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Differentiability of Musielak-Orlicz sequence spaces 

RYSZARD PiUCIENNIK AND YlNING YE 

Abstract. In this paper a sufficient and necessary condition of differentiability of Musielak-
Orlicz sequence spaces and the expression of gradient are obtained. These results are non-
trivial and important generalization of previous results from paper [9] written in Chinese 
by Yining Ye. 

Keywords: Musielak-Orlicz sequence space, Gateaux differentiability, Gateaux differen-
tiable norm, 6° -condition 
Classification: 46E30 

1 .Preliminaries. 
Let X be a Banach space equipped with the norm || • || and S(X) be the unite 

sphere of the space X i.e. S(X) = {a: € K : ||.r|| = 1}-

1.1. Definition. The Banach space X is said to have a Gateaux differentiable (or 
shortly, differentiable) norm at XQ € S(X) whenever for given y € S(X) 

A( ^ y ll*o+ Ay| | -INI grad (x0, y) = hm -- -£ u—-• 

exists. If the norm of X is differentiable at each point of S(X) then we say that X 
is Gateaux differentiable (shortly differentiable) space. 

The notion of differentiability of the space „Y is equivalent to the smoothness of 
X. It follows immediately from Th.2.1.1 in [1]. We can consider differentiability 
of Musielak-Orlicz sequence spaces. To this end, denote by N the set of positive 
integers and by R the set if real numbers. The brackets (•), {•} we will use for de
notation of sequence and set, respectively. Let ip = (<pn) be a sequence of Young's 
functions, i.e. for every n 6 N ipn • R —• [0, oo] is a convex, even, not identically 
equal to zero function vanishing at zero and the function t —• <pn(tu) is left contin
uous for fixed u > 0. We define a modular on the family of all sequences x = (xn) 
of real numbers by the following formula 

oo 

n=l 

1.2. Definition. The linear set 

f„ =* {x = (*n) • 3a>o1v>(aa0 < oo} 

equipped with so called Luxemburg norm 

| |x | |v>=inf{Jk>0:Iv , ( fc-1a:)<l} 
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is said to be Musielak-Orlicz sequence space. 
^-condition. We say that <p = ((pn) satisfies the b\-zon&\\AOto. -f there are con

stants a,k, an integer m and a sequence (cn) of non-negative real numbers such 
that 

oo 

^ P cn < oo and <pn(2u) < k<pn(u) + cn 

n-l 
for all n > m and u £ R with tpn(u) < a. 

Define 
r o if <pi(u) = o 

Pi(u) = < oo if <Pi(u) = oo 

y left derivative of <Pi(u), otherwise. 

It is easy to notice that for every i € N Pi(u) is nondecreasing and 

l«l 

<Pi(u) = pi(t)dt. 

o 

Put 
a, =sup{u > 0 : <pi(u) < 1} (t = 1,2, . . . ) . 

1.3.Lemma. If the function <p = (<pn) does not satisfy the 62-condition, then an 
element x £ S(l,p) can be found such that for every e G (0, | ) we have 

Iv» K- + e)x\ = °° and IvK* ~~ e)x) -̂  9-

PROOF : We will construct .r € S(l<p) with desirable properties. Analyzing the 
proof of Th . 1.1 from [2], we conclude that if <p does not satisfy ^J - 0 0 1-0^-0 1 1 ^ n e n 

there is a sequence y = (y,) € «->(/̂ ) such that < ,̂(2y») < oo (i = 1,2, . . . ) , I<p(y) < 1 
and I<p(2y) = oo. Put 

ko = sup{fc : Iv(ky) < 00}. 

Obviously, 1 < ko < 2. Denote z = k0y. If for every k < 1 we have I^kz) < | 
then we can put x = z and such element x has properties from the thesis of the 
lemma. Otherwise, there is a number ki < 1 such that 

м*i-(,») = f; Vi(kxxi) < \, 
i=Ni 

where *<*> = (0,0 , . . . , 0, zN"+u . . . ) . 

