Commentationes Mathematicae Universitatis Carolinas

Marie Kopáčková
Remarks on bounded solutions of a semilinear dissipative hyperbolic equation

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 4, 713--719

Persistent URL: http://dml.cz/dmlcz/106791

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Remarks on bounded solutions of a semilinear dissipative hyperbolic equation

M.KOPÁČKOVÁ

Abstract

Global estimates for solutions of a hyperbolic equation with a nonlinear dissipative term of polynomial or arbitrary growth are proved. Moreover, a global estimate of Hölder constant for a solution is derived.

Keywords: A priori estimate, semilinear hyperbolic equation, bounded solution.
Classífication: 35B45, 35B30, 35L20

Introduction. A.Haraux in [1] proved the estimate $E(t) \leqq c\left(\|f\|_{\infty}^{4}+1\right)$ of the eneggy for the equation

$$
\begin{equation*}
u_{t t}+L u+g\left(u_{t}\right)=f \tag{1}
\end{equation*}
$$

for arbitrary growth of the function g and confronted it with better estimate $E(t) \leqq$ $c\left(\|f\|_{\infty}^{2}+1\right)$ in the case of polynomial growth of g.

The flrst remark is devoted to a connection between these two estimates, whose slightly different proofs are given here. The second remark gives the global estimate of the difference of two solutions, that implies continuous dependence of a solution u on f and initial data and a global estimate of Hölder constant of u.

Assumptions and results. Let us recall some assumptions given in [1] and [2].
Assumptions on L. Let Ω be a bounded domain in R^{n}, a Hilbert space V be densely and continuously imbedded in $L^{2}(\Omega)$ and let $L: V \rightarrow L^{2}(\Omega)$ be a linear symmetric positive operator.Denote $\langle u, v\rangle$ the duality between V and $V^{\prime},\|u\|=$ $\langle L u, u\rangle \geqslant$ the north in V and (u, v) the inner product in $L^{2}(\Omega)$. Let V be continuously imbedded into $L^{s}(\Omega)$:

$$
\begin{equation*}
|u|_{s} \leqq c_{0}\|u\|, u \in V,|u|_{2} \leqq c_{0}|u|_{s}, u \in L^{s}(\Omega) \tag{2}
\end{equation*}
$$

where $|u|_{s}$ is the norm of u in $L^{s}(\Omega), s \leqq \gamma+1(\gamma$ is defined in the embedding theoremi).

Asstimptions on g. Let $g(y)$ be a continuous non-decreasing function on R satisfying the following

$$
\begin{array}{r}
g(0)=0, \text { there exist } \eta>0, C_{1}: g(y) y \geqq \eta|y|^{p+1}-c_{1}|y|, \quad y \in R, \tag{3}\\
\text { for some } p \in[1, \gamma]
\end{array}
$$

there exist $C_{3}, C_{4}:\|g(v)\|_{V^{\prime}} \leqq c_{3}+c_{4}\langle g(v), v\rangle \quad v \in V$
there exist $c_{2}, \eta>0, p \in[1, \gamma]$ such that

$$
\begin{gather*}
\eta\left|y_{1}-y_{2}\right|^{p-1} \leqq \frac{g\left(y_{1}\right)-g\left(y_{2}\right)}{y_{1}-y_{2}} \leqq c_{2}\left(1+\left[g\left(y_{1}\right) y_{1}+g\left(y_{2}\right) y_{2}\right]^{\frac{\gamma-1}{\gamma+1}}\right) \tag{6}\\
\text { hold for every } y_{1}, y_{2} \in R, y_{1} \neq y_{2} .
\end{gather*}
$$

Remark 1. The polynomial growth of g.i.e.

