Commentationes Mathematicae Universitatis Carolinas

Ryszard Płuciennik; Yi Ning Ye
Differentiability of Musielak-Orlicz sequence spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 4, 699--711

Persistent URL: http://dml.cz/dmlcz/106790

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Differentiability of Musielak-Orlicz sequence spaces

Ryszard Pluciennik and Yining Ye

Abstract

In this paper a sufficient and necessary condition of differentiability of MusielakOrlicz sequence spaces and the expression of gradient are obtained. These results are nontrivial and important generalization of previous results from paper [9] written in Chinese by Yining Ye. Keywords: Musielak-Orlicz sequence space, Gateaux differentiability, Gateaux differentiable norm, δ_{2}^{0}-condition Classification: 46E30

1.Preliminaries.

Let X be a Banach space equipped with the norm $\|\cdot\|$ and $S(X)$ be the unite sphere of the space X i.e. $S(X)=\{x \in X:\|x\|=1\}$.
1.1. Definition. The Banach space X is said to have a Gateaux differentiable (or shortly, differentiable) norm at $x_{0} \in S(X)$ whenever for given $y \in S(X)$

$$
\operatorname{grad}\left(x_{0}, y\right)=\lim _{\lambda \rightarrow 0} \frac{\left\|x_{0}+\lambda y\right\|-\left\|x_{0}\right\|}{\lambda}
$$

exists. If the norm of X is differentiable at each point of $S(X)$ then we say that X is Gateaux differentiable (shortly differentiable) space.

The notion of differentiability of the space X is equivalent to the smoothness of X. It follows immediately from Th.2.1.1 in [1]. We can consider differentiability of Musielak-Orlicz sequence spaces. To this end, denote by \mathbf{N} the set of positive integers and by \mathbf{R} the set if real numbers. The brackets $(\cdot),\{\cdot\}$ we will use for denotation of sequence and set, respectively. Let $\varphi=\left(\varphi_{n}\right)$ be a sequence of Young's functions, i.e. for every $n \in \mathbb{N} \quad \varphi_{n}: \mathbf{R} \rightarrow[0, \infty]$ is a convex, even, not identically equal to zero function vanishing at zero and the function $t \rightarrow \varphi_{n}(t u)$ is left continuous for fixed $u>0$. We define a modular on the family of all sequences $x=\left(x_{n}\right)$ of real numbers by the following forınula

$$
I_{\varphi}(x)=\sum_{n=1}^{\infty} \varphi_{n}\left(x_{n}\right)
$$

1.2. Definition. The linear set

$$
l_{\varphi}=\left\{x=\left(x_{n}\right): \exists_{a>0} I_{\varphi}(a x)<\infty\right\}
$$

equipped with so called Luxemburg norm

$$
\|x\|_{\varphi}=\inf \left\{k>0: I_{\varphi}\left(k^{-1} x\right) \leq 1\right\}
$$

is said to be Musielak-Orlicz sequence space.
δ_{2}^{0}-condition. We say that $\varphi=\left(\varphi_{n}\right)$ satisfies the δ_{2}^{0}-condition if there are constants a, k, an integer m and a sequence (c_{n}) of non-negative real numbers such that

$$
\sum_{n=1}^{\infty} c_{n}<\infty \quad \text { and } \quad \varphi_{n}(2 u) \leq k \varphi_{n}(u)+c_{n}
$$

for all $n \geq m$ and $u \in \mathbf{R}$ with $\varphi_{n}(u) \leq a$.
Define

$$
p_{i}(u)=\left\{\begin{array}{l}
0 \text { if } \varphi_{i}(u)=0 \\
\infty \text { if } \varphi_{i}(u)=\infty \\
\text { left derivative of } \varphi_{i}(u), \quad \text { otherwise }
\end{array}\right.
$$

It is easy to notice that for every $i \in \mathbb{N} \quad p_{i}(u)$ is nondecreasing and

$$
\varphi_{i}(u)=\int_{0}^{|u|} p_{i}(t) d t
$$

Put

$$
a_{i}=\sup \left\{u>0: \varphi_{i}(u) \leq 1\right\} \quad(i=1,2, \ldots)
$$

1.3. Lemma. If the function $\varphi=\left(\varphi_{n}\right)$ does not satisfy the δ_{2}^{0}-condition, then an element $x \in S\left(l_{\varphi}\right)$ can be found such that for every $\varepsilon \in\left(0, \frac{1}{2}\right)$ we have

$$
I_{\varphi}[(1+\varepsilon) x]=\infty \quad \text { and } \quad I_{\varphi}[(1-\varepsilon) x] \leq \frac{1}{2}
$$

Proof : We will construct $x \in S\left(l_{\varphi}\right)$ with desirable properties. Analyzing the proof of Th. 1.1 from [2], we conclude that if φ does not satisfy δ_{2}^{0}-condition then there is a sequence $y=\left(y_{i}\right) \in S\left(l_{\varphi}\right)$ such that $\varphi_{i}\left(2 y_{i}\right)<\infty(i=1,2, \ldots), I_{\varphi}(y) \leq 1$ and $I_{\varphi}(2 y)=\infty$. Put

$$
k_{0}=\sup \left\{k: I_{\varphi}(k y)<\infty\right\}
$$

Obviously, $1 \leq k_{0}<2$. Denote $z=k_{0} y$. If for every $k<1$ we have $I_{\varphi}(k z) \leq \frac{1}{2}$ then we can put $x=z$ and such element x has properties from the thesis of the lemma. Otherwise, there is a number $k_{1}<1$ such that

$$
I_{\varphi}\left(k_{1} z^{(1)}\right)=\sum_{i=N_{1}}^{\infty} \varphi_{i}\left(k_{1} z_{i}\right) \leq \frac{1}{4}
$$

