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Autohomeomorphism groups of spaces 
with unique non-isolated point 

V .MlSKIN 

Abstract. Let X be a set, J C 2X an ideal of subsets of X, Sx the group of all permutations 
of X, SX(J) = {/ € Sx : f(J) = J } the stabilizer of J , and let Hj = {/ € Sx : s u p p / € 
J } , where s u p p / = {x £ X . /(a?) 9-: a;}. There exists a one-to-one correspondence 
between the pairs (X, J) and the topological spaces Xu{+} with unique non-isolated point 
*, the stabilizers SX(J) being associated with the autohomeomorphism groups of these 
spaces. It is shown that the autohomeomorphism group of a strongly non-homogeneous 
T\ -space with unique non-isolated point is complete, i.e. has the trivial center and n8 
outer automorphisms. Specifically, the stabilizer SX(J) of every maximal ideal J C 2X 

is complete. Furthermore, it as established under CH that the stabilizer SR(J) of the 
er- ideal J of Lebesque measure zero sets or of meager sets on R is a complete group and 
the quotient group SR(J)/HJ is not simple. 
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Classification: Primary 54H05, 04A20, 03E5; Secondary 28A05 

For a set X we denote by 2X the Boolean algebra of subsets X and, respectively, 
by [X]<u' and [X]<Wl the ideals in 2X of finite and at most countable subsets of X. 
If J C 2X is an ideal of subsets of X and Jc its dual filter, then the family {0} U Jc is 
obviously a topology on X. However, one can associate with J another topological 
space by adjoining a new point * to X and viewing {(X \ a) U {*} : A € J} U 2* 
as the topology of this space. We thus have a topological space with unique non
isolated point. Conversaly, ifY = X U {*} is such a space, then by setting J = 
{A C X : * $ clA}, we obtain an ideal in 2X and the topology constructed from 
J on Y coincides with that of the original space Y. We observe that J D [X]<w if 
and only if the topology constructed on X U {*} form J is T\. As usual, we denote 
by Sx the general symmetric group of X and by $x(J) = {f € Sx ' f(J) = J} 
the stabilizer of an ideal J C 2X , where /(J) = {f(A) : A € J}. For each 
/ € Sx we denote by supp/ = {x 6 X : f(x) ^ x} the support of / and set 
Hj = {/ € Sx ' supp/ € J}. It is easily seen that Hj is a normal subgroup in 
$x(J)- If X is a space with unique non-isolated point and J is the ideal in 2X 

related to it, then the autohomeomorphism group of XU{*} is obviously isomorphic 
to $x(J)' Thus, the study of the pairs (X, J), where J C 2X is a set ideal, 
is equivalent to the study of topological spaces (X, {Jc U {0}}) or the study of 
topological spaces X U {*} with unique non-isolated point. 

Let us consider, for an arbitrary set ideal J C 2X the quotient algebra 2X/J and 
the representation # : $x(J) —> Aut(2x/J) of the group $x(J) by automorphisms 
of the Boolean algebra 2X jJ defined as follows: if n : 2X —> 2X jJ is a canonical 
epimorphism, then f j(f)(n(A)) := v(f(A)) for all / € SX(J) and A C X. 
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We observe that K e r ^ j = Hj. Indeed, if A is the operation of symmetric 
difference on 2X, then for any / € Hj and A C X we have that f(A) A A G J 
and, hence n(f(A)) = Tt(A), i.e. $j(f) = id or Hj C K e r ^ j . Conversaly, if 
/ € $x(J) \ Hj, then s u p p / $ J and by Zorn's lemma there exists the maximal 
E C s u p p / with EH/(E) = 0. It is easily seen that E £ J, for otherwise / ( E ) G J, 
and hence C := s u p p / \ (E U / ( E ) ) ^ J. Since E is maximal and / is injective, 
/ ( C ) C E € J, hence / ( C ) € J and this contradicts / G S*(J ) . Thus E $ J, 
and hence / ( E ) £ J and / ( E ) A E = E U / ( E ) £ J, that is n(E) ^ ?r(/(E)) = 
#j( / ) (7r (E ) ) . We thus have that / £ K e r ^ j and so K e r ^ j c Hj. From this we 
deduce that $ j = {id} if and only if J = {0}, i.e. the representation ^ j is faithful 
only for J = {0} . Since the isotropy group $x(J)n(A) D Hj for all A C X, the 
representation ^ j is effective (i.e. $x(J)*(A) does not contain non-trivial normal 
subgroup oi$x(J)) only for J = {0} and only in this case ^ j is regular, i.e. all the 
stabilizers $x(J)*(A)>A C X, are trivial. Thus, for a non-trivial ideal J C 2*, the 
representation ^ j is neither faithful, nor effective, and nor regular. 

