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Two-point boundary value problems for nonlinear 
perturbations of some singular 

linear differential equations at resonance 

JEAN MAWHIN, WALO OMANA 

Dedicated to the memory of Svatopluk Fudfk 

Abstract. We extend to some second order nonlinear two-point boundary value problems 
with a singular resonant linear part some existence results known for the regular case. The 
proof uses degree arguments and sharp estimates for an associated Green's function. 

Keyword*: Boundary value problems, singular equations, coincidence degree. 

Classification: 34B15 

1. Introduction. 
This paper is devoted to the existence of solutions for some nonlinear boundary 

value problems at resonance of the form 

(i) -ffiWhW - Am(0 = /(«, «(*)), t e ]o, i[ 

and either 

(20 u(0) = u(l) = 0 

(20 Jimp(t)u'(t) = u(l) = 0, 

where / : I x R - > R i s a Caratheodory function, I = [0,1] ,p € C(I) 0 CHJO, 1]), 
p(0) = 0, p{t) > 0 on ]0,1], and 1/p € Ll(I), Xx is the first eigenvalue of 
-P""1 (ti)(Pih) W^L boundary conditions (20 or (2j). 

Our results extend to some class of functions p a technique introduced in [ Maw-.] 
when the linear part does not contain singularities. For example, our Theorem 
2 will apply to the nonlinear perturbation of a Lommel equation (whose regular 
counterpart corresponding to a = 0 was considered in [Maw,]) 

(3) -r*(rV(c) ) # - A,u(i) = Aexpu(t) - h(t) 
u(0) = u(l) = 0 
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provided 0 < a < lit
ah € I'1 (I), and will imply the existence of a solution if and 

only if 

(4) Ajh(t)t<l*Wj{l-a)/3(yfct)dt > 0 
/ 

where J(i*-0)/2 is the Bessei function of the first kind of order (1 — a)/2 and Ai is 
the square of its first positive zero. Condition (4) is a Landesman-Lazer condition 
which is thus extended here to equations with a singular linear part and some 
nonlinearities having not necessarily a linear growth. A similar result holds for the 
other boundary condition. 

Another example, which, in the regular case a -= 0, corresponds to a question by 
Fu&Tc [Fuc] (see [Mawi]), is 

- * - ( t V ( t ) ) ' - Am(t) = g(u(t)) - h(t), 
ti(0) = ti(l) = 0, 

where 0 < a < 1, g(u) = 0 for u > 0 and u""1^^) —> /3 > 0 when u —> -co. In this 
case, Theorem 1 will imply that a solution exists if 

/h(t).<i+«)l2j(1_0)/2(vAr*)* < o 

Moreover, if g is nondecreasing, the condition above with non strict inequality will 
be a necessary and sufficient condition for solvability, as shown by Theorem 2. 
Again, a similar result holds for the other boundary condition. 

The method uses coincidence degree arguments (see [Maw2] or [Mawj]) and the 
required a priori bounds rely on sharp estimates for the Green function associated 
to the singular differential linear operator. Those estimates rely very much upon 
the fact that 1/p is integrable over I and hence the interesting question of extending 
the results in the examples to the case where a > 1 remains open. In another paper, 
we shall show that extension is possible for a restricted class of nonlinearities. 

2.Some results on the linear problem. 
Let I = [0,1], p € C(I)(1 ClQ0,1]) such that p(Q) = 0 and p(t) > 0 on ]0,1]. We 

denote by L*(I) the space of measurable functions u on I such that |«|p G L1(I), 
with the norm 

Mi»-/к«)W0* 

We shall impose to p the condition used in [DuK] 

(P) i/peiHi), 

which will be assumed throughout the paper. 
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We define the operators Li: D(Lt) C C(I) -> L\(I), (i = 1,2) by 
D(Li) = {u € C(I) : u(0) =s u(l) = 0, u and pu' are absolutely continuous on I 
and(p«')'€lj(/)} 
D(L2) = {« € C(J): u and pti' are absolutely continuous on I ,(pu')' 6 Llp(I) and 
Hm^o+lK*y(t) = ti(l)=:0} 
and L^ = -(l/p)(pti')', (t = 1,2). 