where $z^{(1)}=\left(0,0, \ldots, 0, z_{N_{1}+1}^{v}, \ldots\right)$.
Now, if for every $k<1$, we have $I_{\varphi}\left(k z^{(1)}\right) \leq \frac{1}{2}$ then putting $x=z^{(1)}$ we obtain x with desirable properties. Otherwise, there exists a number $k_{2}>\frac{k_{1}+1}{2}$ such that $I_{\varphi}\left(k_{2} z^{(1)}\right)>\frac{1}{2}$. Since $I_{\varphi}\left(k_{2} z^{(1)}\right)<\infty$, then $N_{2}>N_{1}$ can be found such that

$$
I_{\varphi}\left(k_{2} z^{(2)}\right)=\sum_{i=N_{2}}^{\infty} \varphi_{i}\left(k_{2} z_{i}\right) \leq 2^{-3}
$$

where $z^{(2)}=\left(0,0, \ldots, 0, z_{N_{2}}, z_{N_{2}+1}, \ldots\right)$.
Repeating the above argumentation, we arrive at the conclusion that either there exists a number i such that $I_{\varphi}\left(k z^{(i)}\right) \leq \frac{1}{2}$ for every $k<1$ and then putting $x=z^{(i)}$ we obtain the thesis of the lemma, or otherwise there are two sequences $\left(N_{i}\right)$ and $\left(k_{i}\right)$ such that $N_{i} \uparrow \infty$ and $k_{i} \uparrow 1$ as $i \rightarrow \infty$. In the second case we define

$$
x=\left(0,0, \ldots, 0, k_{1} z_{N_{1}}, \ldots, k_{1} z_{N_{2}-1}, k_{2} z_{N_{2}}, \ldots, k_{i} z_{N_{i}}, k_{i} z_{N_{1}+1}, \ldots\right)
$$

Then

$$
I_{\varphi}(x) \leq I_{\varphi}\left(k_{1} z^{(1)}\right)+I_{\varphi}\left(k_{2} z^{(2)}\right)+\cdots \leq \sum_{i=2}^{\infty} 2^{-i}=\frac{1}{2}
$$

So $\|x\|_{\varphi} \leq 1$. On the other hand for any $\varepsilon \in\left(0, \frac{1}{2}\right)$ there exists i_{0} such that $k_{i_{0}}>\frac{1}{1+e}$. Consequently, we have

$$
I_{\varphi}[(1+\varepsilon) x] \geq I_{\varphi}\left[k_{i_{0}}(1+\varepsilon) z^{\left(i_{0}\right)}\right]=\infty
$$

so $\|x\|_{\varphi}$ can not be less then 1. Reassuming, we have that $\|x\|_{\varphi}=1$ and for every $\varepsilon \in\left(0, \frac{1}{2}\right) \quad I_{\varphi}[(1+\varepsilon) x]=\infty$ and $I_{\varphi}[(1-\varepsilon) x] \leq \frac{1}{2}$, what finishes the proof.

2. Main Result.

2.1. Theorem. The Musielak-Orlicz sequence space l_{φ} is differentiable if and only if the following conditions are satisfied:
(i) The function $\varphi=\left(\varphi_{n}\right)$ satisfies the δ_{2}^{0}-condition.
(ii) There do not exist two positive integers n_{1} and n_{2} such that

$$
\varphi_{n_{1}}\left(a_{n_{1}}\right)+\varphi_{n_{2}}\left(a_{n_{2}}\right) \leq 1 \quad \text { and } \quad \varphi_{n_{1}}\left(a_{n_{1}}\right)>0, \varphi_{n_{2}}\left(a n_{2}\right)>0
$$

(iii) The left derivative $p_{i}(u)$ of $\varphi_{i}(u)$ is continuous for $0<|u|<a_{i} \quad(i=$ $1,2, \ldots)$.

Proof of necessity: Suppose the Musielak-Orlicz sequence space l_{φ} is differentiable and the function $\varphi=\left(\varphi_{i}\right)$ does not satisfy δ_{2}^{0}-condition. Then we can divide a sequence (n) of all natural numbers into two subsequences (n_{k}) and (m_{l}) possessing the following properties:
a) $\left\{n_{k}: k \in N\right\} \cap\left\{m_{l}: l \in N\right\}=\emptyset$
b) $\left\{n_{k}: k \in \mathbf{N}\right\} \cup\left\{m_{l}: l \in N\right\}=N$,
c) $\varphi^{(1)}=\left(\varphi_{n_{k}}\right)_{k \in N}$ and $\varphi^{(2)}=\left(\varphi_{m_{l}}\right)_{l \in N}$ do not satisfy δ_{2}^{0}-condition.

Applying Lemma 1.3 we can find $x^{(1)} \in S\left(l_{\varphi(1)}\right)$ and $x^{(2)} \in S\left(l_{\varphi(2)}\right)$ such that

$$
\begin{aligned}
& I_{\varphi(1)}\left[(1+\varepsilon) x^{(1)}\right]=\infty, \quad I_{\varphi(1)}\left[(1+\varepsilon) x^{(2)}\right]=\infty \\
& I_{\varphi(1)}\left[(1-\varepsilon) x^{(1)}\right] \leq \frac{1}{2}, \quad I_{\varphi(2)}\left[(1-\varepsilon) x^{(2)}\right] \leq \frac{1}{2}
\end{aligned}
$$

for any $\varepsilon \in\left(0, \frac{1}{2}\right)$. Denoting $x^{(1)}=\left(x_{n_{1}}, x_{n_{2}}, \ldots\right)$ and $x^{(2)}=\left(x_{m_{1}}, x_{m_{2}}, \ldots\right)$ we define

$$
x=\left(x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad y=\left(y_{1}, y_{2}, \ldots\right)
$$

where

$$
y_{i}=\left\{\begin{array}{lll}
0 & \text { if } & i \in\left\{m_{l}: l \in N\right\} \\
x_{2} & \text { if } & i \in\left\{n_{k}: k \in N\right\}
\end{array}\right.
$$