Now, if for every k < 1, we have I^kz^) < | then putting x = z^ we obtain 
a? with desirable properties. Otherwise, there exists a number k2 > ^^- such that 
Iv(k2zM) > | . Since Iv(k2z^) < oo, then N2 > Nj can be found such that 

00 

JV(* .* < 2 , )= v;^(fc 2 Z i )<2- 3 , 
i=W, 
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where *<2) = ( 0 , 0 , . . . , 0 , z N j , z N 7 + t , . . . ) . 
Repeating the above argumentation, we arrive at the conclusion that either there 

exists a number i such that I^(kz^) < | for every k < 1 and then putting x = z^ 
we obtain the thesis of the lemma, or otherwise there are two sequences (Nt) and 
(kt) such that Ni | oo and k, f 1 as i —* oo. In the second case we define 

x = (0„0, . . . , 0, kiZNl,..., kj zNi„i, k2zNz,..., kiZNi, k;z;v, + i, • • • )• 

Then 

V*) < I*(*i*(1)) + I*(k2z
{2)) + • • • < f v « = J, 

.=2 Z 

So ||-c||v < 1. On the other hand for any e G (0, | ) there exists i0 such that 
fc.0 > j-£-. Consequently, we have 

/„[(! + ф ] > J„ [kio(l + ф ( ' o ) ] = oo, 

so | | x | | v can not be less then 1. Reassuming, we have that | | s | | v = 1 and for every 
e € (0, | ) 1^1(1 + e)x] = oo and I^[(l - e)x] < | , what finishes the proof. • 

2.Ma in Result. 

2.1. Theorem. The Musielak-Orlicz sequence space l^ is differentiahle if and only 
if the following conditions are satisfied: 

(i) The function <p = (<pn) satisfies the 62-condition. 
(ii) There do not exist two positive integers ni and n2 such that 

VniCanJ + ^n-lflna) < 1 and <pni(ani) >0, <pn2(an2) > 0 

(iii) The left derivative pi(u) of <pt(u) is continuous for 0 < \u\ < at (i = 

1,2,. . .)-

PROOF of necessity: Suppose the Musielak-Orlicz sequence space l^ is differen
tiahle and the function <p = (<pt) does not satisfy 62-condition. Then we can divide a 
sequence (n) of all natural numbers into two subsequences (nk) and (mi) possessing 
the following properties: 

a) {nk : k € N} O {m/: / € N} = 0 
b) {nk : k € N} U {m*: / € N} = N, 

c) (pM = (<Pnk)keN and <pW = (y?m,)/€N do not satisfy ^-condit ion . 

Applying Lemma 1.3 we can find a?(1) € S(l^i)) and x^ € 8(1^(2)) 8 u c n that 

/ * . ) [(1 + *)* (1)] = oo, Jv(1) [(1 + e)z<2>] = oo, 

/w>)[(--e>*( , )j-!' ^ ( . ) [ ( l -^ ( 2 ) ]<^ 
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for any e G (0, §). Denoting ar(1> = (xni,xn7,...) and x(2> = (xmi,xm7,...) we 
define 

x =(xi,x2,...) and y = (yi,2/2,. • .) , 

f 0 if t € {m( : l € N} 
Vi "" 1 xt if » € {nk : lb € N}. 

Then we have 

J . , [ ( l+e) . r ]</*, , [ ( l+e)- ( I ) ] -=oo, 

-•*l(l + «)l/] = /»(i)[(l+c)* ( 1 )]=oo, 

/„[(1 - *)*] = / * . , [(1 + e)x
(I>] + /* 2 ) [(1 - e^ (2 )] < \ + \ = 1, 

^ [ ( l - e ) y ] = I W l ) [ ( l - £ ) z ( 1 ) ] < i 

for every £ e (0, 5). Hence x 6 S(lv) and j/ 6 S(/v). Farther, for each A > 0 we 
have 

- - í т т т ) ^ W ^ - - - ' — ^ Vттт) >- / „ . ( - ^ ) = w f т т *(1)) = 00, 
2 

because (1 + A)/(l + f) > 1. This means that ||x + Ay||v > 1 + | . Therefore 

j / . i- II* + * . L ~ M l •> ,- 1 + f - l 1 grad (,,y) = ^hm f * > Ahm — £ — = - . 