It is easy to check that ker Li = {0} and that, for each h € Ll
p(I), the problem 

LІU = Һ 

has a unique solution u given by 

U(t)** J Gi(t,8)h(3)p{s)d8, 

where Gi is the Green function defined by 

Gi(ť,s)=« 
P-«/(l/p(r))dr/(l/p(г))áг if 0 < â < ť < l 

t 0 

-'- łí(Vl<r))tłr/(l/ f<г))dг if 0 < з < ť < l 
3 0 

and 

G 2 (M) = < 

ŕ ì 
I(MЌr))àr> if 0 < . s < * < l 
t 
1 

J(l/p(r))dГ, Іf 0 < ť < 5 < l 

with 
' = JШr))đr 

(see e. g. [DuK]). Notice that each Gi is continuous on Ixl and, with f. |o denoting 
the uniform norm in C(I), 

exists and, as 

LŢ1 : iJ(J) - £>(!,) C C(I) 

|ir1«|o<i»jy|G.Pli, 

LJ"1 : Llp(I) —> C(I) is continuous. Now, by the compactness of Gi, we can find, 
for each e > 0, some £ > 0 such that 

p-i/o(íi)-(£r,>'X'.)i<*Wi,i. 
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whenever \t\ — *a| < £, which shows, by Ascoli-Arzela theorem, that L~l is compact 
(t -=1,2). Using the results of [CoL] on Sturm-Liouville problems (see Ch.8 and 
the remarks ending Section 1 of Ch. 9), we know that £,- has an infinite number of 
real eigenvalues A*- (j = 1 ,2 , . . . ) forming an increasing sequence with A J —• -f oo 
as jf —> oo. Moreover, the eigenxunction t£ associated to A*, has exactly (n — 1) zeros 
on ]0,1[. Now, to simplify the notation, let us denote by A,- the smallest eigenvalue 
and by Vi a corresponding eigenfunction positive on ]0,1[ (i = 1,2). Notice that 
v2(t) > 0 for all t € [0,1[. From the equality 

Vi(LiVi)p = XiViP 

we get, by integration by parts and use of the boundary conditions, for each 
0 < c < l , 

l 

A,/«,?(.)-{.)<« = 
e 

1 

-<cK(c)t..(c)+J p(.)(t>;)2(.) * , (. = i , 2) 
c 

But, for each ti € D(1-»)> we have 

p(o«.,l(o<(i/p(0)(p(<y(«))2-

and hence pu12 € Ll(I). Hence, letting c —> 0, we get 

* - (Jmmfdtvijm»ut)dt) > o Xi 

1 

and therefore Xi > 0 as Li is invertible. 

Lemma 1. / / condition (?) holds, the function T, defined by 

(6) r« : !0 , l [x ]0 f l [ ->R, (t,s)-+Gi(t,s)/vi(s) 

belongs to L<*>(]Q,l[x]Q,l[). 

PROOF : We have, for (*, J) € [0,1] x ]0,1[ 

wi(«) "~ vi(s) 

and hence 

G <t Л ІШr)) + 

M») ~ «.(*) 
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By L'HospitaTs rule, 

/ ( i M p ) ) * ,_ 
Hm -—- = lim • 
#->o v\(s) *—op(s)v\(s)' 