Then we have

$$
\begin{aligned}
& I_{\varphi}[(1+\varepsilon) x] \leq I_{\varphi(1)}\left[(1+\varepsilon) x^{(1)}\right]=\infty \\
& I_{\varphi}[(1+\varepsilon) y]=I_{\varphi(1)}\left[(1+\varepsilon) x^{(1)}\right]=\infty \\
& I_{\varphi}[(1-\varepsilon) x]=I_{\varphi(1)}\left[(1+\varepsilon) x^{(1)}\right]+I_{\varphi(2)}\left[(1-\varepsilon) x^{(2)}\right] \leq \frac{1}{2}+\frac{1}{2}=1, \\
& I_{\varphi}[(1-\varepsilon) y]=I_{\varphi(1)}\left[(1-\varepsilon) x^{(1)}\right] \leq \frac{1}{2}
\end{aligned}
$$

for every $\varepsilon \in\left(0, \frac{1}{2}\right)$. Hence $x \in S\left(l_{\varphi}\right)$ and $y \in S\left(l_{\varphi}\right)$. Further, for each $\lambda>0$ we have

$$
I_{\varphi}\left(\frac{x+\lambda y}{1+\frac{\lambda}{2}}\right) \geq I_{\varphi(1)}\left(\frac{x+\lambda y}{1+\frac{\lambda}{2}}\right)=I_{\varphi(1)}\left(\frac{1+\lambda}{1+\frac{\lambda}{2}} x^{(1)}\right)=\infty,
$$

because $(1+\lambda) /\left(1+\frac{\lambda}{2}\right)>1$. This means that $\|x+\lambda y\|_{\varphi} \geq 1+\frac{\lambda}{2}$. Therefore

$$
\operatorname{grad}(x, y)=\lim _{\lambda \rightarrow 0_{+}} \frac{\|x+\lambda y\|_{\varphi}-\|x\|_{\varphi}}{\lambda} \geq \lim _{\lambda \rightarrow 0_{+}} \frac{1+\frac{\lambda}{2}-1}{\lambda}=\frac{1}{2}
$$

On the other hand, for $\lambda<0$ we have

$$
I_{\varphi}\left(\frac{x+\lambda y}{1+\frac{\lambda}{3}}\right) \geq I_{\varphi(2)}\left(\frac{x+\lambda y}{1+\frac{\lambda}{3}}\right)=I_{\varphi(2)}\left(\frac{1}{1+\frac{\lambda}{3}} x^{(2)}\right)=\infty
$$

because $1 /\left(1+\frac{\lambda}{3}\right)>1$. Thus $\|x+\lambda y\|_{\varphi} \geq 1+\frac{\lambda}{3}$ and

$$
\operatorname{grad}(x, y)=\lim _{\lambda \rightarrow 0_{-}} \frac{\|x+\lambda y\|_{\varphi}-\|x\|_{\varphi}}{\lambda} \leq \lim _{\lambda \rightarrow 0_{-}} \frac{1+\frac{\lambda}{3}-1}{\lambda}=\frac{1}{3} .
$$

It proves that the gradient $\operatorname{grad}(x, y)$ does not exist what implies that the space l_{φ} can not be differentiable. This contradiction completes proof of (i).

Now we will prove the necessity of the condition (ii). To this end suppose that the Musielak-Orlicz space l_{φ} is differentiable and there exist two positive integers n_{1} and $n_{2}\left(n_{1}<n_{2}\right)$ such that

$$
\varphi_{n_{1}}\left(a_{n_{1}}\right)+\varphi_{n_{2}}\left(a_{n_{2}}\right) \leq 1 \quad \text { and } \quad \varphi_{n_{1}}\left(a_{n_{1}}\right)>0, \quad \varphi_{n_{2}}\left(a_{n_{2}}\right)>0
$$

Define

$$
\begin{aligned}
& x=\left(0, \ldots, 0, a_{n_{1}}, 0, \ldots 0, a_{n_{2}}, 0, \ldots\right) \\
& y=\left(0, \ldots, 0, a_{n_{1}}, 0, \ldots\right) .
\end{aligned}
$$

It is easy to verify that $\|x\|_{\varphi}=1$ and $\|y\|_{\varphi}=1$. For any $\lambda>0$, we have

$$
I_{\varphi}\left(\frac{x+\lambda y}{1+\lambda}\right)=\varphi_{n_{1}}\left(a_{n_{1}}\right)+\varphi_{n_{2}}\left(\frac{1}{1+\lambda} a_{n_{2}}\right) \leq 1
$$

so $\|x+\lambda y\|_{\varphi} \leq 1+\lambda$. But, for any $0<k<1+\lambda$, we get

$$
I_{\varphi}\left(\frac{x+\lambda y}{k}\right) \geq \varphi_{n_{1}}\left(\frac{1+\lambda}{k} a_{n_{1}}\right)+\varphi_{n_{2}}\left(\frac{1}{1+\lambda} a_{n_{2}}\right) \geq \varphi_{n_{1}}\left(\frac{1+\lambda}{k} a_{n_{1}}\right)>1
$$

i.e. $\|x+\lambda y\|_{\varphi} \geq 1+\lambda$. Hence, $\|x+\lambda y\|_{\varphi}=1+\lambda$. Therefore,

$$
\lim _{\lambda \rightarrow 0_{+}} \frac{\|x+\lambda y\|_{\varphi}-\|x\|_{\varphi}}{\lambda}=\lim _{\lambda \rightarrow 0_{+}} \frac{1+\lambda-1}{\lambda}=1
$$

On the other hand, for $\lambda<0$ we have $1>1+\frac{\lambda}{2}>1+\lambda$ and

$$
I_{\varphi}\left(\frac{x+\lambda y}{1+\frac{\lambda}{2}}\right)=\varphi_{n_{1}}\left(\frac{1+\lambda}{1+\frac{\lambda}{2}} a_{n_{1}}\right)+\varphi_{n_{2}}\left(\frac{1}{1+\frac{\lambda}{2}} a_{n_{2}}\right) \geq \varphi_{n_{2}}\left(\frac{1}{1+\frac{\lambda}{2}} a_{n_{2}}\right)>1
$$

so $\|x+\lambda y\|_{\varphi}>1+\frac{\lambda}{2}$. Consequently,

$$
\lim _{\lambda \rightarrow 0_{-}} \frac{\|x+\lambda y\|_{\varphi}-\|x\|_{\varphi}}{\lambda} \leq \lim _{\lambda \rightarrow 0_{-}} \frac{1+\frac{\lambda}{2}-1}{\lambda}=\frac{1}{2}
$$