On the other hand, for A < 0 we have 

rx + XУ\^r ,X + XУ\ r (

 x

 ľ(2b 
-Ţ) > W үтт)= J*2)(TTÏ' 

because 1/(1 -f f) > 1. Thus ||.r + Ayj)̂  > 1 -f f and 

grad (*,,) = hm t±Mf±h < l im l±lzl , I. 6 v , y / A-o. A - A-o- A 3 

It proves that the gradient grad (x,y) does not exist what implies that the space 
1^ can not be differentiate. This contradiction completes proof of (i). 

Now we will prove the necessity of the condition (ii). To this end suppose that 
the Musielak-Orlicz space l^ is differentiable and there exist two positive integers 
ri\ and ri2 (n\ < TI2) such that 

<Pnt(ont) + <Pm(an*) < - and <Pm(ani) > 0, v?na(an2) > 0. 
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Define 

_: = ( 0 , . . . , 0 , a n i , 0 , . . . 0 , a n „ 0 , . . . ) 

y = ( 0 , . . . , 0 , a n i , 0 , . . . ) . 

It is easy to verify that ||_.||v = 1 and \\y\\^> = 1. For any A > 0, we have 

Iip V l + A 7 = lpn^anx ^ + ^"-( 3~^Aa"-) - l 

so ||x + \y\\y < 1 + A. But, for any 0 < k < 1 + A, we get 

,„ (_ + __) > ,,„, (--£-«,..) + V„ (Y^TA-*-.) - V- ( H ^ ) > *' 

i.e. ||x + Aylly. > 1 + A. Hence, ||x + Aj/||„ = 1 + A. Therefore, 

l i m U * + ^ | | | | , L = i . m l + A - 1 = 1 

A—0+ A A—0+ A 

On the other hand, for A < 0 we have 1 > 1 - + ~ > 1 - + A and 

'* (т+f)= *•• (г+T")+ *"• (гт?a-3) - ** (r+т > 1 

so II x + Ay||̂ , > 1 + | . Consequently, 

lim J!£±iidk_J___ < hm l+lzl _ I. 
A—o_ A ~~ A-*O_ A 2 

Thus, 

lim l |2' + Ay | lv> ~ M v > 

A—0 A 

does not exist. This contradiction proves the necessity of (ii). 
For the proof of necessity of (iii) let us assume that the space l^ is differentiable 

and that exist a natural number N and a real number u such that 0 < u < a# and 
PN(-) is not continuous at the point u. We can choose a sequence of real numbers 
(un) such that 0 < Ui < a, for i ^ N and 

(1) I^x) = ] T <pi(ui) + <pN(u) = 1, 
iy-N 

where ar = (u i ,M 2 , . . . ,u/v-i,w, wN+i,-•. )• Then, by (i), x € ->(lv>). 
Le ty = ( 0 , . . . , 0 , a N , 0 , . . . ) . Obviously, / v (y) < 1 and ||y||„ = 1. 
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Denote k\ = \\x -f Aj/H .̂ It is easy to notice, that k\ > 1 for A > 0. First, we will 
prove without ^-condition that 

(2) M-4-VI. 

To this end suppose 1^— ) < 1 and denote e = 1 — Iv?(—: ). Si 
k\ k\ 

mce 

so there is a natural number NQ > N such that for every k\ > k > 1 we have 

Piif)< € 

-No- f l 

Further 
No , t 

V^ ru* . , At + \aN 

> 9.(7-) + ¥>N( 7 ) < - - *• 
^ . . . «A * A 

Since kA > 1 and u/ax < 1, then A > 0 can be found such that A < kA **- «/aN. 
For A defined in this manner, we have (w -f \aN)/k\ < aN- By the continuity of (pi 
(i = 1,2,. . .) on the interval (0, a,), there is & — A > k$ > 1 such that 

V2* / " M . , t i - f Aa/y 2 
4, ' • r / v v t. ' 3 

Hence 

E . «,• , u -f Aa/v v , 2 r-* , «t \ , 1 -

V'(r )+^(—r^)<- - -+ E w(i-) < - - «* <-. 
which contradicts the definition of £•*. This finishes the proof of equality (2). From 
(2) we obtain 

(3) Y ^ g H ^ ^ . 