Now, from the identity 

vi(s) = Ai / Gi(s,r)vi(r)p(r)dr, 

we deduce, for s € ]0,1[, 

p(s)v[(s) = Ax / p(5)D,C?i(5,x)t;i(x)p(x)da; = 
I 

$ X 

= Ai { [ / P-y-X-l/pM) /(-Mr)) *]«,(»)-<.-) tfe-f 
0 0 

1 1 

+ J[p-lp(s)(l/p(a)) J(l/M)dr\d{x)p(*)dx} -
* * 

« Z 

= ^ - ' j - / ( / iM-)*)^(*W*)á-+ 
o o 

1 1 

+ J(J(l/p(r))dr)v1(x)p(x)dx} 

so that 

i i 

KnjjK-KO) - A,P-> | ( | ( l M r » *)-!(.-)-(*)«-- > 0 
0 r 

is finite. Thus 

/(1/P(r))dr 
Urn 5 7 T — 
• - •0 t>l(s) 

exists and G?i (*» *)/v(«) is bounded for « close to 0. Similarly 

vi(s) vi(s) 
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and one shows that 

)(\lv(r))dr 
iim _ , — - _ . — s- iim — 
•-1 vi(s) *-- p(s)vx(s) 

exists, so that Gi(t, s)/v%(s) is bounded for s close to 1. As 6ri(t, s)/v\(s) is clearly 
bounded for s € [£, 1 — S] for any 6 > 0, and Gi, continuous on ]0,1[ x ]0,1[ is 
measurable on this set, the result is proved for G%. For t = 2, we first notice that 
for each 0 < 6 < 1 there exists M such that 

0<G 2 ( t , s ) /v 2 (a)<M 

on [0,1] x [0,1 - 6], By definition of G2, we have 

G2(t,s)<G2(s,s) 

for all (t, s) € J x J, and hence 

0<r2(t,.s)<(72(5,5)/t;2(j) 

for all (t, s) 6 J x [0,1[. Now, from the equation 

- ( P W " S W ) ' = A .pM« .« 

and the boundary condition, we deduce 

a 
p(s)v'2(s) = -A2 Jp(r)v2(r)dr 

o 

l 

JimLp(s)v'2(s) = ~A2 Jp(r)v2(r)dr < 0. 

o 

Then, using L'Hospital's rule, we obtain 

hmG2(s,s)/v2(s)^ HmJ-l/p(^)v2(«)) 

where the right-hand member exists, and hence G2(s, s)/v2(s) is bounded above on 
J. This completes the proof as T2, continuous on ]0, l[ x ]0,1[, is measurable on 
this set. • 

and hence 
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Corollary 1. If condition (?) hold* then for each h -+ £j(J), one ha* 

|ir^lo<iri|oo||/i«i||i;F, (t = i,2), 
where | . |oo denote* the norm in Loo(]0,1[ x ]0,1[) and Ti i* defined in (6). 

PROOF : For each t € J, one has, using Lemma 1, 

Pf^XOI' jG&^hWMd, < ] ^il|/,(,)|.,,.(,)-<,)«i, < ir.ipviii,;,. 
0 0 

• 
Let us now define the linear operator Ai by D(Ai) = D(L) and A,- » L — \J, 

so that Ai : J>(Ai) C C(J) -> Xj(J) and, by the discussion above JberAi = 
span Vi, (i =-1,2). Hence the space C(I) can be splitted as the (topological) 
direct sum C(I) = span vt- © Gi(I) and each u € C(I) can be written accordingly 
U zzUi + Ui (t = 1,2). 

Lemma 2. If condition (P) hold*, there exists Ai > 0 such that for each u = 
Ut + tii € D(Ai), with Hi € JfeerA,- and Uj € Ci one ha* 

|t*i| < AilKAiUî Hi.., m Ai\\(AiU)Vi\\lip , (t m 1,2). 