$$
\begin{gather*}
\qquad|g(y)| \leqq c_{5}\left(|y|^{q}+1\right), y \in R, \text { for some } q \leqq \gamma, \tag{4'}\\
\text { gives }|g(y)|^{\frac{q+1}{q}}=|g(y)| \cdot|g(y)|^{\frac{1}{9}} \leqq c_{5}^{\frac{1}{q}}(g(y) y+|g(y)|) \\
\text { which implies }|g(y)|^{\frac{q+1}{q}} \leqq 2 c_{5} g(y) y+c_{6},
\end{gather*}
$$

where c_{6} depends on c_{5} and q only. Hence

$$
\begin{aligned}
|\langle g(v), u\rangle| \leqq|g(v)|_{q+1}|u|_{q+1} \leqq\left(2 C_{5}\langle g(v), v\rangle+C_{6} \mu(\Omega)\right)^{\frac{q}{q+1}} \cdot\|u\|, \\
u \in V, v \in L^{q+1}(\Omega)
\end{aligned}
$$

and (4) holds for arbitrary c_{4} and $c_{3}=\frac{\left(2 q c_{5}\right)^{q}}{(q+1)^{q+1}} c_{4}^{-q}+c_{6} \mu(\Omega)$.
Assumptions on $f(t, x)$.

$$
\begin{equation*}
f \in L_{l o c}^{1}\left(R^{+}, L^{2}(\Omega)\right), \quad \sup _{t \geqq 0} \int_{t}^{t+1}|f(s, .)|_{\frac{l^{p+1}}{p}}^{\frac{R+1}{p}} d s \equiv H_{p}^{\frac{p+1}{p}}<+\infty . \tag{5}
\end{equation*}
$$

The existence, uniqueness and regularity of the initial value problem associated to the equation (1) is known (see e.g. [3], [4]). Let us remind some properties of the solution $u(t, x)$:

$$
\begin{align*}
& \quad u \in W_{l o c}^{2, \infty}\left(R^{+}, L^{2}(\Omega)\right) \cap W_{l o c}^{1, \infty}\left(R^{+}, V\right) \tag{7}\\
& g\left(u_{t}\right) u_{t} \in L_{l o c}^{1}\left(R^{+}, L^{1}(\Omega)\right) \tag{8}\\
& \sup _{t \geqq 0} \int_{t}^{t+1}\left\langle g\left(u_{t}\right), u_{t}\right) d s \leqq \sup _{t \geqq 0} E_{0}(t)+\sqrt{2} \sup _{t \geqq 0} \sqrt{E_{0}(t)} H_{1}, \tag{9}\\
& \text { where } E_{0}(t)=\frac{1}{2}\left(\|u(t, .)\|^{2}+\left|u_{t}(t, .)\right|_{2}^{2}\right)
\end{align*}
$$

for the initial data $u^{0} \in D(L), v^{0} \in V, g\left(v^{0}\right) \in L^{2}(\Omega)$ and for $f \in W_{l o c}^{1,1}\left(R^{+}, L^{2}(\Omega)\right)$.
We prove the following estimates.
Theorem 1. Under the assumptions (2) - (5) there exists a constant c such that

$$
\begin{equation*}
E_{0}(t) \leqq c\left(E_{0}(0)+H_{p}^{2}+c_{4}^{2} H_{p}^{2 \frac{p+1}{p}}+c_{3}^{2}+c_{4}^{2}+1\right), \quad t \geqq 0 \tag{10}
\end{equation*}
$$

where c does not depend on u, f, c_{3}, c_{4} and the initial data.
Theorem 2. Let the assumptions (2) - (6) be satisfied and let u_{i} be a solution of (1) with the right hand side f_{i} and the initial data $u_{i}^{0}, v_{i}^{0}, \quad i=1,2$. Denote $f=f_{1}-f_{2}, u=u_{1}-u_{2}, u^{0}=u_{1}^{0}-u_{2}^{0}, v^{0}=v_{1}^{0}-v_{2}^{0}$ and

$$
\begin{equation*}
E_{\varepsilon}(t) \equiv E_{0}(t)+\varepsilon\left(u_{t}, u\right) \tag{11}
\end{equation*}
$$