Thus,

$$
\lim _{\lambda \rightarrow 0} \frac{\|x+\lambda y\|_{\varphi}-\|x\|_{\varphi}}{\lambda}
$$

does not exist. This contradiction proves the necessity of (ii).
For the proof of necessity of (iii) let us assume that the space l_{φ} is differentiable and that exist a natural number N and a real number u such that $0<u<a_{N}$ and $p_{N}($.$) is not continuous at the point u$. We can choose a sequence of real numbers (u_{n}) such that $0<u_{i}<a_{i}$ for $i \neq N$ and

$$
\begin{equation*}
I_{\varphi}(x)=\sum_{i \neq N} \varphi_{i}\left(u_{i}\right)+\varphi_{N}(u)=1 \tag{1}
\end{equation*}
$$

where $x=\left(u_{1}, u_{2}, \ldots, u_{N-1}, u, u_{N+1}, \ldots\right)$. Then, by (i), $x \in S\left(l_{\varphi}\right)$.
Let $y=\left(0, \ldots, 0, a_{N}, 0, \ldots\right)$. Obviously, $I_{\varphi}(y) \leq 1$ and $\|y\|_{\varphi}=1$.

Denote $k_{\lambda}=\|x+\lambda y\|_{\varphi}$. It is easy to notice, that $k_{\lambda}>1$ for $\lambda>0$. First, we will prove without δ_{2}^{0}-condition that

$$
\begin{equation*}
I_{\varphi}\left(\frac{x+\lambda y}{k_{\lambda}}\right)=1 . \tag{2}
\end{equation*}
$$

To this end suppose $I_{\varphi}\left(\frac{x+\lambda y}{k_{\lambda}}\right)<1$ and denote $\varepsilon=1-I_{\varphi}\left(\frac{x+\lambda y}{k_{\lambda}}\right)$. Since

$$
\sum_{i \neq N} \varphi_{i}\left(\frac{u_{i}}{k_{\lambda}}\right) \leq \sum_{i \neq N} \varphi_{i}\left(u_{i}\right)<I_{\varphi}(x) \leq 1,
$$

so there is a natural number $N_{0}>N$ such that for every $k_{\lambda}>k>1$ we have

$$
\sum_{i=N_{0}+1}^{\infty} \varphi_{i}\left(\frac{u_{i}}{k}\right)<\frac{\varepsilon}{3} .
$$

Further

$$
\sum_{i=1, i \neq N}^{N_{0}} \varphi_{i}\left(\frac{u_{i}}{k_{\lambda}}\right)+\varphi_{N}\left(\frac{u+\lambda a_{N}}{k_{\lambda}}\right) \leq 1-\varepsilon
$$

Since $k_{\lambda}>1$ and $u / a_{N}<1$, then $\lambda>0$ can be found such that $\lambda<k_{\lambda}-u / a_{N}$. For λ defined in this manner, we have $\left(u+\lambda a_{N}\right) / k_{\lambda}<a_{N}$. By the continuity of φ_{i} ($i=1,2, \ldots$) on the interval $\left(0, a_{i}\right)$, there is $k-\lambda>k_{\epsilon}>1$ such that

$$
\sum_{i=1, i \neq N}^{N_{0}} \varphi_{i}\left(\frac{u_{i}}{k_{e}}\right)+\varphi_{N}\left(\frac{u+\lambda a_{N}}{k_{\varepsilon}}\right)<1-\frac{2}{3} \varepsilon .
$$

Hence

$$
\sum_{i \neq N} \varphi_{i}\left(\frac{u_{i}}{k_{\varepsilon}}\right)+\varphi_{N}\left(\frac{u+\lambda a_{N}}{k_{\varepsilon}}\right)<1-\frac{2}{3}+\sum_{i=N_{0}+1}^{\infty} \varphi_{i}\left(\frac{u_{i}}{k_{\varepsilon}}\right)<1-\frac{1}{3} \varepsilon<1
$$

which contradicts the definition of k_{λ}. This finishes the proof of equality (2). From (2) we obtain
(3)

$$
\sum_{i \neq N} \varphi_{i}\left(\frac{u_{i}}{k_{\lambda}}\right)+\varphi_{N}\left(\frac{u}{k_{\lambda}}+\frac{\lambda a_{N}}{k_{\lambda}}\right)=1 .
$$

Hence

$$
\varphi_{N}\left(\frac{u}{k_{\lambda}}+\frac{\lambda a_{N}}{k_{\lambda}}\right)=1-\sum_{i \neq N} \varphi_{i}\left(\frac{u_{i}}{k_{\lambda}}\right)>1-\sum_{i \neq N} \varphi_{i}\left(u_{i}\right)=\varphi_{N}(u) .
$$

Thus, by the monotonity of φ_{N}, we have

$$
\frac{u}{k_{\lambda}}+\frac{\lambda a_{N}}{k_{\lambda}}>u
$$

Therefore, applying (1) and (3), we get

$$
\sum_{i \neq N} \varphi_{i}\left(u_{i}\right)-\sum_{i \neq N} \varphi_{i}\left(\frac{u_{i}}{k_{\lambda}}\right)=\varphi_{N}\left(\frac{u}{k_{\lambda}}+\frac{\lambda a_{N}}{k_{\lambda}}\right)-\varphi_{N}(u)
$$

This gives

$$
\sum_{i \neq N_{u_{i}} / k_{\lambda}} \int_{u}^{u_{i}} p_{i}(t) d t=\int_{u / k_{\lambda}+\left(\lambda / k_{\lambda}\right) a_{N}} p_{N}(t) d t .
$$