PROOF : If it is not the case, we can find a sequence (un) in Ci(I) with |un|0 = 1 
such that 

1 > n||(AiUn)vi||i., 

and hence, by Corollary 1, 

n-Mr,!- > \L~l(AiUn)\o « |u» - A,L- lu,|, 
for all n € N*. Now, L"*1 being compact, there is a subsequence (unk) such that 
L~lu%k —> y € Ci(J) in C(J) and hence u.^ —> Aiy in C(I), which implies 

y~\iL~ly 

i.e. y -» Ker A,-, and hence y = 0, a contradiction with |uRft| = 1 for all fc € N* 
and Ai > 0. • 

Remark 1. Ai is obviously a densely defined operator and if AiXn —» y in L*(I) 
and x* -• x in C(J), then xn — \iL~lxn -+ L""ly in C(J) so that x m \tL~%x + 
J^V € D(L) and Â x as y; thus A, is closed (• = 1,2). Finally, 

I - 1 A, * J - A.JT1 on .D(At) 
A.I"1 m J - Ail"1 on Ij(J) 

which implies by a known result [Sch] that Ai is a Predholm operator (t = 1,2). 
Moreover, as L is FVedholm of index zero as well as J — A;!^1, we have, for the 
FVedholm indices Ind, 

0 m Ind(I - Ail-1) m Ind(L~l) + Ind(Ai) m lnd(Ai), 

and Ai is FVedholm of index zero. 
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Remark 2. If h 6 Im A,*, then we have 

~(pu')' - Xipu a ph 

for some u € D(£), and hence 

/ w * y ('))'»<(') * - *< / *(*)K'K(') * = / H*)p(t>i(t) dt (i = 1,2). 
/ / / 

Integrating by parts and using the boundary conditions, we get 

~ / 1(P(*K(*))' + ^i(t)p(t)}«(*) * = / h(t)p(t)vi(t) dt, 

jh(t)p(t)vi(t)dt = 0, (t = l,2). 

3. The solvability of the nonlinear problem. 
Let / : J x R --> R be a Caratheodory function, i.e. /(*,.) is continuous on R for 

a.e. t € J, /(•, x) is measurable on J for each x € J and for each r > 0, there exist 
ar 6 -Sj(J) such that 

i/(t,u)|<«r(<) 

for a.e. t € J and each u with |u| < r. The Nemitsky operator F defined by 

(Fu)(*) = /(i,u(t)) 

maps C(I) into £j(J). 

Lemma 4. F is At-completely continuous on C(I) (i = 1,2). 

PROOF : By definition (see e.g. [Maw2]) we have to prove that if B : C(I) -* 
Lp(I) is continuous, of finite-rank and such that A,* + B : D(Ai) —• -Lj(J) is 
bijective, then (A,- + B)~lF : C(I) —> C(J) is completely continuous. For such a B 
we have 

(A,- + B)^F = ( I - A* J + .B)-1^ = [J + I ^ ^ B - A,J)] ""* L~XF 

Now JL-I(.B — A,J) is compact on C(I) and hence [J + X_1(B — A* J)] ~ is contin
uous on C(I) and, L~* being compact, it is standard to check that L"XF : C(I) -+ 
C(I) is completely continuous, and the proof is complete. • 

Theorem 1* Assume that p satisfies condition (P) and that f satisfies the following 
conditions (ft) - (/2) or (ft) - (/J). 

(ft) There exists 7 € L\(I), such that 

l/(*,«)|<*/(<, u) + 7(<) 
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for a.e. t € I, allu £R and e = +1 or — 1. 
(/2) There exist 6+ € Ll

p(I), 6- € Ll
p(I) such that 

f(t,u)<6+(t) foru>0 
f(t,u)>6~(t) foru<0 

and 

(7) J f'(t)vi(t)p(t)dt < 0 < Ju(t)vi(t)p(t)dt 
I I 

where 
f(t) = lim sup f(t, u), U(t) = Hminf f(t, u) 

«_->-oo ti-H-oo 

(fi) There exist 6+ 6 Ll
p(I), 6- € £*(!) such that 

f(t,u)<6+(t)foru>Q 
f(t,u)>6„(t)foru<0 

and 

(8) J f+(t)vi(t)p(t) dt < 0 < J U(t)vi(t)p(t) dt 
I I 

where 
U(i) = liminf f(t,u), f+(t) = Umsup/(t,u). 

ti_*_oo i»-++oo 

Then equation 

(9) -(l/p(.))(p(*)«'(<))' - *<«(<) = /(.*, -(')), * 6 ]0,1[, 

has at least one solution satisfying (2,-) (t = 1,2). 

