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Perfect codes and two-graphs 

JAN KRATOCHVÍL 

Abstract. A i-perfect code in a graph G is a subset C of its vertices such that every vertex 
of G is at distance at most t from exactly one code—vertex of C. A 2-graph is an equivalence 
class of graphs under Seidel's switching. The main result of the paper is a characterization 
of 2-graphs, all graphs of which contain 1-perfect codes. 
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Classification: 05C99 

Perfect codes in graphs were introduced by Biggs [3] as a generalization of the 
classical perfect codes in Hamming- and Lee-metrics [1], [2], [13], [10]. Unlike 
the case of distance-regular graphs where perfect codes are rather rare [2], [12], 
[13], one can easily construct examples of general (even regular) graphs containing 
perfect codes [5]. Nevertheless, typical graphs do not contain 1-perfect codes [9], 
and recognizing graphs that possess 1-perfect codes is NP-complete even when the 
input graph is regular [8]. One-perfect codes in out-degree-regular digraphs were 
also studied in [6]. 

In the sequel, we consider 2-graphs as equivalence classes of graphs under Seidel's 
switching [11]. We give a characterization of 2-graphs, all graphs of which contain 
1-perfect codes, i.e. we characterize all graphs G such that every graph H equivalent 
to G contains a 1-perfect code. The characterization yields a polynomial recognition 
algorithm. 

The paper is organized as follows: We review the necessary definitions and state 
the notations is Section 1. In Section 2, we introduce several graph reductions and 
reveal their connection to perfect codes and 2-graphs. The main result is proved in 
Section 3 and the concluding remarks are gathered in the last section. 

1. Prel iminaries. 

All graphs considered are finite, undirected and without loops and multiple edges. 
The vertex set and edge set of a given graph G are denoted by V(G) and .£(£*}, 
respectively. If there is no danger of confusion, we do not distinguish isomorphic 
graphs, e.g. any complete graph on n vertices is denoted by Kn, a cycle of length 
n is denoted by Cn and a path of length n is denoted by Pm. Given two graphs G 
and H, their disjoint union will be denoted by G A H. 

Given a graph (?, a set C C V(G) is called a t-ptrfoct code in G iff the sets 
St(u) = {v\v € V(G) k d(u,v) < *} , u 6 C form a partition of V(G) (i.e. iff for 
every v 6 V(G) there is exactly one u € C such that d(u,v) < t). Note that we 
have d(u, v) > 2t -f 1 for any two distinct ut, v € C. 
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Given a graph G and a subset A C V(G), we put S(G,A) = (V(G),E(G) ~ 
{uv\u £ A & v $ A}) (here "-f" stands for the symmetric difference). We write 
simply S(G,v) instead of S(G,{v}). We say that S(G,A) is obtained from G by 
switching the vertices of A. We call graphs G and # equivalent (denoted G ~ H) 
iff # is isomorphic to S(G, A) for some A C V(G). A 2-graph (i.e. the equivalence 
class) determined by a graph G will be denoted by (G), i.e. (G) = { # | # ~ G}. 
(For instance, <C4) = {G4 ,D4 ,Ki ) 3}.) 

We say that a 2-graph Q is t-codeperfect iff each # € Q contains a t-perfect code. 

2. Graph reductions. 

Definition. Let G be a graph and t; one of its vertices. We put 

Pi(G,v) = (V(G) U {v'}, E(G) U {uv'\uv € E(G)} U {vv'}), 

p2(G, v) = (V(G) U {v'},E(G) U {txt; V i E(G), u^v}), 

Pz(G, v) = (V(G) U {t/}, E(G) U {uv'\uv € E(G)}), 

p4(G, v) = (V(G) U {t/}, E(G) U {uv'\uv £ E(G)} U {vv'}). 

We also write G = o , # , when # = pi(G, v) for some t; 6 V(G). 
For A C {1,2,3,4}, we write G = aAH iff 

i) there is a sequence of graphs G = G\,G2,.. .,Gk = # and a sequence 
ei,£2».. .f£*-i ,£j € A such that G, = oe,Gt+i f° r every i = 1,2,...,k— 1; 

ii) no <r,, i £ A can be applied to G. 
We say that G is aA-reduced iff G = aAG. 

Remark. Note that S(p%(G,v),v') = p2(G,v) and 5(/>3(G,t>),i>') = p*(G,v) (and 
of course S(p2(G,v),v') = />i(G,v) and 5( /o4(G,v),t;') = pz(G, v)). Hence if G is 
o"i2~reduced, every # ~ G is cxi2-reduced as well. Similarly for <734- and 0*1234-
reduced graphs. Though for any G, the graphs af\G and a^G are uniquely deter
mined, this is not true in general. For instance 

P2 = ^2P4 and D3 = o2P4 . 