Hence 

*«N> = 1 _ 

t?-N * A i # N 

Thus, by the monotonity of <PN, we have 

ы ř + i f >=* * £ ^Ф ** ~ -^Vi(tti)=Mu)' 

u Aв^v 

kл kл 
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Therefore, applying (1) and (3), we get 

ipii 
t # N i-£JV 

This gives 

u XaN . 
У2 <PІЫ) - У2 ^ . ( г 1 ) = Ч>N(T- + -JГ) - Ч>N(U 
Һiт fľi fcл *л kл 

U / * A + ( Л / * A ) # , V 

]Г f Pi(t)dt= f PN(t)dt 

Dénote 

Hm pi(t) = Ptr(v), lim Pi(t) = J * » (i = 1 ,2 , . . . ) . 
* - ~ * U _ t —+ V-f 

Since p*(.) is non-decreasing function, we have 

and 
(tt+ЛoN)/fcA 

U | 

í PN(t)dt>P+(u) -(и + Аа#) 

Consequently, 

ІJÍN * A ' 
-(u + Лaw) . . ] . 

The above inequality is equivalent to the following one 

(-»-!) ^ P f ( t t j ) u i + Pjî;(u)tt 
&N 

> AajvPjí(ti), 

W 
kл-1 " N P N " ( Ц ) 

A " E ^ / v - . T Í - i ) + «-"!»(«) 

for A > 0. 
Now, we will consider the case of A < 0. Then we have k\ = ||x + Xy\\^ < 1. 

Repeating this same argumentation as above we obtain the equality 

VJ f Р i (t)d í= / PN(t)dt. 
І*NJ. J 

(u+\aN)/kx 
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Since k\ < 1 and Pi(-) is non-decreasing, so 

and 

£ fPi(t)dt>Y,p?(» 
&NJ. i=N 

u 

í pN(t)dt<Pň(u 

T ~Ui 

Thus 

Hence 

^ ( и + Л а ^ ) 

E-?(-.) 
І*N 

u- ~-(u + \aN) 

< pNw u - — (u + XaN) 
fcл 

(5) 
* A - 1 аNРN(и) 

A _ E , ^ N " i - P + K ) + «PN(") 

Since pN(.) is not continuous at u, then P^(u) < PN(u). It implies that 

aNPN(u) aNP^(u)  

E * N -.-?(-.) + «J'w(-) £,#* «...°f (-0 + -*$(«) ' 

so, by (4) and (5), 

Um J!£±AEkdWk . Um *lfi 
A-+0 A A—0 A 

does not exist. This contradiction completes the proof of necessity of (iii). 
PROOF of sufficiency: Let x £ 5(/v?). By the assumption (ii), at most one i-th 
coordinate can be equal to a, or — a*. Consider two cases: 

I. We will show differentiability of the norm at x with exactly one (say N-th) 
coordinate equal to aN or — aN, i.e. 

x = (ui ,U2,. . .) , where |ujv|=a/v and \ui\ < a{ for i =£ N. 

II. We will prove differentiability of the norm at other points x from S(lv), i.e. 

x = (ui,U2, . . . ) and |UJ| < a* for every i € N. 

I. Let y -= (yi,y2» • • •) € S(^). First we will consider the case XUNVN < 0. For 

0 < K < 1 + A УN 

uN 
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we have 
i"N + XyN 

| — 1 > aN. 