Denote

$$
\lim _{t \rightarrow v_{-}} p_{i}(t)=P_{i}^{-}(\dot{v}), \quad \lim _{t \rightarrow v_{+}} p_{i}(t)=P_{i}^{+}(v) \quad(i=1,2, \ldots) .
$$

Since $p_{i}($.$) is non-decreasing function, we have$

$$
\int_{\frac{u_{i}}{k_{\lambda}}}^{u_{i}} p_{i}(t) d t \leq P_{i}^{-}\left(u_{i}\right)\left(u_{i}-\frac{u_{i}}{k_{\lambda}}\right)
$$

and

$$
\int_{u}^{\left(u+\lambda a_{N}\right) / k_{\lambda}} p_{N}(t) d t \geq P_{N}^{+}(u)\left[\frac{1}{k_{\lambda}}\left(u+\lambda a_{N}\right)-u\right]
$$

Consequently,

$$
\sum_{i \neq N} P_{i}^{-}\left(u_{i}\right)\left(u_{i}-\frac{u_{i}}{k_{\lambda}}\right) \geq P_{N}^{+}(u)\left[\frac{1}{k_{\lambda}}\left(u+\lambda a_{N}\right)-u\right]
$$

The above inequality is equivalent to the following one

$$
\left(k_{\lambda}-1\right)\left[\sum_{i \neq N} P_{i}^{-}\left(u_{i}\right) u_{i}+P_{N}^{+}(u) u\right] \geq \lambda a_{N} P_{N}^{+}(u)
$$

so

$$
\begin{equation*}
\frac{k_{\lambda}-1}{\lambda} \geq \frac{a_{N} P_{N}^{+}(u)}{\sum_{i \neq N} u_{i} P_{i}^{-}\left(u_{i}\right)+u P_{N}^{+}(u)} \tag{4}
\end{equation*}
$$

for $\lambda>0$.
Now, we will consider the case of $\lambda<0$. Then we have $k_{\lambda}=\|x+\lambda y\|_{\varphi} \leq 1$. Repeating this same argumentation as above we obtain the equality

$$
\sum_{i \neq N} \int_{u_{i}}^{\frac{u_{i}}{n_{\lambda}}} p_{i}(t) d t=\int_{\left(u+\lambda a_{N}\right) / k_{\lambda}}^{u} p_{N}(t) d t
$$

Since $k_{\lambda} \leq 1$ and $p_{i}(\cdot)$ is non-decreasing, so

$$
\sum_{i \neq N} \int_{u_{i}}^{\frac{u_{i}}{k_{\lambda}}} p_{i}(t) d t \geq \sum_{i=N} P_{i}^{+}\left(u_{i}\right)\left[\frac{u_{i}}{k_{\lambda}}-u_{i}\right]
$$

and

$$
\int_{\frac{1}{k_{\lambda}}\left(u+\lambda a_{N}\right)}^{u} p_{N}(t) d t \leq P_{N}^{-}(u)\left[u-\frac{1}{k_{\lambda}}\left(u+\lambda a_{N}\right)\right] .
$$

Thus

$$
\sum_{i \neq N} P_{i}^{+}\left(u_{i}\right)\left[\frac{u_{i}}{k_{\lambda}}-u_{i}\right] \leq P_{N}^{-}(u)\left[u-\frac{1}{k_{\lambda}}\left(u+\lambda a_{N}\right)\right]
$$

Hence

$$
\begin{equation*}
\frac{k_{\lambda}-1}{\lambda} \leq \frac{a_{N} P_{N}^{-}(u)}{\sum_{i \neq N} u_{i} P_{i}^{+}\left(u_{i}\right)+u P_{N}^{-}(u)} \tag{5}
\end{equation*}
$$

Since $p_{N}($.$) is not continuous at u$, then $P_{N}^{-}(u)<P_{N}^{+}(u)$. It implies that

$$
\frac{a_{N} P_{N}^{-}(u)}{\sum_{i \neq N} u_{i} P_{i}^{+}\left(u_{i}\right)+u P_{N}^{-}(u)}<\frac{a_{N} P_{N}^{+}(u)}{\sum_{i \neq N} u_{i} P_{i}^{-}\left(u_{i}\right)+u P_{N}^{+}(u)},
$$

so, by (4) and (5),

$$
\lim _{\lambda \rightarrow 0} \frac{\|x+\lambda y\|_{\varphi}-\|x\|_{\varphi}}{\lambda}=\lim _{\lambda \rightarrow 0} \frac{k_{\lambda}-1}{\lambda}
$$

does not exist. This contradiction completes the proof of necessity of (iii).
Proof of sufficiency: Let $x \in S\left(l_{\varphi}\right)$. By the assumption (ii), at most one i-th coordinate can be equal to a_{i} or $-a_{i}$. Consider two cases:
I. We will show differentiability of the norm at x with exactly one (say N -th) coordinate equal to a_{N} or $-a_{N}$, i.e.

$$
x=\left(u_{1}, u_{2}, \ldots\right), \quad \text { where } \quad\left|u_{N}\right|=a_{N} \quad \text { and } \quad\left|u_{i}\right|<a_{i} \text { for } i \neq N
$$

II. We will prove differentiability of the norm at other points x from $S\left(l_{\varphi}\right)$, i.e.

$$
x=\left(u_{1}, u_{2}, \ldots\right) \text { and }\left|u_{i}\right|<a_{i} \text { for every } i \in \mathbf{N} .
$$

I. Let $y=\left(y_{1}, y_{2}, \ldots\right) \in S\left(l_{\varphi}\right)$. First we will consider the case $\lambda u_{N} y_{N}<0$. For

$$
0<K<1+\lambda \frac{y_{N}}{u_{N}}
$$

we have

$$
\left|\frac{u_{N}+\lambda y_{N}}{K}\right|>a_{N}
$$

Therefore

$$
I_{\varphi}\left(\frac{x+\lambda y}{K}\right)=\sum_{i \neq N} \varphi_{i}\left(\frac{u_{i}+\lambda y_{i}}{K}\right)+\varphi_{N}\left(\frac{u_{N}+\lambda y_{N}}{K}\right) \geq \varphi_{N}\left(\frac{u_{N}+\lambda y_{N}}{K} \geq 1\right.
$$

i.e. $\|x+\lambda y\|_{\varphi} \geq 1+\lambda y_{N} / u_{N}$.