the modified energy functional. Then there exist constants $c, \varepsilon_{1}>0$ such that the following inequality

$$
\begin{equation*}
E_{\varepsilon}(t) \leqq E_{\varepsilon}(0)+c\left(H_{p}^{2}+\frac{1}{\varepsilon} H_{p}^{\frac{t+1}{p}}+\varepsilon^{\frac{z}{p-1}}\right) \equiv E_{\varepsilon}(0)+c M(\varepsilon) \tag{12}
\end{equation*}
$$

holds for every $\varepsilon \in\left(0, \varepsilon_{1}\right]$ and every $t \geqq 0$. Especially, choosing $\varepsilon=\varepsilon_{0}$ to minimize $M(\varepsilon)$, we get

$$
\begin{array}{lll}
E_{0}(t) \leqq 2 E_{e_{0}}(t) \leqq 2 E_{0}(0)+2 c\left(H_{p}^{2}+H_{p}^{2}\right) & \text { for } & H_{p} \leqq a \tag{13}\\
E_{0}(t) \leqq 2 E_{\varepsilon_{1}}(t) \leqq 2 E_{0}(0)+2 c M\left(\varepsilon_{1}\right) & \text { for } & H_{p} \leqq a,
\end{array}
$$

where $a=\left(\frac{p-1}{2}\right)^{-\frac{p}{p+1}} \varepsilon_{1}^{\frac{p}{p-1}}, \varepsilon_{0}=\left(\frac{p-1}{2}\right)^{\frac{p-1}{p+1}} H_{p}^{\frac{p-1}{p}}, p>1$.
In the case $p=1$ (12) holds without the last term.
Remark 2. The estimate (13) gives continuous dependence of a solution of (1) on the right hand side f and the initial data u^{0}, v^{0} globally in $t \in R^{+}$. Moreover, putting $u_{1}(t, x)=u(t+h, x), u_{2}(t, x)=u(t, x), f_{1}(t, x)=f(t+h, x), f_{2}(t, x)=$ $f(t, x)$ the inequality (13) gives the upper bound of the Hölder constant of u and u_{t} (in t) for $t \geqq 0$ with the exponent p^{-1}, if $u^{0} \in D(L), v^{0} \in V$ and f_{t} satisfies (5).
The estimates (10), (12) and (13) will be proved under stronger assumptions on smoothness of u, but the general case may be obtained approximating the functions f, u^{0} and v^{0}.
Proof of Theorem 1. First, we formulate some estimates which will be used in the proof. Having in mind (3), (5) and (8), we may estimate the scalar product

$$
\begin{equation*}
\left|\left\langle f, u_{t}+\varepsilon u\right\rangle\right| \leqq|f|_{\frac{+1}{p}}\left(\left|u_{t}\right|_{p+1}+\varepsilon|u|_{p+1}\right) \leqq|f|_{\frac{p+1}{}}^{p}\left(\left|u_{t}\right|_{p+1}+\varepsilon c_{0}\|u\|\right), \tag{14}
\end{equation*}
$$

the duality pairing

$$
\begin{align*}
\left|\left\langle g\left(u_{t}\right), u\right\rangle\right| & \leqq\left\|g\left(u_{t}\right)\right\| v \cdot\|u\| \leqq\left(c_{3}+c_{4}\left\langle g\left(u_{t}\right), u_{t}\right\rangle\right)\|u\| \leqq \tag{15}\\
& \left.\leqq w^{\prime} u \|+c_{4} \sqrt{2 E_{0}(t)}\left\langle g\left(u_{t}\right), u_{t}\right\rangle\right)
\end{align*}
$$

and the polynomial

$$
\begin{equation*}
-\frac{\eta}{2} x^{p+1}+\frac{\varepsilon c_{0}^{2}}{2}(3+\varepsilon) x^{2}+\left(b+c_{1}\right) x \leqq c\left(b^{\frac{p+1}{P}}+\varepsilon^{\frac{p+1}{-1}}+c_{1}^{\frac{b+1}{p}}\right), \quad x \in R^{+} . \tag{16}
\end{equation*}
$$

In the whole paper, a constant c is independent of ε, f, c_{3} and c_{4}. The second term on the right hand side of (16) is absent for $p=1$.

