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A note to a theorem by K.Sekigawa 

OLDRICH KOWALSKI 

Abstract. We give a short proof of the fact that a connected, simply connected and com­
plete Riemannian 3-manifold which is curvature-homogeneous up to order 1 is a homoge­
neous Riemannian space 

Keywords: Riemannian manifold, Homogeneous space 

Classification: 53C20, 53C30 

Let (M, g) be a connected Riemannian manifold, and denote by R, VR,..., 
y * B , . . . the curvature tensor of M and its successive covariant derivatives. I.M. 
Singer [5] has considered the following condition P(n) for each integer n > 0. 
P(n): For every x, y £ M, there is a linear isometry $ of TXM onto TyM such that 

$*(VkR)x = (VkR)y for k = 0 , 1 , . . . , n. 
Further, for any point x G M, and any s > 0, he defines the Lie algebra £r* of 
all skew-symmetric endomorphisms of the tangent space TXM which annihilate, as 
derivations of the tensor algebra, all tensors BX,(VP)X,... , (V*B)X . Then there 
exists the first integer kx such that G ^ = <2* +1. If now the condition P(kx + 1) 
holds, then the number kx is independent of the choice of x £ M, and one can put 
kM — kx. The main result by I.M.Singer is then the following 

Theorem. If(M,g) is a connected, simply connected, complete Riemannian man­
ifold which satisfies the condition P(kM + 1); then it is Riemannian homogeneous. 

The general estimate for the number &M from above is given by kM < 2~ ^ — 1, 
where n = dim M. 

On the other hand, non-homogeneous Riemannian manifolds are known which 
satisfy the condition P(0) (so-called curvature homogeneous spaces). Such non-
homogenous examples (in dimensions n = 3,4) have been first discovered in sub­
sequent papers by K.Sekigawa [3] and H.Takagi [6], and many new examples have 
been found since that time. Yet, non-homogeneous examples satisfying the next 
condition P(l) are not known, so far. K.Sekigawa has proved in another paper [4] 
that such examples do not exist in the dimension n = 3: 

Theorem. Let (M,g) be a 8-dimensional connected, simply connected and com­
plete Riemannian manifold satisfying the condition P(l). Then a) (M,g) is homo­
geneous, b) (M, g) is either a symmetric space, or (M, g) is a group space with a 
left-invariant metric. 

Here the general Singer's estimate only says that the condition P(3) implies 
homogeneity. Thus, the Sekigawa's theorem provides a strengthening of the Singer's 
theorem in a special situation. 
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The original proof by Sekigawa is rather long, because the proof of the homo­
geneity is closely connected with the classification. The purpose of this Note is to 
give a short and direct proof of the homogeneity part only. (The higher dimensions 
n > 4 are also discussed in this context). 

Let (M, <?) be given as in the Sekigawa's theorem. Because the Weyl curvature 
tensor C vanishes identically for d i m M = 3, the condition P(l) is equivalent to the 
following condition 

P ' ( l ) : For every x, y 6 M , there is a linear isometry $ of TXM onto TyM such that 
$*(px) = py,$*(Vp)x = (Vp)y, where p denotes the Ricci tensor and Vp its 
covariant derivative. 

Using paragraph 2 in [5], we obtain easily the following 

Lemma. If P'(l) is satisfied, then there exists a maximal principal subbundle F of 
the orthogonal frame bundle 0(M,g) —> M on which the functions pij,Vkpij(i,j, k = 
l , . . . , n ) are constants and which contains a given frame b € 0(M,g). Moreover, 
the structure group of Fb is a connected Lie group with the Lie algebra Q% (x € M 
being arbitrary). 

Let x € M be fixed and let 6 = (ei, e2,63) be an orthonormal frame at x consisting 
of eigenvectors of the Ricci tensor. This means that all frames c € Fb consist of 
eigenvectors of the Ricci tensor as well, and that the Ricci roots Ai,A2,A3 are 
constant on Fb and hence on M . 

Now, we shall distinguish 3 cases: 

1) All Ricci roots Ai, A2, A3 are different. Then for each x € M we see that GJ = 
(0) = <£*, i.e., kM = 0. Because P(l) is satisfied, (M,g) is homogeneous 
according to the Singer's theorem. 

