition (3.3) is 
satisfied. 
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5. B o u n d e d n e s s . In this section we show that if pk < K we can make the solution 
u bounded by 2K. We proceed as in Section 3 specifying the choice of Gp and wp 

by recurrent formulae. 
Let p G N. Denote 

p - i 
5J> = $ > * 

(so in the first step .si = 0 ) . Find 6P > 0 such that 

(5.1) \sp(x) - sp(zp)\ < 2~PKP for all a: € B6p(zp). 

Now let u)p G (1, oo) be so great that 

(5.2) u>;r < 2~p 

and 

(5.3) (l+u>p6p)~
r <2~p. 

Put 

(5.4) wp = -~5 p (z p ) , 
Kp 

Gp(r) = Kp(l+u>pr)~r. 

We define gp, / p , up etc. as in Section 3. 

Theorem 3. Under the above specification, for every p € N we have 

\sp\ < 2K a.e. on Rm. 

PROOF: By means of induction we prove the following claim: 
For each p € N we have 

(5.5) \sp\ < 2K(1 - 2~p). 

For p = 1 we have s% = 0. Let p > 1 and (5.5) be satisfied. Choose x € Bsp(zp). 
Then from (5.5), (5.1) and (5.4) it follows 

|*P+ -Ml < M~) - SP(ZP)\ + \SP(ZP) + UP(X)\ ^ 

< KP2~P + \sp(zp)\(l -*-*&) + \Kpn/-£& < 
p p 

< KP2~P + max(|.sp(zp)|, KP) < KP2~P + 2K(1 - 2~p) < 

<2K(1-2~P~1). 

Now choose x outside B$p(zp). Then from (5.3), (5.5) we obtain 

l*p+l(*)l < \*p(*)\ + M * ) l ^ 
< KP2~P + 2K(1 - 2~p) <2K(1- 2~P~X ) . u 
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6. Continuity and discontinuity. It is well known that the set of all points of 
discontinuity of an arbitrary function is a set of type Fff. We shall prove a curious 
converse: Every set F C Rm of type Fff is the set of all discontinuity points for a 
solution of an elliptic system with X°°-coefficients. 

Since a function from W1'2 is, in fact, defined up to a set of measure zero, it is 
more meaningful to work with essential continuity. A measurable function v is said 
to be essentially continuous at a point z € Rm if 

oscess/(a?) = 0, 
X—*z 

where 

oscess/(a:) = mf<5>0 mfzci^.measZ-so sxlPxfVeB6(z)\z \f(x) - f(v)l 

If we replace a function / € -LJJ. by its essential limsup (in each coordinate, if a 
vector-valued function is considered), then we obtain a representative of / which 
is defined everywhere and which is continuous exactly at the points of essential 
continuity of / . 

Certainly, the results of Section 3 remain valid if we use coupled indices (k,p) 
instead of single ones. Consider a sequence {Fk} of closed sets and denote by F 
their union. Find distinct points zk)P(kyp € N) such that for every k € N the set 

KP ;p€N} 

is dense in Fit. FVirther, find compact sets Kk,P(k,p € N) such that each Kk,P has 
Lebesque density at Zk,P equal one and does not meet the set 

{*.,,;.,« 6 # , ( / , « ) - £ ( * , p ) } . 

For every fixed k we construct u*,p, a*,p, bktP etc. in spirit of Section 5 in such a 
way that 

(6.1) Kk,r = 2-"-\ 
P 

(6*2) i Yl u*'« i < 2~* for every &keNi 
f-sl 

(6.3) \uktP\ < 2~k~9 on Kltq whenever k, J,p, q £ j\T, I + q < k + p, 

(6.4) | I I ^ | < 2"k"p outside B2-,(zk,p) 
(it is guaranteed by choice SkfP < dist(zktP, ( J Klt9), Sk,P<2~p) 

*+«<*+!> 

and 

(6.5) \\ukAw^(BR(o)) + \\bkfPh^(BR(o)) < const(IE)2-*-1'. 
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Put 

(6.6) u-=~rujb,p. 
k>P 

Theorem 4. The solution of a system of the type (1.1) constructed in this section 
has the following properties: 

a) u is bounded, 
b) u is essentially discontinuous at all points of F, 
c) u is essentially continuous at all points of Rm \ F. 

PROOF: a) is obvious, b) Consider first a point Zk,P. By (6.3) the sum (6.6) 
converges uniformly on K/k,p. Further, all u/.g (/, q) ^ (k ,p) , are continuous on 
Kjt)P. The function ukyP behaves near zk}P like 

o-fc-i x - zk,p 

\*-zk,Py 

Hence oscessu(.r) > 2~*. 
X-+Zk,p 

By obvious topological argument we see that oscessu(x) > 2~~k for all z 6 F*. 

c) Choose z € Rm \ F and e > 0. Find fc,p € N such that 2"* 4- 2~~k < e and 
2-*+1 < dist(*, F! U F2 U • • • U Fk). Then by (6.4) 

\ul>q\ < 2"1"9 on " V i - W for each l € { 1 , . . . , k} and q > p 

and by (6.2) 
oo 

I 5~] «i,f | < 2"1 on Rm for every / € N. 
?=-i 

Hence 

| ~ T U Í J < 2"* + 2"* < e on .B2->(z). 
/ > * oř q>p 

Since the functions u i , f are continuous on a neighbourhood of z for / < k and g < p, 
we deduce oscessu(a:) < 2e. • 

.c—>z 

Remarks. 

1) Given a closed set F, we can by similar method construct a solution u of a 
system of a type (1.1) which is locally unbounded precisely at the points of 
F. 

2) In a subsequent paper we give an example of a system of 6 equations of a 
type (1.6) in the dimension n = 3 such that the set of discontinuities of a 
solution is not isolated. 
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7. Relat ion to Koshelev's condition number. In [13] A.I.Koshelev proved 

that if the eigenvalues of a symmetric matrix A*£g are placed in the interval (Ao, Ai), 

where 

, 4 / i 4. ("--)* _ i 

^ > K ( m ) - = V 1 + ( - 1 ) \ 
Ai >A+W+i 

then all weak solutions of (1.1) are locally Holder continuous in 0 C Rm-

Observe that in our example 

Лo _ л - лЛf )2 --1 

A, ì + s/iţ)2--1 

and it is a decreasing function of fi/\. Thus using (3.7) 

^ > K ( m ) - u ; r 
Ai 

where UJ is sufficiently large positive constant. For r small enough, Ao/Aj can be 
compressed arbitrarily near to K(m). It means that if \Q/\\ < K(m) we cannot 
control the smallness of the singular set of a solution u by the distance of \Q/\\ 
and K(m) as such a solution can develop singularities on arbitrary F<r-set in Rm. 
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