Multiplying the equation (1) by the sum $u_{t}+\varepsilon u(\varepsilon$ being a small positive number) and integrating it over Ω, we get

$$
\begin{equation*}
E_{\varepsilon}^{\prime}(t)+\varepsilon E_{\varepsilon}(t)=-\frac{\varepsilon}{2}\|u\|^{2}+\frac{3}{2} \varepsilon\left|u_{t}\right|_{2}^{2}+\varepsilon^{2}\left(u_{t}, u\right)-\left\langle g\left(u_{t}\right), u_{t}+\varepsilon u\right\rangle+\left(f, u_{t}+\varepsilon u\right) \tag{17}
\end{equation*}
$$

Using (14) and (15) to the last two terms of (17), we may write

$$
\begin{aligned}
E_{c}^{\prime}(t)+\varepsilon E_{\varepsilon}(t) \leqq & -\frac{\varepsilon}{2}\|u\|^{2}+\frac{3}{2} \varepsilon\left|u_{t}\right|_{2}^{2}+\frac{\varepsilon^{2}}{2}\left(\left|u_{t}\right|_{2}^{2}+c_{0}^{2}\|u\|^{2}\right)-\frac{1}{2}\left\langle g\left(u_{t}\right), u_{t}\right\rangle+ \\
& +\left(-\frac{1}{2}+\varepsilon c_{4} \sqrt{2 E_{0}(t)}\right) \quad\left\langle g\left(u_{t}\right), u_{t}\right\rangle+\varepsilon c_{3}\|u\|+ \\
& +|f|_{\frac{e_{t+1}^{p}}{p}}\left(\left|u_{t}\right|_{p+1}+\varepsilon c_{0}\|u\|\right) .
\end{aligned}
$$

Using (3), (16) for $x=\left|u_{t}\right|_{p+1}, b=|f|_{\frac{2+1}{p}}$ and the inequality

$$
-\frac{\varepsilon}{2}\|u\|^{2}+\frac{\varepsilon^{2}}{2} c_{0}^{2}\|u\|^{2}+\varepsilon c_{3}\|u\| \leqq \varepsilon c_{3}^{2}
$$

which holds for $0 \leqq \varepsilon \leqq \frac{1}{2 c_{0}^{2}}$, we get

$$
\begin{aligned}
E_{\varepsilon}^{\prime}(t)+\varepsilon E_{\varepsilon}(t) & \leqq \varepsilon\left(c_{3}^{2}+c_{0}|f|_{\frac{p+1}{p}}\|u\|\right)+c\left(|f|_{\frac{p+1}{p}}^{\frac{p+1}{p}}+\varepsilon^{\frac{p+1}{p-1}}+c_{1}^{\frac{p+1}{p}}+\right. \\
& +\left(\varepsilon c_{4} \sqrt{2 E_{0}(t)}-\frac{1}{2}\right)\left\langle g\left(u_{t}\right), u_{t}\right\rangle
\end{aligned}
$$