Proposition 1. Let G be a graph and v one of its vertices. Then 

i) G contains a t-perfect code if and only if p\(G,v) contains a t-perfect code; 
ii) 1/ t > 1, G contains a t-perfect code if and only if p%(G, v) contains a t-

perfect code. 

PROOF : i) Suppose C C V(G) is a t-perfect code in G. Then C is also a t-
perfect code in p\(G,v). If C C V(G) U {v'} is a t-perfect code in p\(G, v), then 
c a r d C n {w,u'} < 1. Without loss of generality we may suppose that v' £ C, and 
then C is also a t-perfect code in G. The proof of ii) is similar. • 

For the sake of simplicity, we are going to use the following notation from now on 

f {1,2} fort = l , 

«(*)-=- < {3,4} fort = 2, 

( {1,2,3,4} f o r t > 2 . 
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Theorem 1. Let G and H be graphs, t a positive integer and let H = &a(t)G. Then 
(G) is t-codeperfect if and only if (H) is t-codeperfect. 

PROOF : Let t = 1 and suppose there is a sequence of graphs satisfying i) of the 
above definition. The proof goes by induction on k, i.e. on the number of steps 
in the derivation of H from G. Hence it suffices to prove that for any graph H 
and v £ V(H),(H) is 1-codeperfect iff (p\(H, v)) is 1-codeperfect, and (H) is 1-
codeperfect iff (p2(H,v)) is 1-codeperfect. Since p\(H,v) ~ p2(H,v), it is enough 
to prove the former statement. 

Suppose (H) is 1-codeperfect and H' ~ p\(H,v), say H' = S(pi(H,v), A). If 
card AD {v,v'} = 1, then C = {v,v'} is a 1-perfect code in H'. In the opposite 
case, we may suppose without loss of generality that A fl {v,v'} = 0, and hence 
H' = p\(S(H, A), v) contains a 1-perfect code by Proposition 1. 

Conversely, if (p\(H,v)) is 1-codeperfect and H' ~ H, say H' = S(H,A), 
we may suppose without loss of generality that v £ A, and then p\(H',v) = 
S(p\(H,v), A) ~ p\(H,v) and H' contains a 1-perfect code by Proposition 1. 

For t > 1, the proof is similar. (Note that if (G) is 2-codeperfect, (p2(@iv)) need 
not be, e.g. when G = P4.) • 

Corollary. For every t there exists a class of graphs A(t) such that for any graph 

H the following statements are equivalent: 

i) (H) is t-codeperfect, 
ii) every H' = va(t)H is in A(t), 

iii) at least one H' = aa^t)H is in A(t). 

PROOF : Put A(t) = {G\(G) is t-codeperfect and G is aa^-reduced}. • 

3 . O n e - c o d e perfec t t w o - g r a p h s . 

It follows explicitly from Theorem 1 that there is a class A(l) such that for every 
graph H, (H) is 1-codeperfect if and only if there is some H' = ^ i2H lying in 
A(l) . We prove that if A(l) is chosen the smallest possible (i.e. if it contains only 
o~\2-reduced graphs), then it is finite. Moreover, we are able to describe it precisely: 

Theorem 2. We have A(l) = {K i ,D 3 ,P 2 } . 

л 
Ki D3 

PROOF : Every graph on at most three vertices determines a 1-codeperfect 2-
graph, and Ki, D3 and P2 are just all <7i2-reduced graphs on at most 3 vertices. 

Suppose G is a <xi2~reduced graph on n > 3 vertices such that (G) is 1-codeperfect. 
Without loss of generality we may suppose that G contains an isolated vertex, say 
v (otherwise we consider G' = S(G, {u\uv € E(G)}) ~ G. By Remark after the def
inition of the reductions, G' is also cri2-reduced). Put H = G - v, i.e. G = Ki A H. 

fbr every w € V(H) consider the graph Gw = S(G,{w,v}). According to the 
assumption, Gw contains a 1-perfect code. Since Gw is or^-reduced, Gwis connected 
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and has diameter less than 3. Hence this code contains exactly one code-vertex, 
and as wv $ E(G), we see that there is a w € V(I1) such that ww £ E(H) and 
w is adjacent to all other vertices of If. Note that w = w immediately follows. 
Thus the vertices of H are grouped into pairs w,w and II is a complement of a 
perfect matching. So H does not contain a 1-perfect code, and neither does G, 
contradicting the assumption. • 

In view of Theorem 2, one can describe directly all 1-codeperfect 2-graphs: 

Corollary 2. A 2-graph is l~codeperfect if and only if it contains a graph composed 
of at most thrtt isolattd complete graphs. 