We observe that for a maximal ideal J C 2X, one has 2X/J = {0 ,1}, so 
Au t (2 x /J ) = {id}, and hence $ j is trivial and Hj = $x(J). It follows from 
the equality Ker ^ j = Hj that the diagram 

$x(J) —^-* Aut(2*/J) 

•i 
Sx(J)/Hj 

can be completed up to the commutative one by the homomorphism ^ j , that is , 
the quotient group $x(J)/Hj operates naturally by automorphisms on 2X/J. 

We remark also that the triviality of the representation $ j is equivalent to the 
condition that for any / G $x(J) and A G 2X \ J, f(A) D A ^ 0. 

The representation ^ j can be trivial for non-maximal ideals J as well. Indeed, let 
us consider two disjoint subsets X' and X", with |K ' | = |K"|, and let Ji C 2X and 
J2 C 2 * be non-equivalent maximal ideals (for example one of them is principal 
and the other is not). Then the ideal J! + J2 on X = X' U X" generated by Jx U J2 

is not maximal, because 2x/(Ji -f J2) = {0, l,Tr(X'), w(X")} and, since Ji is not 
equivalent to J2, no automorphism of the quotient algebra transposes n(X') and 
w(X"). Thus, Aut(2 x / (J i + J2)) = {id} and $JX+J2 is trivial. If Jx and J2 are not 
equivalent, then ^JX-\-J2 is not trivial and surjective. 

We call two ideals Ji C 2X and J2 C 2X weakly equivalent if there exist 
A\ 6 2 * \Ji and A2 G 2X \J2 such that the ideals J\ \AX and J2 \A* are equivalent, 
i.e. there exists a bijection / : A\ —i• A2 such that f(J\ \AX) = J2 U2- We remark 
that if two ideals J and J' C 2X are equivalent, then their stabilizers $x(J) and 
$x(J') are conjugated in S x , because for any / G Sx,$x(f(J)) = f$x(J)f~l-

All the ideals J C 2X for which # j is trivial can be described as follows: for 
every partition of X into two subsets X',X" £ J, the ideals J \x> and J \x" are 
not weakly equivalent. One can call the ideals of such a kind weakly indecomposable 
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(it is impossible to decompose them into weakly equivalent ones) or strongly non-
homogeneous (for any Ai,A2 € 2X \ JyA\ fl A2 = 0, we have that J \AX and J \A2 

are not equivalent). In topological terms this means that in the space X U {*} 
with unique non-isolated point related to J no two disjoint non-closed subsets are 
homeomorphic. 

We recall that a group G with trivial center and no outer automorphisms is called 
complete [Si]. 

Theorem 1. If an ideal J C 2X is weakly indecomposable and J C [X]<w, then 
the group SX(J) is complete. 