Now we will give an upper estimation of the norm of element $x+\lambda y$. To this end, let $1>M>1+\lambda y_{N} / u_{N}$. By (i), there cxist constants a, k an integer m and a sequence (c_{n}) non-negative real numbers such that

$$
\varphi_{n}(2 u) \leq k \varphi_{n}(u)+c_{n} \text { and } \sum_{i=1}^{\infty} c_{i}<\infty
$$

for all $n \geq m$ and $u \in \mathbf{R}$, provided $\varphi_{n}(u) \leq a$. Fix an $\varepsilon>0$. let N_{1}, N_{2} and N_{3} be natural numbers greater then N such that

$$
\begin{equation*}
\sum_{i=N_{1}}^{\infty} c_{i}<\min \left\{\frac{a}{2}, \frac{\varepsilon}{k+1}\right\} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=N_{2}}^{\infty} \varphi_{i}\left(u_{i}\right)<\min \left\{\frac{1}{k}\left(a-\sum_{j=N_{1}}^{\infty} c_{j}\right), \frac{\varepsilon}{4 k^{2}}\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=N_{3}}^{\infty} \varphi_{i}\left(y_{i}\right)<\min \left\{\frac{1}{k}\left(a-\sum_{j=N_{1}}^{\infty} c_{j}\right), \frac{\varepsilon}{4 k^{2}}\right\} \tag{8}
\end{equation*}
$$

Using δ_{2}^{0}-condition, we have

$$
\sum_{i=N_{2}}^{\infty} \varphi_{i}\left(2 u_{i}\right)<a \text { and } \sum_{i=N_{3}}^{\infty} \varphi_{i}\left(2 y_{i}\right)<a
$$

Moreover, we will show that there is a natural number $N_{4}>N$ such that

$$
\begin{equation*}
\left|\frac{u_{i}+\lambda y_{i}}{M}\right|<a_{i} \tag{9}
\end{equation*}
$$

for $i \geq N_{4}$ and every $|\lambda|<\frac{1}{4}$ with $\lambda u_{N} y_{N}<0$.
Since $M>1+\lambda y_{N} / u_{N}>1-|\lambda|$ and $\left|u_{i}+\lambda y_{i}\right| \leq\left|u_{i}\right|+\lambda\left|a_{i}\right|$, then inequality (9) is true provided there is $N_{4}>N$ such that

$$
\left|u_{i}\right|<a_{i}(1-2|\lambda|)
$$

for $i \geq N_{4}$ and $|\lambda|<\frac{1}{4}$ with $\lambda u_{N} y_{N}<0$. Further, note that $\varphi_{i}\left(a_{i}\right)$ can be equal to zero only for finite number of a_{i}. Indeed, if $i>m$ and $\varphi_{i}\left(a_{i}\right)=0<a$ then, by δ_{2}^{0}-condition, we get

$$
\varphi_{i}\left(2 a_{i}\right) \leq k \varphi_{i}\left(a_{i}\right)+c_{i}=c_{i}
$$

But $\left(c_{i}\right)$ is convergent to zero, so without loss of generality we can assume that $c_{i}<1$ for $i>m$. Thus $\varphi_{i}\left(2 a_{i}\right)<1$, what contradicts the definition of a_{i}. Therefore, we can assume that $\varphi_{i}\left(a_{i}\right)>0$ for $i>m$. Moreover, by the assumption (ii), we have $\varphi_{i}\left(a_{i}\right) \geq \frac{1}{2}(i>m)$ except at most one integer, say $i=n_{0}$. Further, by δ_{2}^{0}-condition $I_{\varphi}(2 x)<\infty$. Hence there is an integer $N_{4}>n_{0}$ such that

$$
\sum_{i=N_{4}}^{\infty} \varphi_{i}\left(2 u_{i}\right)<\frac{1}{2} \leq \varphi_{j}\left(a_{j}\right)
$$

for $j=N_{4}, N_{4}+1, \ldots$, so

$$
\varphi_{i}\left(2 u_{i}\right)<\varphi_{i}\left(a_{i}\right) \quad\left(i=N_{4}, N_{4}+1, \ldots\right) .
$$

Consequently, by the definition of Young's function, we obtain

$$
2\left|u_{i}\right|<a_{i} \quad\left(i=N_{4}, N_{4}+1, \ldots\right)
$$

This implies that

$$
\left|u_{i}\right|<(1-2|\lambda|) a_{i}
$$

for $i \geq N_{4}$ and $|\lambda|<\frac{1}{4}$ with $\lambda u_{N} y_{N}<0$. Thus (9) holds for every $|\lambda|<\frac{1}{4}$ with $\lambda u_{N} y_{N}<0$ and $i \geq N_{4}$. Taking $N_{0}=\max \left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$ and using (9), δ_{2}^{0}-condition, (6), (7) and (8), we have

$$
\begin{aligned}
& \sum_{i=N_{0}}^{\infty} \varphi_{i}\left(\frac{u_{i}+\lambda y_{i}}{M}\right)<\sum_{i=N_{0}}^{\infty} \varphi_{i}\left(2 u_{i}+2 y_{i}\right) \leq \\
& \leq \frac{1}{2} \sum_{i=N_{0}}^{\infty} \varphi_{i}\left(4 u_{i}\right)+\frac{1}{2} \sum_{i=N_{0}}^{\infty} \varphi_{i}\left(4 y_{i}\right) \leq \frac{k}{2} \sum_{i=N_{0}}^{\infty}\left[\varphi_{i}\left(2 u_{i}\right)+\varphi_{i}\left(2 y_{i}\right)\right]+\sum_{i=N_{0}}^{\infty} c_{i} \leq \\
& \leq \frac{k^{2}}{2} \sum_{i=N_{0}}^{\infty} \varphi_{i}\left(u_{i}\right)+\frac{k}{2} \sum_{i=N_{0}}^{\infty} c_{i}+\frac{k^{2}}{2} \sum_{i=N_{0}}^{\infty} \varphi_{i}\left(y_{i}\right)+\frac{k}{2} \sum_{i=N_{0}}^{\infty} c_{i}+\sum_{i=N_{0}}^{\infty} c_{i}= \\
&=\frac{k^{2}}{2} \sum_{i=N_{0}}^{\infty}\left[\varphi_{i}\left(u_{i}\right)+\varphi_{i}\left(y_{i}\right)\right]+(k+1) \sum_{i=N_{0}}^{\infty} c_{i}<\frac{3}{4} \varepsilon
\end{aligned}
$$