PROOF : We fix t = 1 or 2 and, to apply Theorem IV.13 of [Maw3] to the abstract 
equivalent version 

AiU = Fu 

of (9), we first find an a priori bound for the possible solutions of 

(10) AiU^XFu, A€]0,1[. 

If u is a solution of (10) for some A € ]0,1[, then 

0 = Jp(t)(Aiu)(t)vi(t)dt = \Jf(t,u(t))vi(t)p(t)dt 
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and hence 

(11) Jf(tMt))vi(t)}p(t)<H~0 
I 

Moreover, using (ft) and (11), 

J\(Aiu)(t)\vi(t)p(t)dt . A J \f(tMt))\*i(t)p(t)* < 

< ^Jf(tMt))Mt)m^t^><Jy(t)vi(t)p(t)dt < WyviWx^ - ©». 

Hence, by Lemma 3, 
|w|o < A,Ci » C2. 

Therefore, if the set of solutions of (10) is not a priori bounded, we can find sequences 
(un) in D(Ai) and (An) in ]0,1[ such that u„ is a solution of (10A„), |U*|O < C2, 
un(t) = cnVi(t) with c» —» +oo or cn —> —oo as n —> oo. Supposing, say that 
cn —> -f oo and condition (/2) holds (the three other cases are treated similarly), we 
have 

(12) 0~jf(t,un(t))vi(t)p(t)dt 
I 

and tin(t) > cnVi(t) — |tT |̂0 > CnVi(t) - C2, so that un(t) —> +00 for a.e. t € /. 
Consequently, using (12) and Fatou's lemma, we get 

0 - liminf ( f(t,un(t))vi(t)p(t)dt > 
n—>oo / 

/ 
> /(liminf/(t,u.(i))]»j(t)p(<) A > / /+ ( .H(t)p(«)A, 

I It—•OO J 

I I 

a contradiction with (7). It then remains to find an a priori bound for the set of 
solutions of the real equation 

/ ( c ) s / / ( ł , a ч ( O Ы O Л " 0 

which again follows by contradiction from (ft) or (/2) using Fatou's lemma, and 
condition (7) or (8) then easily implies that 

!<M/,]-r,r[,0)|«l 

for r sufficiently large, as /(~r)/(r) < 0. Thus all conditions of Theorem IV.1S in 
[Mawj] are satisfied and the proof is complete. sj 
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Remark 3. The class of nonlinearities verifying (/), which contains of course the 
bounded nonlinearities but also various classes of unbounded ones, was introduced 
by Ward in [War] for periodic problems. 

Remark 4. If we take p(t) = ta where 0 < a < 1 in order that condition (P2) 
holds, then the eigenvalue problem associated to L is 

(13) -t~a(tau'(t))' - Xu(t) = 0, t € JO, 1[ 
(14) u(0) = u(l) = 0 or Hm tau'(t) = u(l) = 0 

(i.e.) tu"(t) + au'(t) + Xtu(t) = 0, t 6 ]0,1[ 
u(0) = u(l) = 0 or ljm tau'(t) = u(l) = 0. 

(13) is a special case of the Lommel equation [Nik] and the general solution of the 
equation is 

„(t) = *<»->/- [c,7(,-_)/_(vfit) + C./(..1)/1(VXt)], 

where Ci and C2 are arbitrary constants and J„ denotes the Bessel function of first 
kind of order v. Hence 

tau'(t) = t<1+0>/2 [ftJ- (1+ .)^(VXt) - C2Jiura)/2(Vx<)]. 