P R O O F : Since J D [K]<ta\ the stabilizer SX(J) contains the alternating group Ax 
consisting of compositions of even many transpositions of X. Therefore, 
Ax C Sx(J) C Sx and by a theorem of Wielandt [W] every automorphism of 
the group Sx(J) is induced by an inner automorphism of Sx, i.e. for any, ip 6 
kui(Sx(J)) there exits / € Sx such that (p(g) = fgf'1 for all g € SX(J). Then / 
belongs to the normalizer NSx(Sx(J)). Let us verify that SX(J) = NSx(Sx(J)). 
Let / e NSx(Sx(J)), that is / S x ( J ) / " 1 = SX(J). As we have obser xl above, 
fSx(J)f~"1 = Sx(f(J)). Since J is weakly indecomposable, Sx(J) = Hj, and 
hence Sx(f(J)) = Hj. Since the ideal /(J) is weakly indecomposable as well, 
Sx(f(J)) = Hj(j). Therefore we have that Hj = H/(j), hence {supph : h € 
Hj} = {supp h : h 6 H/( j ) } . It is not hard to show that for each A € J there exists 
an involution h £ Sx with supph = A. Thus J C {supph : h € Hj}, and hence 
{supph : h € B/(j)} = / (J ) and {supph : h € Hj} = J, so / (J ) = J. We thus 
have that / € SX(J). Since J D [K]<u;, we have that the center of Sx(J) is trivial 
and hence Sx(J) is complete. • 

Coro l lary 1. For every maximal ideal J C 2X the group Sx(J) is complete. 

Indeed, if J is principal, i.e. J = 2x^Xo\ then Sx(J) is isomorphic to Sx\{x0} 
and by the Schreier-Ulam theorem [S~~U] Sx(J) is complete. For non-principal J 
we have J D [X]<u> and since any maximal ideal is weakly indecomposable one can 
apply Theorem 1. 

Now we describe the automorphism group of the kernel of \£ j . 

Theorem 2. For every ideal J C 2X we have Sx(J) = Suj(J) x Sx\uJ and 
Aut(Hj) 3 5uj (J ) . 

PROOF: The correspondence / - • ( / | u j , / | x \ u j)> / € SX(J), is obviously an iso
morphism of the group Sx(J) onto the group Suj(J) x 5x\uJ- Let H'j = Hj|uj = 
{/luJ : / € Hj}. Since for each / € Hj we have s u p p / C UJ, / | x \ u J = H 
and hence the image of Hj under this isomorphism is Hj x {id}. That is Hj is 
isomorphic to H'j C Suj(J), where J D [UJ]<W, and we have realized the reduc
tion to the case that J contains the ideal of finite subsets of X. Thus, we may 
assume that J D [X]<w. We will show that Aut(Hj) S 5x (J ) . Since J D [K ] < w , 
Ax C Hj C Sx- By Wielandt's theorem [W] every automorphism a € Aut(Hj) is 
induced by an inner automorphism ft € Inn(Sx), i.e. there exists g € Sx such that 
<*(/) = dfg"1 for all / € Hj. We then have that g € NSx(Hj). Let us verify that 
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NSX(Hj) = Sx(J)- Suppose the contrary, then there exists g £ NSx (Hj) \ SX(J), 
i.e. for some infinite A € J either g(A) $ J or g~l(A) $ J. Let us consider an 
involution h £ Sx with supph = A. Clearly h G Hj but either supp ghg~* = 
g(supph) = g(A) $ J or suppg~lhg = g~l(supph) = g~l(A) t J- Contradiction. 
Thus, NSx(Hj) C Sx (J ) . On the other hand, if g £ SX(J), then gHjg~l = Hj, 
because Hj is a normal subgroup of Sx(J)- Hence Sx(J) C Nsx(Hj) and we 
have that Nsx(Hj) = Sx(J). Thus, every automorphism a G AutH j is induced 
by an inner automorphism /3 € Inn(Sx(J)) . If g £ Csx(j)(Hj), then ghg~l = h 
for all h £ Hj. But Hj contains all the transpositions of Sx and an element of 
Sx commuting with any transposition is id. Thus, Csx(j)(Hj) = {id} and since 
C(SX(J)) = {id) and Inn(Sx(J)) S- SX(J)/C(SX(J)) £- S*(J) we have that 
Aut(H j ) S hm(Sx(J))/CSx(j)(Hj) S S X ( J ) . Therefore Aut(H j) -= Aut(H 7) -= 
S\JJ(J) arid the proof is complete. • 

Theorem 3 . (CH). If J is the a-ideal of null-sets or of meager sets on the real 
line Ry then the group SR(J) is complete and the quotient group SR(J)/Hj is not 
simple. 

