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Some remarks on preservation of topological products 

LUCIANO STRAMACCIA 

Abstract We study the product preservation property by means of a topological epireflec-
tor r : TOP —+ R. Results are obtained with respect to the (bi,initial) factorization of r 
and the category r -COMP defined by r. We generalize a result of Ishii [3], concerning 
the Tychonoff reflector. 

Keywords: epireflector, preservation of products, r-compact spaces 

Classification: 54B10, 54B30, 18A40, 18B30, 54D30 

In this note we deal with the property of preservation of topological products by 
means of an epireflector r : T O P —• R. As a first result we show that r always pre
serves finite products and arbitrary Hausdorff products of spaces in the bireflective 
hull B(R) of R in T O P . Hence, the product preservation for r depends essentially 
on the first factor of the usual (bi,initial) factorization of r. This generalizes and 
motivates the situation one has, e.g., with the T\-modification of topologies, which 
preserves finite products of symmetric spaces, and other similar reflectors. 

It is known ([2]; Appl.3) that, in case R is a category of compact Hausdorff spaces, 
then r preserves all products. Then, it does make sense to consider the largest 
subcategory of T O P whose objects are all spaces X having compact reflection 
r(X). This is the category r - C O M P , introduced and studied in [6], where its 
objects are characterized by means of special filters and covers. 
r - C O M P is closed under finite products but, in general, it is not closed hereditary. 
Moreover, it turns out that r - C O M P is closed under products exactly when r 
preserves them. 

We refer to [1] for all undefined concepts and unproved facts. 
Let T O P (resp. T O P 2 ) denote the category of all topological spaces (resp. Haus
dorff spaces) and continuous maps. R will be an epireflective subcategory of T O P 
with reflector 

r : T O P -4 R. 

Then, for every topological space X there is an onto reflection map 

rx : X -* r(K) 
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which is initial with respect to every other map / : X —> I2, R € R. 
The functor r admits a canonical decomposition 

T O P • R 

B(R) 

where: 
(i) B(R) is the bireflective hull of R in T O P , with reflector J and reflection 

map jx '• X —> X ' , being X' the space having the same underlying set as 
X and initial topology with respect to rx. jx is underlined by the identify 
function. B(R) = {X' : X G T O P } . 

(ii) r ' is the restriction of r to B(R) . Let us note that r (X) = r (X ' ) = r ' (X ' ) 
holds, for every space X , hence we denote by rxf : X' —> r (X) the reflection 
map. Then, rx = r'x • j x . 

Let {Xi : i £ 1} be any family of topological spaces and let HXi be the product. 
By the universal property of the reflection there is a unique map t which makes the 
following diagram commutative: 

rjiXi 

iiXi • r(nxo 

ЩXІ) 

One says that the reflector r preserves (finite) products whenever the map t is a 
homeomorphism, for every given (finite) family of topological spaces. In such a case 
we write r(HXi) = IIr(X t ) . 

Proposit ion 1. r' always preserves finite products, r ' preserves all products when

ever R C T O P 2 . 

PROOF: Let {X- : i 6 I} be any family of spaces in B ( R ) and let t1 : r(UX-) -~> 
IIr(X l ') be the unique map such that t' -rnx' i = n rx ' t - Since each r ^ , is open and 
ont6, and since r n x ' . is also onto, it follows that t ' is open and onto. It is known 
([2], 2.2 and 3.3) that t' must be also injective in case I is finite or r(nX t ' ) is a 
Hausdorff space. This completes the proof. • 

Let us recall that the topology on X ' is given by those subsets A C X such that 
A = rx

l(B), for B open in r ( X ) . We call such sets r-open sets of X . A is r-open 
in X iff rx(A) is open in r (X) and A = rx

1rx(A). 
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Let now X and Y be two arbitrary topological spaces and let A C K, B C Y 
be r-open subsets. Then A x B is r-open in X x Y; in other words, the identity 
function 

t' :(Xx Y)' - 4 l ' x F ' 

is always continuous. However it is not a homeomorphism in general, that is an 
r-open subset of X x Y is not always expressible as union of "rectangular" r-open 
sets. In fact, it is easily seen that t' is a homeomrphism iff J preserves the product 
o f X ' a n d Y ' . 

Proposition 2. r preserves finite products iff J does. The analogous assertion 
holds for arbitrary products, whenever R C TOP2 

PROOF: If J preserves finite products, then, by the proposition above and the fact 
that r = r' • J, the assertion follows. The same in case of arbitrary products and 
R c T O P 2 . 