Therefore 

(x + Ayx _ Y ^ „ f

ui + ^Vi\ , . / M N + AiJAr ^ ^ _ / " N + Ay;\ 

t * N 

я + Ау -г~* и, + Ау; Л ^ + Аулк. / ^ + Аул' , 
1*(—%—)= 2^«-(—^—) + ? * ( — ^ — ) > < М — ^ — >1 

i.e. ||x + AyHy, > 1 + Ayjv/u/v. 
Now we will give an upper estimation of the norm of element a: + Ay. To this 

end, let 1 > M > 1 + XyN/uN.By (i), there exist constants a, k an integer m and 
a sequence (c n ) non-negative real numbers such that 

oo 

V?n(2u) < k(pn(u) + cn and / _ c, < oo 
t = i 

for all n > m and u G R, provided <^>n(u) < a. Fix an £ > 0. let Ari, N2 and N3 be 
natural numbers greater then N such that 

oo 

(6) Ec '< m t 'n<i'FTT } ' 
t'= N\ "" 

(7) ] Г ipi(щ) < mm{-(a - ] Г c Д ~~} 
ť=N2 І = N ! 

and 

OO , OQ 

(8) £ WM < min{ jt(a ~ -E c>)' ip)-
t = N 3 

Using ^J"001-0^-01-* w e n a v e 

,=N3 i=N t
 >4к2 

] T Vi&Ui) < a and ] T ^tOty*) < a -
« = N 2 t = N 3 

Moreover, we will show that there is a natural number N4 > N such that 

<•> 1=4^1 <«• 
for t > N4 and every |A| < \ with XUNVN < 0. 

Since M > 1 + XyN/uN > 1 - |A| and |ut- -J- Ay,| < |u,| + A|a»|, then inequality (9) 
is true provided there is N4 > N such that 

N < a , . ( l - 2 | A | ) 
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for t > N4 and |A| < | with Au/vl/N < 0. Further, note that <pi(o>i) can be equal 
to zero only for finite number of at. Indeed, if t > m and <pt(<*>i) -= 0 < a then, by 
^-condition, we get 

<Pi(2ai) < kipi(ai)+Ci = Ci. 

But (ci) is convergent to zero, so without loss of generality we can assume that 
Ci < HOT i > m. Thus <^(2aj) < 1, what contradicts the definition of a .̂ Therefore, 
we can assume that <pi(ai) > 0 for t > m. Moreover, by the assumption (ii), we have 
<Pi(ai) }t\(i > m ) e x c e P ^ a^ m o s ^ o n e integer, say i = no. Further, by ^-condition 
I^(2x) < co. Hence there is an integer N4 > no such that 

0 0 ^ 

]Г Ч>І(2UІ) < Ђ - ъM 
i~N4 

for j -s N4, N4 + 1, • •., so 

<Pi(2ui) < <pi(ai) (i = N4, N4 + 1, . . .) . 

Consequently, by the definition of Young's function, we obtain 

2\ui\<a{ (i = N4,N4 + l , . . . ) . 

This implies that 

H<(l-2|A|)a i 

for t > N4 and |A| < \ with XuNyN < 0. Thus (9) holds for every |A| < \ 
with XuNyN < 0 and t > N4. Taking No = max{N 1 ,N 2 ,N3,N 4 } and using (9), 
^-condition, (6), (7) and (8), we have 

i=N* i = N o 

1 °° 1 °° L _°°, °° 

< 2 E *>-(4u>)+5 £ *i{Ayi) - 2 £ l^ ,(2tti)+^2yi)] + ECi -
i = N 0 1-B.JVO - i = - N 0 t=No 

^*? £, , ^ k ^ k2 ^ jfe ~ ~ 
S T L w W + 2 L C i + l L ^ W + 2 L C i + E c ' = 

i=sNo i=No iaNo i=N« i=No 
12 OP 00 n 

= jH fc^+^(v«)i+(*+1) Y* ̂  < -e. 
i = N 0 ir-No 

f toher , for any t = 1,2,. . . , N0 - 1 *nd t £ N, by |t^| < a „ a real nttmber A* 
can be found such that A«t-N3tN < 0 and 

M±JMi^„ 
1 + A , « N 



Differentiability of Musielak-Orlicz sequence spaces 709 

Denote A = {1 ,2 , . . . ,N0 - 1}/{N} and A0 = min{Aj}. Obviously, 
*€A 

XQuNyN<0 and P-(1M±M) < oo for i € A. 