PROOF: Since J D [#]<", we have C(SR(J)) = {id} and AR C SR(J). By 
Wielandt's theorem [W] for each <p £ Aut(Sfl.(J)) there exists h £ SR such that 
ip(g) = hgh~l for all g £ SR(J), that is h £ NSR(SR(J)). We will show that 
*sR(SR(J)) = S R (J ) . Let h £ NSR(SR(J)). Obviously, h([M\<*) = [*]<«* C J. 
Therefore, using CH, it suffices to show that for any infinite uncountable A 6 J, 
h(A) £ J. Let us consider the or-ideal <?(resp. Z) of Sierpinski (resp. Lusin) sets 
on I2, distinct from [H]<Wl under CH, the is of those S C R every uncountable 
subset of which having positive outer measure (resp. being not a meager set in 
R) [S2]. We observe that SR(J) = SR(G)<> if J is the <7-ideal of null-sets and 
SR(J) = SR(Z), if J is the cr-ideal of meager sets on R. Indeed, if / € SR(G)(resp. 
SR(Z)) and f(A) £ J for some uncountable A € J, then there exists an uncountable 
S € £(resp. S £ Z) such that S C f(A) [S2]. Then /^(S) £ G (resp. 2 ) , but 
f~l(S) C A £ J, and hence / ~ 1 ( 5 ) G J. This contradicts the equality 0 n J (resp. 
2 n J)= [ £ ] « * . Thus, $n (0 ) C <SR(J) (resp. 5 R ( 2 ) C S*(J)) . Conversaly, if 
g G SR(J) and for some uncountable 5 G G (resp. .2) #(S) ^ G (resp. £ ) , then there 
exists an uncountable A C g(S) with A G J. Hence ^ ( A ) G J and g~l(A) C S, 
i.e. flf"x(A) £ J f)Q (resp. J n .2), a contradiction. Thus, SR(J) C SR(G) (resp. 
SR(Z)). We further observe that for each f £ SR there exists either an uncountable 
B G J with / ( B ) G J or an uncountable C G G (resp. £ ) with / ( C ) G (5 (resp. Z) . 
Indeed, suppose that / (J) n J = [R]<Ul and / ( £ ) n G = [ B ] ^ 1 . Then / (J ) = G 
(resp. £ ) . If on the contrary f(B) $ G (resp. Z) for some uncountable B G J, 
then there exists an uncountable C c / ( B ) of measure 0 (resp. of first category) 
and hence f~l(C) G J, i.e. C G / (J ) 0 J, a contradiction. Thus, / (J ) C G (resp. 
.£). On the other hand, if f~l(D) $. J for some uncountable D € G (resp. .£), 
then by choosing an uncountable .£? C f~l(D) with E £ G (resp. £ ) , we have 
f(E) C A that is /(JE?) G a (resp. Z ) j m d hence / ( E ) G £ n f(G) (resp. £ n / ( £ ) ) , 
a contradiction again. Therefore, / 1(G) C J (resp. f~l(Z) C J) or, in other 
words, G C f(J) (resp. 2 C / (J ) ) - Thus, / (J ) = G (resp. Z) . However, we 