Now, let us multiply this inequality by $e^{e t}$, integrate it over the interval $(0, t)$, $t \in[0, T]$ (T being a fixed but arbitrary positive number), denote $\bar{E}_{\varepsilon}=\max _{0 \leqq t \leq T} E_{\varepsilon}(t)$ and take ε so small that the last term is not positive, i.e. $0 \leqq \varepsilon \leqq \varepsilon_{T} \equiv \frac{1}{2 C_{4} \sqrt{2 \bar{E}_{0}}}$. Since

$$
c_{0} \varepsilon \int_{0}^{t}|f(s, \cdot)|_{\frac{p+1}{p}} \cdot\|u(s, \cdot)\| e^{\epsilon s} d s \leqq c \sqrt{2 \bar{E}_{0}} H_{p} e^{e t} \leqq\left(\frac{1}{2} \bar{E}_{0}+c H_{p}^{2}\right) e^{e t}
$$

we get

$$
\begin{align*}
& E_{\varepsilon}(t) e^{e t}-E_{\varepsilon}(0) \leqq c\left(c_{3}^{2}+H_{p}^{2}\right) e^{e t}+\frac{1}{4} \bar{E}_{0} e^{e t}+\frac{c}{\varepsilon}\left(H_{p}^{\frac{t+1}{p}}+c_{1}^{\frac{t+1}{p}}+\varepsilon^{\frac{2+1}{-1}}\right)\left(e^{e t}-1\right) \\
& \text { (8) } \quad \text { for } t \in[0, T] \text { and } 0<\varepsilon \leqq \min \left(\frac{1}{2 c_{0}^{2}}, \varepsilon_{T}\right) . \tag{18}
\end{align*}
$$

As the modified energy functional $E_{\varepsilon}(t)$ may be estimated for $0 \leqq \varepsilon \leqq \frac{1}{2 c_{0}}$ by the energy functional $E_{0}(t)$:

$$
\begin{equation*}
E_{0}(t) \leqq 2 E_{e}(t) \leqq 3 E_{0}(t), \quad t \geqq 0 \tag{19}
\end{equation*}
$$

we obtain from (18)

$$
\bar{E}_{0} \leqq 6 E_{0}(0)+c\left(c_{3}^{2}+H_{p}^{2}+\varepsilon^{\frac{2}{p-1}}\right)+\frac{c}{\varepsilon}\left(H_{p}^{\frac{R+1}{p}}+c_{1}^{\frac{\varepsilon+1}{p}}\right)
$$

for $\varepsilon \in\left(0, \min \left(\varepsilon_{1}, \varepsilon_{T}\right)\right)$, where $\varepsilon_{1}=\frac{1}{2} \min \left(c_{0}^{-1}, c_{0}^{-2}\right)$, which implies (using the definition of $\left.\varepsilon_{T}\right)$

$$
\bar{E}_{0} \leqq 6 E_{0}(0)+c\left(c_{3}^{2}+H_{p}^{2}+1\right)+\frac{1}{2} \bar{E}_{0}+c c_{4}^{2}\left(H_{p}^{2 \cdot \frac{R+1}{p}}+1\right)
$$

It says that E_{0} does not exceed the right hand side of (10), whirh is independent of T and then (10) holds for every $t \geqq 0$.

Remark 3. Let (3), (4') and (5) be satisfied. Having in mind Remark 1, choosing $c_{4}=H_{p}^{-\frac{p+1}{p(q+1)}}$ and c_{3} from Remark 1, we may write the inequality (10) in the following from

$$
\begin{equation*}
E_{0}(t) \leqq c\left(E_{0}(0)+H_{p}^{2}+H_{p}^{2 \cdot \frac{q}{q+1} \cdot \frac{p+1}{p}}+1\right) \tag{20}
\end{equation*}
$$

If $q=p$ (e.g. $\left.g(y)=|y|^{p-1} y\right),(20)$ gives the known results (see e.g. [5])

$$
\begin{equation*}
E_{0}(t) \leqq c\left(E_{0}(0)+H_{p}^{2}+1\right) \tag{21}
\end{equation*}
$$