It immediately follows that also the class of o~\ -reduced graphs which determine 
1-codeperfect 2-graphs is finite: 

Corollary 3 . Let Af(l) be the set of all induced subgraphs of Cg which are 0\-
reduced, i.e. A'(l) = {K!,D2,D3,P2,P3,P4,Ki AP2}. Then, given a graph G, the 
2-graph (G) is 1-codeperfect if and only if G' = a\G (which is unique) lies in A'(l). 

By Theorem 1 or by the corollaries, one can very quickly (in a linear time) 
demonstrate that a given graph does determine a 1-codeperfect 2-graph (it suffices 
to guess a switching set of vertices or a sequence of reductions). If it does not, 
this fact can be evidenced even quicker (in a constant time) by using the following 
theorem. 

Theorem 3 . A given graph G determines a 1-codeperfect 2-graph if and only if 
none of the seven graphs depicted in the figure is contained in G as an induced 
subgraph. 

O W \J ® 
PROOF : Let M be one of the graphs in the figure and let M < G (M is an 
induced subgraph of C). Since M is a\-reduced, we have M <W\G (note that cr\G 
is unique). But M ^ Ce, hence "d\G £ C6 and (G) is not 1-codeperfect according 
to Corollary 3. 

The converse implication is the crucial part of this theorem. Its proof is rather 
technical and we give just a sketch of it here. 

Suppose M % G for any M from the figure. We want to prove that then ~5\ G < 
C6. Let G contain an induced cycle C* of length k > 3 . Then k = 6, since 
C4 % G>Cs % G and K\ A P3 < C* for k > 7. Denote the vertices of this C6 by 
vi,V2,. . . ,ve consecutively. For any A C {1 ,2 , . . . ,6} put VA = {u|« € V(G) — 
{ v i , . . . , v«} & {i\tiV{ € E(G)} = A}. We have V% = 0, since u € V% would yield 
K\ A P3 < G. Similarly, VA = 0 unless card A = 3 and A contains three consecutive 
vertices of C%. Therefore putting V(t) = V{j-.ifi,i+i} U { v j , » = 1,2,. . . ,6 , we get 



Perfect codes and two-graphs 759 

that V(G) is a disjoint union of V(i), i = 1 ,2 , . . . ,6 . One can show analogously 
that every V(i) U V(i + 1) induces a complete subgraph of G, and thus a\G < Ce-

Suppose G does not contain an induced cycle of length > 3 (i.e. G is chordal). 
Since D4 % (7, G has at most three connected components. If it has exactly three 
of them, D3 = oTG, while if it has two of them, either D2 = a\G or K\ A P2 = a\G. 
If G is connected and k is the length of a longe: induced path in G, one can show 
similarly as above that W\G = P* < Ce. • 

4. A note on the computat iona l complexity. 

It is known that recognizing graphs that contain ^-perfect codes is NP-complete 
for every t [7]. For t — 1, this problem was proved to be NP-complete even when 
restricted to regular graphs [8]. It turns out that asking not only "does this par
ticular graph possess a 1-perfect code" but "does every graph equivalent to this 
particular one contain a 1-perfect code" makes the problem considerably easier. 
This is a direct consequence of Theorem 2 or 3: 

Theorem 4. Recognizing graphs that determine 1-codeperftct 2-graphs is polyno
mial. 

The situation is not so clear for t > 1. Here we have 

Proposit ion 2. For t > 1, the class A(t) is infinite. 

PROOF : Consider a graph JIU,„ = ({1 ,2 , . . . , 2?*}, {ij\l < i < n, n + 1 < j < 2n 
and j —i ^ n} ) (sometimes it is called a Hiraguchi graph) and put Gn = K\ AHniH. 
Then Gn -s c"i234-reduced, and one can check that (Gn) is a tf-codeperfect 2-graph 
for any t > 2. • 

However, Proposition 2 does not say anything about the complexity of recognizing 
i-codeperfect 2-graphs. Hence we are left with the following open problem: 

Problem. Given t > 2, what is the computational complexity of deciding whether 
a given graph determines a t-codeperfect 2-graph or not? 
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