Conversely, let {X, : t € I} be a given family of spaces and consider the following 
commutative diagram 

(liXi)' 

ПXi r(ПK t) = Пr(K,) 

ПKÍ 

We know that t' is the identity on the underlying sets, hence it is sufficient to 
show that t' is also an open map. Let U be a basic open set in (ILX,-)', that is U is 
an r-open set in TlXi; then there is an open set V C r(UXi) = n r ( K , ) such that 
U = r^Xi(V) = ( O - H n r ' x O - H V ) - It follows that t'(U) = (Ur'xi)-1^) is open 

in nx;. • 
Remarks. 

It is well known that the T\ -modification of topological spaces preserves the fi
nite products of symmetric spaces (i.e. spaces in which x £ cl{y} implies y 6 
d{x}). Such spaces form the bireflective hull of the category T O P i of T\ spaces 
in T O P . Similarly, let R be one of the following categories: TOP2 (== Haus-
dorff spaces), TOP3 (=regular Hausdorff spaces), T Y C H (= completely regular 
Hausdorff spaces), 0-dim (= zero-dimensional Hausdorff spaces), F H A U S ^ f u n c 
tionally Hausdorff spaces), U R Y (= Urysohn spaces). Then, the corresponding 
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modification functor r preserves, respectively, all products of spaces in B ( T O P 2 ) 
= (HO-spaces of K. Csaszar), B ( T O P 3 ) = (regular spaces), B ( T Y C H ) = (com
pletely regular spaces), B(O-dim) = (zero-dimensional spaces), B ( F H A U S ) = 
(spaces X such that, for x,y € X,x € cl{y} iff no continuous map / : X -H• R 
separates them), B ( U R Y ) = (spaces X such that given z, y £ K, x £ cl{y} iff there 
exist no disjoint closed neighborhoods of them). 

Let r : T O P —> T Y C H be the Tychonoff modification functor. The r -open sets 
of a space X are those subsets that are union of cozero-sets of X [3]. Morita [5] 
has shown that, for spaces X and F , the equality r (K xY) = r(X) x r(Y) holds 
iff every cozero-set of X x Y is a union of rectangular cozero-sets. 

In [6] the category r - C O M P of r- compact spaces was introduced; its objects are 
exactly those topological spaces X having compact reflection r(K) (no separation 
axiom is assumed). 
r - C O M P is closed under finite products ([6]; Th.3.6) and has the property that it 
is closed under arbitrary products exactly when r preserves them, as shown by the 
following 

T h e o r e m 1. Let {X, : i £ 1} be a family of r-compact spaces and assume that 
R C TOP2. The following statements are equivalent: 

(i)r(nxi) = nr(A-j). 
(ii) nK» is r-compact. 

PROOF: (i)—•(ii) is immediate. As for (ii)—>(i) it suffices to note that the map 
i : r (nK , ) —> nr (K , ) is a bijective map (by Th.1.1) whose domain is compact and 
whose range is Hausdorff. • 

r-compact spaces can be characterized by means of special filters and covers; we 
recall some facts from [6], for sake of completeness. 

Given a topological space X and a subset A C K, the r-interior of A is defined 
to be the set int r(A) = X — r^ 1 cl(rx(A))> where cl denotes ordinary closure in 
r (X) . 

An r-cover of X is an open cover {Ui : i £ 1} such that X = U , e / i n t r U%. A 
filter F in X is an r-Giter whenever U F e j r cl(F) = U F e p cl r(F) . Where cl r(F) = 
rJ?d(rx(F)). 

Theorem 2. /6 / 
The following statements are equivalent for a space X: 

(i) X is r-compact. 
(ii) Every r~cover of X admits a finite subcover. 

(iii) Every closed r-filter in X has adherent points. 

Although r - C O M P i s obviously r-closed hereditary, it is in general neither hered
itary nor closed ereditary. 

Let r : T O P ~> T Y C H be the Tychonoff reflector; in such a case r - C O M P 
contains properly the class of w-compact spaces defined in [3] and, hence, that of 
compact spaces. A topological space X is said to be to-compact whenever, given 
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any family of closed subsets of K, each containing a non empty cozero set, and 
having the finite intersection property, it has empty intersection. 

In ([3]; Prop.2.3) a r-compac t , not iw-compact space is constructed. Consider 
the example ([3]; Pag. 178) where I is the unit interval and A = { l / n : n € N } . 
Let a be the topology on I obtained by modifying the usual one in that the basic 
neighborhoods of 0 do not contain points of A. Then (I, a) is a r-compac t space, 
but A is not. 

Finally, let us observe that r - C O M P is closed under arbitrary products; in fact, 
every r-open set in a product HXjy is union of rectangular r-open sets ([3]; Th.L8 
and its proof). It follows that our theorem 1, applied to r, generalizes properly the 
corresponding Th.1.8 in the paper of Ishii. 
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