Further, for any $i=1,2, \ldots, N_{0}-1$ and $i \neq N$, by $\left|u_{i}\right|<a_{i}$, a real number λ_{i} can be found such that $\lambda_{i} u_{N} y_{N}<0$ and

$$
\frac{\left|u_{i}\right|+\left|\lambda_{i} y_{i}\right|}{1+\lambda_{i} \frac{x_{N} N}{}}<a_{i}
$$

Denote $A=\left\{1,2, \ldots, N_{0}-1\right\} /\{N\}$ and $\lambda_{0}=\min _{i \in A}\left\{\lambda_{i}\right\}$. Obviously,

$$
\lambda_{0} u_{N} y_{N}<0 \quad \text { and } \quad P_{i}^{-}\left(\frac{\left|u_{i}\right|+\left|\lambda_{0} y_{i}\right|}{1+\lambda_{0} \frac{y_{N}}{u_{N}}}\right)<\infty \text { for } \quad i \in A .
$$

We put

$$
P^{-}=\max _{i \in A}\left\{P_{i}^{-}\left(\frac{\left|u_{i}\right|+\left|\lambda_{0} y_{i}\right|}{1+\lambda_{0} \frac{y_{N}}{u_{N}}}\right)\right\}
$$

and

$$
\lambda_{0}^{\prime}=\min _{i \in A}\left\{\frac{\varepsilon}{2^{i+2} P^{-}}\left(\left|\frac{\lambda_{0} y_{N}}{u_{N}}\right|+\left|y_{i}\right|\right)^{-1}\right\}\left(-\operatorname{sign} u_{N} y_{N}\right)
$$

For $0<|\lambda|<\min \left\{\left|\lambda_{0}\right|,\left|\lambda_{0}^{\prime}\right|, \frac{1}{4}\right\}$ with $\operatorname{sign} \lambda=-\operatorname{sign} u_{N} y_{N}$, we have

$$
\begin{aligned}
& \sum_{i \in A}\left[\varphi_{i}\left(\frac{\left|u_{i}\right|+\left|\lambda y_{i}\right|}{M}\right)-\varphi_{i}\left(u_{i}\right)\right]= \sum_{i \in A} \int_{\left|u_{i}\right|}^{\left(\left|u_{i}\right|+\left|\lambda y_{i}\right|\right) / M} p_{i}(t) d t \leq \\
& \leq P^{-} \sum_{i \in A}\left(\frac{\left|u_{i}\right|+\left|\lambda y_{i}\right|}{M}-\left|u_{i}\right|\right) \leq P^{-} \sum_{i \in A} \frac{(1-M)\left|u_{i}\right|+\left|\lambda y_{i}\right|}{M} \leq \\
& \leq P^{-} \sum_{i \in A}\left(\left|\frac{y_{N} u_{i}}{a_{N}}\right|+\left|y_{i}\right|\right)|\lambda| \leq \sum_{i \in A} \frac{\varepsilon}{2^{i+2}}<\frac{1}{4} \varepsilon .
\end{aligned}
$$

Moreover,

$$
\varphi_{N}\left(\frac{u_{N}+\lambda y_{N}}{M}\right) \leq \varphi_{N}\left(a_{N}\right)
$$

by previous assumptions concerning M. Reassuming, we have

$$
\begin{aligned}
I_{\varphi}\left(\frac{x+\lambda y}{M}\right) & =\sum_{i \in A} \varphi_{i}\left(\frac{u_{i}+\lambda y_{i}}{M}\right)+\varphi_{N}\left(\frac{u_{N}+\lambda y_{N}}{M}\right)+\sum_{i=N_{0}}^{\infty} \varphi_{i}\left(\frac{u_{i}+\lambda y_{i}}{M}\right) \leq \\
& \leq \sum_{i \neq N} \varphi_{i}\left(u_{i}\right)+\frac{1}{4} \varepsilon+\varphi_{N}\left(a_{N}\right)+\frac{3}{4} \varepsilon=1+\varepsilon
\end{aligned}
$$

Since ε is arbitrary, we have

$$
\|x+\lambda y\|_{\varphi} \leq 1+\lambda \frac{y_{N}}{u_{N}} .
$$

Therefore

$$
\|x+\lambda y\|_{\varphi}=1+\lambda \frac{y_{N}}{u_{N}} .
$$

For $\lambda u_{N} y_{N} \geq 0$ one can be proved analogously the same equality. Thus, if $x=\left(u_{1}, u_{2}, \ldots\right) \in S\left(l_{\varphi}\right),\left|u_{i}\right|<a_{i}$ for $i \neq N$ and $\left|u_{N}\right|=a_{N}$, then

$$
\operatorname{grad}(x, y)=\lim _{\lambda \rightarrow 0} \frac{\|x+\lambda y\|_{\varphi}-\|x\|_{\varphi}}{\lambda}=\frac{y_{N}}{u_{N}}
$$

for every $y \in S\left(l_{\varphi}\right)$. This completes proof of the case I.
II. Let $x=\left(u_{1}, u_{2}, \ldots\right) \in S\left(l_{\varphi}\right)$ with $\left|u_{i}\right|<a_{i}$ for every $i \in N$. Since φ satisfies δ_{2}^{0}-condition, so, by Theorem 1.1 from [2] $I_{\varphi}(x)=1$. Fix $y \in S\left(l_{\varphi}\right)$. Denote $k_{\lambda}=\|x+\lambda y\|_{\varphi}$. We will show that there is $0<\lambda_{0}<\frac{1}{4}$ such that