The estimate (20) may be deduced from (17) in another way: Using the last inequality of Remark 1 in (15) and (17), we get

$$
\begin{aligned}
E_{\varepsilon}^{\prime}(t)+\varepsilon E_{\varepsilon}(t) & \leqq \frac{1}{2}\left\langle g\left(u_{t}\right), u_{t}\right)^{\frac{q}{q+1}}\left(4 c_{5} \varepsilon \sqrt{E_{\varepsilon}(t)}-\left\langle g\left(u_{t}\right), u_{t}\right\rangle^{\frac{1}{q+1}}\right)+ \\
& +\varepsilon c_{0}^{2}|f|_{\frac{p+1}{p}}^{2}+c\left(|f|_{\frac{p+1}{p}}+c_{1}+\varepsilon\right)^{\frac{p+1}{p}}
\end{aligned}
$$

Similarly to the proof of Theorem 1 we obtain (multiplying the above inequality by $e^{e t}$ and integrating it over $\left.(0, t)\right)$

$$
\begin{equation*}
\bar{E}_{\varepsilon} \leqq E_{\varepsilon}(0)+c \varepsilon^{q}\left(4 c_{5}\right)^{q+1} \bar{E}_{0}^{\frac{q+1}{2}}+c H_{p}^{2}+\frac{c}{\varepsilon}\left(|f|_{\frac{p+1}{p}}+c_{1}\right)^{\frac{\varepsilon+1}{p}}+c \varepsilon^{\frac{1}{p}} \tag{22}
\end{equation*}
$$

where \bar{E}_{ε} equiv $\max _{0 \leqq t \leqq T} E_{\varepsilon}(t)$. Now, ε may be chosen such that the sum of the second and forth terms of the right side of (22) might be minimal, i.e. $\varepsilon=\varepsilon_{0}=$ $=c\left(H_{p}^{\frac{2+1}{p}}+c_{1}\right)^{\frac{1}{+1}} \bar{E}_{0}^{-\frac{1}{2}}$, which gives the inequality (20) (putting into (22)).

Proof of Theorem 2. Since the difference $u=u_{1}-u_{2}$ satisfies the equation

$$
u_{t t}+L u+g\left(u_{1, t}\right)-g\left(u_{2, t}\right)=f
$$

we can proceed similarly to the proof of Theorem l,i.e. multiply this equation by $u_{t}+\varepsilon u$ and integrate it over Ω. Instead of (15) we must estimate $\left\langle g\left(u_{1, t}\right)-g\left(u_{2, t}\right), u\right\rangle$. Denoting $\varphi(t) \equiv\left(\left|g\left(u_{1, t}\right) u_{1, t}\right|_{1}+\left|g\left(u_{2, t}\right) u_{2, t}\right|_{1}\right)^{\frac{\gamma-1}{r+1}}$ and using (6) and (8) we have

$$
\begin{aligned}
&\left|\left\langle g\left(u_{1, t}\right)-g\left(u_{2, t}\right), u\right\rangle\right| \leqq \frac{1}{2}\left|\left\langle\frac{g\left(u_{1, t}\right)-g\left(u_{2, t}\right)}{u_{t}}, \frac{1}{\delta} u_{t}^{2}+\delta u^{2}\right\rangle\right| \leqq \\
& \leqq \frac{1}{2 \delta}\left\langle g\left(u_{1, t}\right)-g\left(u_{2, t}\right), u_{t}\right\rangle+ \\
&+\frac{\delta}{2} c_{2}\left\{\int_{\Omega}\left[1+\left(g\left(u_{1, t}\right) u_{1, t}+g\left(u_{2, t}\right) u_{2, t}\right)^{\frac{\gamma-1}{\gamma+1}}\right]^{\frac{\gamma+1}{\gamma-1}} d x\right\}^{\frac{\gamma-1}{\gamma+1}}|u|_{\gamma+1}^{2} \leqq \\
& \leqq \frac{1}{2 \delta}\left\langle g\left(u_{1, t}\right)-g\left(u_{2, t}\right), u_{t}\right\rangle+\frac{\delta c_{2} c_{0}^{2}}{2}[1+\varphi(t)]\|u\|^{2}
\end{aligned}
$$