(Z/2Y 
As J„(z) ~ ^— -7z for z —> 0, the boundary condition u(0) = 0 in (14) implies 

that (72 = 0 and the second u(l) = 0 will be satisfied for a nontrivial u if and only 
if 

J(l-«)/2(v/X) = 0 

i.e. if only if X is the square of a zero of the Bessel function J(i-o)/2- In particular, 
A_ is in this case the square of the smallest positive zero of J(o-i)/2- Similarly, the 
condition limt~+o+tau'(t) = 0 implies that C_ = 0 and the condition u(l) = 0 is 
then satisfied for a nontrivial u if and only if 

^(a-i)/2(\/X) = 0 

i.e. if and only if X is the square of a zero of J(Q-i)/2- In particular, A2 is the square of 
the smallest positive zero J(tt-i)/2. Notice that for a = 0, Ji/2(t) = y/2/irt"1^ sin* 
-U-d we recover the classical results. The results mentioned in the introduction are 
e^y consequences of this Remark 2, Theorem 1 and the following Theorem 2. 

When /(t, .) is monotone for a.e. t € I and satisfies condition (/i), one can give 
a necessary and sufficient condition for the solvability of (9). 
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Theorem 2, Assume that p satisfies condition (P) and F satisfies condition (f\). 
Assume moreover that f(t,.) is monotone for a.e. t 6 I. Then equation (9) has a 
solution verifying (2,-) if and only if there exists c G R such that 

(15) J /(t, cvi(t))vi(t)p(t) dt = 0, (t = 1,2). 
/ 

PROOF : Necessity. If (9) has a solution u verifying (2,-)(t = 1 or 2), then 

/ / ( Í , U ( O M O P ( O A = O-

Now we have also 

u(t) = J Gi(t, s) \Xiu(s) + /(*, u(s))) p(s) ds 
J 

and hence, using Lemma 1 and the symmetry of G,, we have, on ]0,1[ 

I ^ I < / 1 - ^ (><«(-)+/(-, «(•))] W-) «*• < 

<|r*u-||Aii« + /(.,ti(.)||„i<a 

Consequently, if we assume, say, that /(*,.) is nondecreasing, we have 

Jf(t,-Cvi(t))vi(t)p(t)dt < 0 < J f(t,Cvi(t))vi(t)p(t)dt 
I I 

and the result follows from the intermediate value theorem. 
Sufficiency. Let c be a solution of (15) and let us consider the case where /(*,.) 

is non decreasing, the other one being similar. If 

(16) Jf(tM(t))vi(t)p(t)dt~0 
I 

for all 6 > c, then necessarily 

/(t,M0) = /(*,M0) 

for all b > c and a.e. t € L Let Wi be a solution of the problem 

-(-/rfoxrfo-Aoy=*.«(*)+/(wo), * e jo,-I, 
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satisfying (2,) (which exists because of (15)). By an argument similar to that used 
in the necessity proof, we shall have 

for some C > 0 and all t € ]0,1[, and if we choose c% > c so large that 

r +WM>r 
«•(*) 

for t € ]0,1[, which will be the case if C\ > c+C, then the function u = civ,(t)-Hi>i(t) 
will be such that 

- (I/PWXK<)«'(*)) - A.«(0 = -(i/p(.))(p(t)«,;(t)) - AIW,(*) = 
=/( . ,«, ,(*)) = /( t , «(*)), *6]0 ,1[ ' 

and will satisfy (2,), i.e. u will be a solution of (9). We construct similarly a solution 
if (16) holds for all b < c. Thus it remains to consider the case where there exist 
h <c<b2 such that 

J f(tA*>i(t))vi(t)p(t)dt < 0 < J f(tMvi(t))vi(t)p(t)dt 
I I 

But, in this situation, one has of course 

/(*,") >/(<,0) foru>0 
/ ( t , u ) < / ( t , 0 ) foru<0. 

and 

where 

I ГЏ)viЏ)p{t)đt < 0 < J U{t)vi(t)p(t)dt 

/"(.) = lim f(t, «),/+(*) = lim /(*,«) 

so that the conclusion follows from Theorem 1. • 
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