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The theory of error-correcting codes belongs to popular applications of combi
natorics. A special attention has been devoted to perfect codes which have been 
shown to exist quite rarely [4; 15]. The classical notion of a perfect code in Ham
ming or Lee metrics has been generalized by Biggs [3] to perfect codes in graphs 
(given a graph G = (V, E), a t-perfect code in G is a subset C C V such that every 
vertex of G is at distance at most t from exactly one code—vertex of C). However, 
almost exclusively distance-regular graphs were considered [7; 14] because of the 
high symmetry of those graphs enabling to prove a strong necessary condition for 
the existence of perfect codes [3]. Perfect codes in general graphs have been studied 
in [5,8], and from the domination theory point of view in [6]. 

The aim of the thesis was to study questions related to the existence of perfect 
codes in general graphs from different points of view. It is proved in chapter 2 that 
deciding whether a given graph contains a t-perfect code is NP-complete for every 
t > 1 (cf.[9]), but it is polynomially solvable in graphs of bounded tree-width (in 
particular in trees). (For t = 1, both these results have been proved independently 
by Fellows [6]. A stronger result has been afterwards achieved by Kfivanek and 
the author [11] - the decision problem remains NP-complete when restricted to k-
regular graphs (for every k > 3) or to planar 3-regular graphs. Recently, solving a 
problem of Fellows [6], the author has proved the following result related to perfect 
codes - for every n > 4, given an (n — l)-regular graph G, it is NP-complete to 
decide whether the vertex set of G may be partitioned into n 1-perfect codes, i.e. 
whether G admits a Kn-cover (cf. [1,3])). 

Two-graphs, i.e. equivalence classes under SeidePs switching are considered in 
chapter 3. In particular, 2-graphs all graphs of which contain 1-perfect codes, 
are characterized (note that the characterization yields a polynomial decision al
gorithm). In chapter 4, the probability of the existence of a 1-perfect code in the 
random graph Gn>p is studied. The treshold functions for which a 1-perfect code 
ceases and begins to occur in Gn>pi are determined (cf.[12]. It is also proved in 
[12] that the second power of a random graph is far less probable to contain a 1-
perfect code - if p is such that GUtP is almost surely nonempty then Gnp contains 
no 1-perfect code a.s.). 

Perfect codes in cartesian powers of graphs (i.e. perfect codes over structured 
alphabets) are dealt with in the second part of the thesis. An older result of the 
author saying that there are no nontrivial 1-perfect codes over complete bipartite 
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graphs except Ki,i = K2 (cf. [8]) is mentioned here and extended to regular 
complete fc-partite graphs. To the most interesting results of this part, the following 
two belong: 1) If C is a 1-perfect code in the second power of a graph G with n 
vertices then card C > n. It is proved here (cf. [10])that G2 contains a 1-perfect 
code of this minimum possible cardinality if and only if G is a self-complementary 
graph. 2) The isolated vertex and the path of length 3 are the only two trees such 
that their second powers contain 1-perfect codes. 
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The dissertation is devoted to abstract analysis of Korovkin approximation theory. 
In the part presenting the results, the (abstract) sufficient conditions are estab

lished that a separable Banach lattice E contains the Korovkin set for E. They are 
obtained by the help of +he "order universality" of C[0,1] (the Krejn's embedding 
theorem). Further, the qualities of the injective linear mapping are discussed, which 
maps the separable Banach lattice into C[0,1] and the elements from its cone (but 
only the elements from the cone) map on the positive elements of C[0,1]. It is proved 
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