Autohomeomorphism groups of spaces with unique non-isolated point 

will show that this equality does not hold for any / G SR. Since every null-set 
(resp. meager set) is contained in a C^-nuU-set (resp. meager F«--set), we obtain 
a family J' C J of cardinality c such that for any A G J there exists A' G J' with 
A' D A. If for some / G Sx, / (J ) = Q (resp. Z\ then f(J') is a subfamily of Q 
(resp. Z) with the same property as J' in J. We wiU show that Q (resp. Z) does 
not contain a subfamily of such a kind of cardinality c. Suppose the contrary, i.e. 
there exists a family {Ca : a < uj\) C Q (resp. Z) such that every C G Q (resp. 
Z) is contained in some Ca. Let {Aa : a < uj\} be the family of all Cg-null-sets 
(resp. meager F<--sets). For each a < u>iy R\( \J CpU (J Ap) -^ 0, because 

0<a 5<a 
\J Cp £ Q (resp. Z) and | j G J and the complement to any null-set (resp. 

P<a 0<a 
meager set) contains a null-set (resp. meager set) of cardinality 2W [0, Theorem 
19.1]. Let xa G R \ ( U (Cp U Ap)) and C = {xa : a < c^}. If A C C is a 

P<a 
null-set (resp. meager set), then there exists ao < u>i such that A C Aao, and 
hence A does not contain xa with a > ao, i.e. | A | < u>- Thus, C G Q (resp. 
Z) and from the diagonal construction it follows that C <£. Ca for all a < w\. 
A contradiction. We thus have that either there is an uncountable h t J with 
h(B) € J or there exists an uncountable C £ Q (resp. Z) such that h(C) € Q 
(resp. Z). Suppose there is an uncountable B G J such that h(B) G J. If for an 
uncountable A € J we have that h(A\B) G J, then h(A) = h(A\ J9)Uh(AOB) € J, 
i.e. we may assume that A D B = 0. Obviously, any involution g € SR with 
supp# = A U B and ̂ (B) = A belongs to SR(J) (in other words, the group SR(J) 
acts transitively on disjoint elements of J of common cardinality). We then have, 
since hgh'1 G SR(J) and h(B) G J, that hgh~~x(h(B)) = h(A) € J, i.e. h(J) C J. 
The same argument for h~~l shows that h~~x(J) C J, i.e. J C h(J), and hence 
h(J) = J, i.e. h G SR(J). Suppose there is an uncountable C G Q (resp. .£) such 
that h(C) G £ (resp. Z) . Let us verify that h(D) € Q (resp. .£) for all D G £ 
(resp. Z). We may assume as above that D and C are disjoint. If g G SR is an 
involution with supp# = C U D and g(C) = D, then <jf G SR(Q) (resp. «£#(.£))> 
because (/ and Z are set ideals. We then have that hgh~~l G hSR(Q)h~~x (resp. 
h<SH(-2:)h-1)= hSR^h"1 = 5 * ( J ) = $*({?) (resp. S R ( £ ) ) , because h(C) G £ 
(resp. Z) implies that hgh~~l(h(C)) = h(D) G 6 (resp. 2 ) . Thus, h G S R ( £ ) (resp. 
SR(Z))= SR(J), and hence NSR(SR(J)) C SR(J). Since Hj and Hg (resp. Hs) are 

distinct normal subgroups in SR(J). the subgroup HJHQ (resp. HjHz) generated 
by Hj U H(; (resp. Hj U H2) is a proper normal subgroup in SR(J) distinct from 
Hj and Hg (resp. Hz)- Indeed, Hj £ Hg (resp. H2) and H<? (resp. Hz)<£ Hj and 
KJH0 (resp. HjHz)i~ «-*R(J)> because HjHg (resp. HjHz)C Hj+g (resp. Hj+z) 
and for instance, the reflection / of _R : -c —* —a;, x G .R, belongs obviously to SR(J) 
and does not belong to Hj+(; (resp. Hj+<g), since s u p p / = R \ {0} ^ J -f Q (resp. 
J «f Z). Thus, the quotient group SR(J)/HJ is not simple, as well as SR(J)/^6 
(resp. SR(J)/HZ), and the proof is complete. • 
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