2) All Ricci roots are equal. Then (M, g) is Einsteinian and hence a space form. 
3) We have Ai = A2 ^ A3. Then GJ = so(2) for each x E M , and we can 

distinguish two cases. 
3a): £r J = Q% and &M = 0. Here we can use the Singer's theorem once more. 

It remains to settle the only non-trivial case 
3b): ai = so(2),e! = (0) for all x € M, i.e., kM = 1. 

In the last case, the fibre bundle Fb is just a global section of 0(M,<;) over M 
(because its connected structure group has the Lie algebra Gf = (0)). We put 
Fb = (E i , E2> Ez) on M , and we shall use this global orthonormal frame in the rest 
of the proof. 

Next, let us introduce the functions P*. on M by 

(1) VEiEj = J2BiJEk &* = X ' 2 ' 3 ) ' 
it 

Using the obvious skew-symmetry 

(2) B>ri+Brj=0 

we get easily 

(3) VrPil•,= (\j - X^Bii (i,j,k = 1,2,3). 
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From (3) we see that B ^ and B^2 are constant functions on M for r = 1,2,3. We 
want to show that the remaining functions B ^ are also constant on M. 

According to the classical formula for the curvature (see [2]) we have 

Y}B«kB*u - B?kB]u + (Bfi - BJJJBM + Ei(B]t) - £,(2??*) = Rjivk. 
U 

For v = 3, the functions Bv-k and B?k are constant and our formula is reduced to 

(4) S>"*£'?- - B*B)«+(-7. - - W * i = **« • 
U 

Now, for (t,j,fc) = (1,2,1) and (t,j,fc) = (1,2,2) we get 

(5) B2l(-^12 + #2l) ~ Bll(B22 - B\\) = Bn(B12 - B21) + R2123, 

(6) B2l(B22 "~ &\\) + -^ll(B12 + B2l) = B32(B12 — &2\) + #2123-

For (i,j,k) = (1,3,1) and ( t , j ,k ) = (2,3,1) we get 

(7) B3
2

1(B1
3

2 + BJ-) = -B2
uBl - (B>3)2 - (BX1)2 - B f ^ + R3113, 

(8) ^31(^22 ~ B n ) = B33(B22 - B3 3) + B 2 3 ( B n -f B22) + B32i3-

Now, the condition G* = (0) means that the tensor Vipjk is not invariant with 
respect to the group SO(2) (acting on the subspace span(Fi,--?2)i C T - M at each 
x £ M). This implies 

(9) (V1/023 + V 2 p 1 3 7- 0) V (V2lo23 - V i P l 3 7- 0), 

and from (3) we get 

(10) (B\2 + B». / 0) V (B2
3

2 - B\, jt 0). 

This means that the system of non-homogeneous linear equations (5), (6) with 
constant coefficients for the unknowns B21 and B\x has a non-zero determinant, 
and hence we derive that B2l and B\x are constant. But then the right-hand sides 
of (7) and (8) are constant and the function B2j can be calculated from one of these 
equations as a constant, as well. 

Now, define a tensor field T of type (1,2) on M by the formula 

(11) T E , ^ = V > * £ t , 
it 

and define a new connection V = V - T on M. Then V^.E j = 0 for t , j = 
1,2,3, and hence, because B*. are constants, we get V T = 0. Also V.R = 0 holds 
because R(EiyEj)Eif are constants. Now, the homogeneity of (M, g) follows from 
the Ambrose-Singer theorem (see [1] or [8]). 
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Note. A natural generalization of the Sekigawa's result could be expected for 
spaces of higher dimensions with the vanishing Weyl tensor, C = 0. For n > 4, 
the space (M,g) is then conformally flat. A theorem by H.Takagi (see[7], Theorem 
A) implies that any homogeneous conformally flat Riemannian manifold is locally 
symmetric. A careful but routine inspection of the Takagi's proof shows that it re­
mains valid for those conformally flat spaces which are only curvature homogeneous. 
Hence we obtain the following result: 

Let (M, g) be a connected and simply connected complete Riemannian manifold 
which is conformally flat and satisfies the condition P(0). Then (M, g) is homoge-
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