The modified energy functional $E_{\varepsilon}(t)$ for the difference $u=u_{1}-u_{2}$ must satisfy the following (due to (16))

$$
\begin{align*}
E_{\varepsilon}^{\prime}(t)+ & \varepsilon E_{\varepsilon}(t) \leqq-\frac{\varepsilon}{2}\|u\|^{2}+\frac{3 \varepsilon}{2}\left|u_{t}\right|_{2}^{2}+|f|_{\frac{p+1}{p}}\left|u_{t}\right|_{p+1}+\varepsilon|f|_{\frac{p+1}{p}} c_{0}\|u\|- \tag{23}\\
& -\left\langle g\left(u_{1, t}\right)-g\left(u_{2, t}\right),\left(1-\frac{\varepsilon}{2 \delta}\right) u_{t}\right\rangle+\frac{\varepsilon c_{2} c_{0}^{2} \delta}{2}\|u\|[1+\varphi(t)] \leqq \\
& \leqq \frac{\varepsilon c_{0}^{2}}{4}|f|_{\frac{p+1}{p}}^{2}+c\left(|f|_{\frac{R+1}{p}}^{\frac{p+1}{p}}+\varepsilon^{\frac{p+1}{p-1}}\right)+\frac{\varepsilon c_{2} c_{0}^{2} \delta}{2}\left[(1+\varphi(t)]\|u\|^{2} .\right.
\end{align*}
$$

Choosing δ, ε_{1} so small, to satisfy $1-\frac{\varepsilon_{1}}{2 \delta} \geqq \frac{1}{2}, \quad \frac{1}{2}-\delta c_{2} c_{0}^{2} \geqq 0$ and $c_{2} c_{0}^{2} \delta \sup _{t \geq 0} \int_{t}^{t+1} \varphi(s) d s \leqq \frac{1}{2}$, multiplying (23) by $e^{\varepsilon t}$ and integrating it over ($0, t$), $t \in[0, T]$, we get

$$
E_{\varepsilon}(t) \leqq E_{\varepsilon}(0)+c\left(\varepsilon^{\frac{2}{p-1}}+H_{p}^{2}\right)+\frac{c}{\varepsilon} H_{p}^{\frac{p+1}{p}}+\frac{1}{4} \bar{E}_{0}
$$

Using (19), we obtain

$$
\bar{E}_{\varepsilon} \leqq 4 E_{\varepsilon}(0)+c\left(\varepsilon^{\frac{2}{p-1}}+H_{p}^{2}\right)+\frac{c}{\varepsilon} H_{p}^{\frac{p+1}{p}}, \quad t \in[0, T], \quad \varepsilon \in\left(0, \varepsilon_{1}\right]
$$

Since T was chosen arbitrary, the last inequality implies (12).

References

[1] A.Haraux, Two remarks on hyperbolic dissipative problems., (Nonlinear part. diff. equations and their appl., College de France seminar, vol.7, Editors: H.Brezis, J.L.Lions.
[2] A.Haraux, E.Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Archive Rat.Mech.Anal. 150 (1988), 191-206.
[3] A.Haraux, Nonlinear Evolution Equations - Global Behavior of Solutions, (Lecture Notes in Math. 841, Springer-Verlag Berlin, Heidelberg,New York 1981.
[4] A.Haraux, Semilinear hyperbolic problems in bounded domain., (Math.Reports., J.Dieudon ne' Editor, Harwook Acad.Publ., Gordon \& Breach).
[5] G.Prouse, Soluzioni quasi periodiche delle equazione delle onde con termine dissipativo non lineare, I-IV, (Rend.Acad.Naz.Lincei 38,39 (1965)).
[6] J.L.Lions, W.A.Strauss, Some non-linear evolution equations, Bull.Soc.Math.France 93 (1965), 43-96.

Mathematical Institute of Czechoslovak Acad. of Sci, Žitná 25, Praha 1, Czechoslovakia