We put 

p - = m a x{p- ( JM+l_ |M ) } 

*AX ' K 1 + AoJJ " 

and 
X'o = ̂ {tf+^'^Jf1 + l y i l r I} (_Sign UNVN)-

For 0 < |A| < mtn{|A0|, |A0|, | } with sign A = -sign u^yN, we have 

(l«,|+|A»,t)/M 

* .(^JM)-M«0 = £ / «{*)*< 

< P-£(M±!M - H) < p-£ ( 1~M ) H + |Ai/il < 
i£A i£A 

<P-£{,M^| + , y . | ) |A l<£^<i, 
i€>l ^ i€A 

Moreover, 
u ^ + Ayjy^ 

V?N( J~ ) < <PN(aNh 

by previous assumptions concerning M. Reassuming, we have 

x + Aj/v -̂ -A ui + Ay; ,uN + XyN ^ ,Uj + Ay^ 

»€A i=No 

< 5 3 ¥>»(**') + I e + VNiaN) + -e = 1 + e 4 

Since £ is arbitrary, we have 

||* + A У | | , , < 1 + A 2 £ 
Uң 

Therefore 

II* + AyL = 1 + ) 
/̂v 

* + AyЦ„ = 1 + A - ^ 
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For XUNVN -̂  9 one can be proved analogously the same equality. Thus, if 
x = ( u i , u 2 , . . . ) € S(lv), \ui\ < <Xi for i ^ N and |ujv| = aN, then 

grad (x.y) = lim «* + A-H» ~ M l = M 
A—>0 A Ujv 

for every y G S(/ 9) . This completes proof of the case I. 
II. Let x = ( u i , u 2 , . . . ) € S(l,p) with |UJ| < a; for every t € N. Since <̂> satisfies 

#2-condition, so, by Theorem 1.1 from [2] I^x) = 1. Fix y € S ( ^ ) . Denote 
k\ = || x + Ayll ,̂. We will show that there is 0 < A0 < | such that 

(10) \±±&\ < «. 
k\ 

for |A| < A0 and every i G IM. 
Since k\ > Ijxll̂ , - ||Ay||v = 1 - |A| and |ut- + Ay |̂ < |UJ| -f |A|a.i, using this same 

argumentation as in proof of inequality (9), we conclude that there is a natural 
number N such that (10) is satisfied for i > N and A0 = \. Further for every 
1 < i < N there is A» > 0 such that 

l " - j ^ -K« . for|A|<A,. 

Thus, putting 

A0 = min{|Ai|, |A 2 | , . . . , \\N\, - } , 

the inequality (10) is proved. 
Moreover, 

11^11, = ! 
k\ 

then, by ^J " condition, 

*A 

(see [2], Th. 1.1). Hence, we have 

£ 
.=1 

i.e. 

,Щ + Ayiч t ' 
<Pi(—Г. )-¥>.0-i) 

ц t f * У ť 

= o, 

J2 [ pMdt = o. 
i=sl «. 

In view of (iii) there exists a real number Vi between Ui and **"£*** such that 

E ґ \,ui + ^Уi \ n 

PiЫ(—Ц UІ) = 0. 
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Hence 
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0 0 1 _ Л* ° ° Л 

J2PІ(VІ)—~IІІ + ^2PІ(VІ) -УІ = 0. 

i=l i=i л 

k \ - l _ ESiPf(ty,-)y»-
A HZlPi(Vi)Ui 

for every |A| < Ao. Therefore 

grad (x,y) = lim ' l + ^ - » * = lim * * f i = g ' * ^ . 
*-° A A-O A }^issl Pi(ui)ui 

what completes the proof of Theorem 2.L • 

Analysing the proof of sufficiency of Theorem 2.1 it is easy to conclude the fol

lowing: 

2.2.Corollary. If conditions (i),(ii) and (Hi) are satisfied then for every x = 

(«i, U2,. . .) and y = (yi,y2, • • •) from unite sphere S(l^) we have 

grad(x,y)=^Pff. 
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