$$
\begin{equation*}
\left|\frac{u_{i}+\lambda y_{i}}{k_{\lambda}}\right|<a_{i} \tag{10}
\end{equation*}
$$

for $|\lambda|<\lambda_{0}$ and every $i \in \mathbf{N}$.
Since $k_{\lambda} \geq\|x\|_{\varphi}-\|\lambda y\|_{\varphi}=1-|\lambda|$ and $\left|u_{i}+\lambda y_{i}\right| \leq\left|u_{i}\right|+|\lambda| a_{i}$, using this same argumentation as in proof of inequality (9), we conclude that there is a natural number N such that (10) is satisfied for $i \geq N$ and $\lambda_{0}=\frac{1}{4}$. Further for every $1 \leq i<N$ there is $\lambda_{i}>0$ such that

$$
\left|\frac{u_{i}+\lambda y_{i}}{k_{\lambda}}\right|<a_{i} \quad \text { for }|\lambda|<\lambda_{i} .
$$

Thus, putting

$$
\lambda_{0}=\min \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{N}\right|, \frac{1}{4}\right\}
$$

the inequality (10) is proved.
Moreover,

$$
\left\|\frac{x+\lambda y}{k_{\lambda}}\right\|_{\varphi}=1
$$

then, by δ_{2}^{0} - condition,

$$
I_{\varphi}\left(\frac{x+\lambda y}{k_{\lambda}}\right)=1
$$

(see [2], Th. 1.1). Hence, we have

$$
\sum_{i=1}^{\infty}\left[\varphi_{i}\left(\frac{u_{i}+\lambda y_{i}}{k_{\lambda}}\right)-\varphi_{i}\left(u_{i}\right)\right]=0
$$

i.e.

$$
\sum_{i=1}^{\infty} \int_{u_{i}}^{\frac{u_{i}+\lambda_{y_{i}}}{k_{\lambda}}} p_{i}(t) d t=0 .
$$

In view of (iii) there exists a real number v_{i} between u_{i} and $\frac{u_{i}+\lambda y_{i}}{k_{\lambda}}$ such that

$$
\sum_{i=1}^{\infty} p_{i}\left(v_{i}\right)\left(\frac{u_{i}+\lambda y_{i}}{k_{\lambda}}-u_{i}\right)=0
$$

It follows that

$$
\sum_{i=1}^{\infty} p_{i}\left(v_{i}\right) \frac{1-k_{\lambda}}{k \lambda} u_{i}+\sum_{i=1}^{\infty} p_{i}\left(v_{i}\right) \frac{\lambda}{k_{\lambda}} y_{i}=0
$$

Hence

$$
\frac{k_{\lambda}-1}{\lambda}=\frac{\sum_{i=1}^{\infty} p_{i}\left(v_{i}\right) y_{i}}{\sum_{i=1}^{\infty} p_{i}\left(v_{i}\right) u_{i}}
$$

for every $|\lambda|<\lambda_{0}$. Therefore

$$
\operatorname{grad}(x, y)=\lim _{\lambda \rightarrow 0} \frac{\|x+\lambda y\|_{\varphi}-\|x\|_{\varphi}}{\lambda}=\lim _{\lambda \rightarrow 0} \frac{k_{\lambda}-1}{\lambda}=\frac{\sum_{i=1}^{\infty} p_{i}\left(u_{i}\right) y_{i}}{\sum_{i=1}^{\infty} p_{i}\left(u_{i}\right) u_{i}}
$$

what completes the proof of Theorem 2.1.
Analysing the proof of sufficiency of Theorem 2.1 it is easy to conclude the following:
2.2.Corollary. If conditions (i),(ii) and (iii) are satisfied then for every $x=$ $\left(u_{1}, u_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$ from unite sphere $S\left(l_{\varphi}\right)$ we have

$$
\operatorname{grad}(x, y)=\frac{\sum_{t=1}^{\infty} p_{i}\left(u_{i}\right) y_{i}}{\sum_{t=1}^{\infty} p_{i}\left(u_{i}\right) u_{i}}
$$

References

[1] J.Diestel, Geometry of Banach spaces,, Lecture notes in math. 481 (1975).
[2] A.Kaminska, Flat Orlicz-Musielak sequence spaces, Bull. Ac. Pol.: Math. 30 (1982), 347-352.
[3] M.A.Krasnosel'skij and Ya.Rutickij, Convex functions and Orlicz spaces, Gronigen (1961).
[4] K.Lindberg, On subspaces of Orlicz sequence spaces, Studia Math. 45 (1973), 119-146.
[5] J.Musielak, Orlicz spaces and Modular spaces, Lecture notes in math 1034 (1983).
[6] J.Musielak and W.Orlicz, On modular spaces, Studia math. 18 (1959), 49-65.
[7] M.M.Rao, Smoothness of Orlicz spaces I, Indagationes Math. 27 ser.A (1965), 671-680.
[8] M.M.Rao, Smoothess of Orlicz spaces II, ibidem 27 ser.A (1965), 681-690.
[9] Ye Yining, Differentiability of Orlicz space, (Chinese), Journal of Harbin University of Science and Technology 2 (1987), 114-118.
[10] M.Wisla, Continuity of the identity embedding of Musielak-Orlicz sequence spaces, Supplemento ai Rendiconti del Circolo Mat. di Palermo ser. II 14 (1987), 427-437.

[^0]
[^0]: R. Pluciennik, Institute of Mathematics, Technical University, Piotrowo 3 A, 60-965 Poznań, Poland
 R. Pluciennik, Mathematical Institute, Polish Academy of Science, Poznań Branch, Mielżyńskiego 27/29, 61-725 Poznań, Poland
 Yining Ye, Department of Mathematics, Harbin University of Science and Technology, 22 Xuefu Road, China

